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Epigenetic variation represents a unique aspect of human

biological variation that can shed light on our evolutionary

history as well as the etiology of human disease. DNA

methylation is the most commonly studied type of epigenetic

modification and can alter gene expression without changing

the underlying DNA sequence. DNA methylation occurs

throughout all living organisms although its function seems to

have evolved from genome defense in fungi, bacteria and

plants to a more complex role in gene regulation and cellular

differentiation in animals. Human DNA methylation was

originally studied in imprinting diseases and cancer, but more

recently has been investigated as a mechanism to mediate the

impact of environmental and psychosocial stressors on human

health and disease.
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Epigenetics and human evolution
Epigenetic variation has emerged as the latest lens

through which to study human evolution and disease.

Epigenetic modifications can alter gene expression with-

out changing the underlying DNA sequence and, thus,

illuminate a different facet of evolution and adaptation

compared to genetic variants [1]. With both genetic and

epigenetic variation, one can investigate the evolution of

the genome at a molecular level as well as adaptation at

individual and population levels. However, genetic

change occurs less frequently and is more stable in

comparison to epigenetic change, which can occur in

response to environmental stimuli experienced during

an individual’s lifetime. Epigenetic responses to environ-

mental stressors may have evolved to provide rapid, short-
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term responses to changes in the environment while

genetic changes provided long-term adaptations.

Both epigenetic and genetic variants influence our

response to diverse stimuli, ranging from environmental

toxins to diet to emotional distress, and those responses

can impact our physical and mental health (Figure 1).

Epigenetic variants may also be altered by environmental

stimuli, in contrast to more stable genetic variants. More-

over, different stimuli may feedback on epigenetic var-

iants in a cyclical manner highlighting the complexity of

epigenetic variation and the human condition, for exam-

ple, exposure to lead or other toxins may create epigenetic

modifications that alter the expression of genes involved

in cognitive functioning and then lead to increased risk of

joblessness, poverty, and continued exposure to environ-

mental toxins. Epigenetic response to biological and

psychosocial factors, like those illustrated in Figure 1,

may have evolved in humans as an adaptation to increas-

ingly complex stressors that are not experienced in sim-

pler organisms [2].

DNA methylation is one of the most studied types of

epigenetic modifications and typically occurs at cytosines

followed by guanosines, that is, CpG sites. In addition to

environmental factors, DNA sequence variants can influ-

ence the level of methylation at nearby CpG sites; those

genetic variants are called methylation quantitative trait

loci, or meQTLs, and have been found to associate with

certain complex phenotypes and diseases [e.g. 3]. DNA

methylation is one of the main epigenetic factors that

controls gene regulation in mammals and plays a critical

role in cellular differentiation and reprogramming [4].

Originally, DNA methylation was found to ‘silence’ genes

when methylation occurred in promoter regions. More

recently, research has shown that gene expression can be

either increased or decreased depending on the region of

the gene and genome that is methylated as well as the

developmental stage and transcriptional activity of the

genome [5–7].

Multiple research groups have assayed DNA methylation

in healthy human populations in order to better under-

stand how methylation contributes to natural human

variation and to demonstrate how methylation is influ-

enced by both genetic variation (meQTLs and genetic

ancestry) and environmental exposures [8–10]. DNA

methylation and meQTLs show high population-speci-

ficity and associations with complex phenotypes, such as

age, can be highly consistent across diverse populations
www.sciencedirect.com
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Figure 1
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A wide range of biological and psychosocial factors, both positive and negative, influence our lives (illustrated in the photographs in the figure),

including poverty and homelessness, environmental exposures to toxins or irradiation, physical or emotional trauma, psychiatric disorders such as

depression or anxiety, our emotional moods, pregnancy and family, our neighborhood, and nutrition and physical activity. Genetic and epigenetic

variants may influence how we respond to these factors and how they impact our physical and mental health. Furthermore, these physical/

psychosocial factors and genetic/epigenetic variants may feedback on each other in a cyclical manner, for example, exposure to lead or other

toxins may create epigenetic modifications that alter the expression of genes involved in cognitive functioning and then lead to increased risk of

joblessness, poverty, and further exposure to environmental toxins.

Source: This figure was created by Buster O’Connor and is reproduced with permission from Ref. [55], ã by Annual Reviews, http://www.

annualreviews.org Ref. [55].
[11,12��,13]. Recently, Carja et al. [14��] produced the first

worldwide map of human DNA methylation at CpG sites.

They found good correlation between population-specific

levels of genetic, epigenetic and mRNA variation but
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much stronger correlation between genetic and epige-

netic divergences suggesting that DNA methylation

evolves in a clock-like fashion, similar to genetic varia-

tion. Furthermore, they found far greater evolutionary
Current Opinion in Genetics & Development 2018, 53:36–42
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stability of DNA methylation in humans relative to

plants, revealing the possibility of a different role for

DNA methylation in humans. Methylation maps have

also been reconstructed for our extinct relatives, Nean-

derthals and Denisovans, by exploiting the natural deg-

radation of methylated and unmethylated cytosines into

thymines and uracils, respectively [15]. Comparing

ancient and modern methylation maps identified meth-

ylation differences that may underlie the anatomical

differences between us and our extinct relatives. Com-

parison of the maps also revealed that genes with differ-

entially methylated regions are almost twice as likely to

be associated with disease phenotypes than genes with-

out such regions, highlighting the role that methylation-

driven gene regulation may play in species-level evolu-

tion. More than a third of the identified disease genes are

involved in neurological and psychiatric disorders, per-

haps hinting at the complex coordination and regulation

necessary for pathways that include these genes to main-

tain functionality, particularly across species.

Compared to epigenetic variation, genetic variation is

more stable over time and more constrained, for example,

binary genetic changes versus 0–100% variation in meth-

ylation at a given site. Although we have a good under-

standing of how genetic variation is created, maintained,

selected and inherited, we know much less about these

characteristics in epigenetic variation. From developmen-

tal biology, we know that virtually all DNA methylation

marks in the mammalian genome are erased during

embryogenesis, that is, the epigenetic slate is wiped clean

at birth to allow epigenetic reprogramming of the genome

[16]. Many researchers are investigating how methylation

marks are created in the developing fetus, and how new

methylation marks may be created later in childhood and

adulthood. A key question is when genetic information

from the parents is used versus environmental informa-

tion during the methylation of a new CpG site, that is, de
novo methylation versus maintenance of existing meth-

ylation. Li et al. [17�] reported more methylation sites

with an environmental component than methylation sites

with a genetic component in humans, and they found that

more variation in genome-wide methylation was

explained by environmental factors than genetic factors,

highlighting the important role of the environment in

generating methylation marks. Furthermore, Van Baak

et al. [18] found that DNA methylation was more similar

between monozygotic twins than could be explained by

the twins’ genetic identity and that their epigenetic

‘supersimilar’ sites exhibited plasticity with respect to

the intrauterine environment, providing support for the

importance of the intrauterine environment when gener-

ating methylation marks in the developing fetus. Further-

more, there are low but detectable levels of methylation,

that is, <10%, that remain in mouse sperm and egg germ

cells [19], which would be consistent with a low level of

transgenerational epigenetic inheritance.
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Transgenerational inheritance of epigenetic marks, par-

ticularly those that are environmentally-induced, is one of

the most controversial aspects of epigenetic variation.

Epigenetics and human disease
Imprinting diseases and cancer

The impact of DNA methylation on human disease was

first studied in imprinting diseases in which different

diseases are caused by the same genetic defect, like

Prader–Willi and Angelman syndromes. Genomic

imprinting leads to differential expression of certain

genes exclusively from maternal or paternal chromosomes

and results in different diseases depending on which

parent carries the genetic defect. Results from recent

studies suggest that non-parent-of-origin effects and envi-

ronmental impacts may be more influential in imprinting

diseases than previously thought [20,21].

The widespread epigenetic dysregulation leading to can-

cer has also been well-studied. The effect of promoter

region hypermethylation and silencing of tumor suppres-

sor genes in the development of cancer is fairly straight-

forward, but the effect of genome-wide hypomethylation

and widespread aberrant histone modifications, another

type of epigenetic alteration, requires further investiga-

tion [22–24]. Most recently, Yamashito et al. [25��] pro-

vided the first estimate of the relative contributions of

genetic and epigenetic alterations to two types of cancer

with known environmental etiologies (smoking for esoph-

ageal cancer and chronic inflammation for gastric cancer).

They found that accumulation of rare genetic mutations

significantly increased the risk of esophageal cancer but

not gastric cancer and that increased DNA methylation

levels of marker genes increased the risk of both cancers.

These results have clear relevance for precision cancer

risk diagnosis.

Environmental exposures

Exposure to environmental toxins and the impact on

health is thought to be mediated, at least partially,

through epigenetic modifications. A diverse range of toxin

exposures have been tested for their effect on DNA

methylation. Smoking tobacco was found to significantly

associate with DNA methylation at 1500 CpG sites in

buccal cells and this epigenetic signature of smoking was

shown to discriminate between normal and lung cancer

tissue [26]. A more recent study of over 5000 genome

sequences from 17 different smoking-related cancers

found a much small number of associated CpG sites that

only occurred in lung cancer [27]. Smoking while preg-

nant has also been shown to associate with DNA meth-

ylation at a small number of CpG sites in newborns [28–

30], with some sites remaining associated even if the

mother quit smoking at the start of her pregnancy [31].

Furthermore, altered methylation of a subset of sites after

prenatal exposure to smoking persists throughout child-

hood and adolescence and into midlife [32–35].
www.sciencedirect.com
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Exposure to air pollution has also been shown to alter

DNA methylation and gene expression, particularly

hypomethylation-mediated transcriptional activation of

genes involved in particulate matter-associated and

lung-associated diseases [36]. Furthermore, early life

exposure to neurotoxic metals, like lead, is implicated

in the development of cognitive and neurobehavioral

problems in children and prenatal exposure has been

associated with increased methylation at the promoter

for the glucocorticoid receptor gene, NR3C1 [37]. The

glucocorticoid receptor binds cortisol and other glucocor-

ticoids and is involved in many functions including fetal

development, and the stress and immune responses.

Social and behavioral epigenetics

The idea that an epigenetic signature may be created by

psychosocial stressors, such as poverty, childhood abuse,

drug addiction, and war trauma, is more controversial [38].

Nevertheless, the field of social and behavioral epige-

netics has exploded since Szyf and Meaney’s landmark

study in 2004 that demonstrated an epigenetic signature

of maternal nurturing behaviors in rat offspring at the

NR3C1 promoter [39]. The DNA methylation changes

were reversible with cross-fostering and persisted into

adulthood, suggesting that intervention after early life

abuse or neglect might have a large impact on later life

health and wellbeing.

Over the past ten years, a wealth of studies have reported

associations between DNA methylation and a range of

psychosocial stressors including childhood abuse, military

deployment, natural disasters, and war trauma [40–45].

One of the first studies in humans found altered DNA

methylation at NR3C1 in the brains of suicide victims

with a history of childhood abuse relative to suicide

victims with no childhood abuse and non-suicide controls

[41]. Our studies in the Democratic Republic of Congo on

maternal war trauma, including sexual violence, have

documented genome-wide changes in DNA methylation

in new mothers and more targeted methylation changes in

newborns in a subset of genes involved in the stress

response and neural development [42,46,47�,48–50]. It

is now fairly well accepted that social and behavioral

stressors can modify DNA methylation, with most studies

focused on genes like NR3C1, brain-derived neurotrophic

factor (BDNF), the serotonin transporter (SLC6A4) and

other genes involved in the stress response and neural

development [51�].

Early life adversity and later life health

Early life experiences are thought to have a large impact

on later life health, which is a concept that is articulated in

the Developmental Origins of Health and Disease

hypothesis [52,53]. The possibility of an epigenetic

mechanism to mediate the impact of early life exposures,

particularly psychosocial exposures, on later life health

has been proposed [54–56]. Multiple studies have shown
www.sciencedirect.com 
an epigenetic effect of socioeconomic status (SES), with

childhood SES impacting adult methylation more than

adult SES [57,58]. McDade et al. [59��] tested early

childhood SES and absence of a parent, in addition to

biological factors like exposure to animal feces and dura-

tion of exclusive breastfeeding, and found associations

with methylation changes in genes involved in the inflam-

matory response and biomarkers for inflammation, sug-

gesting that the methylation changes were not merely

correlational, but could be functional.

Prenatal stress exposures may be even more impactful

than childhood experiences due to the phenotypic plas-

ticity and adaptive, or maladaptive, responses that char-

acterize a developing fetus [60]. DNA methylation sig-

natures of a wide range of prenatal exposures have been

documented, including alcohol and opioid exposure, ges-

tational diabetes, intimate partner violence, maternal age

and diet, preterm birth, and war trauma [42–44,61–

68,69�]. Prenatal exposure to maternal depressive symp-

toms has been widely studied because depression during

pregnancy can lead to multiple negative outcomes for

offspring, including increased risk of obstetric complica-

tions and later mental health problems. Multiple studies

of prenatal maternal depression have found evidence of

DNA methylation changes in candidate genes, such as

NR3C1 and SLC6A4, in cord blood, infant saliva and adult

venous blood [reviewed in 70]. Many of these methyla-

tion changes were found in enhancers, highlighting the

role of gene regulation in mediating the impact of prena-

tal exposures to psychosocial stressors. However, a recent

review of 22 published studies of DNA methylation and

prenatal exposure to maternal stress, depression and

anxiety did not find good overlap in associated CpG sites

reported across studies [71]. Replication of specific CpG

sites may be especially difficult with DNA methylation

studies because we are still learning how DNA methyl-

ation impacts gene expression, that is, must key sites be

methylated in order to affect gene expression, or is there a

critical number of sites that must be methylated, or is an

average level of methylation necessary?

Future directions
There are still more questions than answers when it

comes to human epigenetics. Since DNA methylation

varies from tissue to tissue, an active area of inquiry is

whether or not easily accessible tissues, like blood and

saliva, accurately reflect the methylation response of

biological processes that are thought to occur in less

accessible tissues like the brain. A recent study of

matched DNA samples from four brain regions and whole

blood found that >50% of variance in DNA methylation

was explained by tissue type [72]. The authors opine that

epigenetic studies of blood samples will provide little

insight into underlying pathological processes but may

identify biomarkers of diseases that manifest in the brain.

It is important to remember that methylation-determined
Current Opinion in Genetics & Development 2018, 53:36–42
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differences in gene expression are part of the cellular

differentiation process, so we expect methylation differ-

ences to occur between different cell types. Additional

study is needed to determine if peripheral tissues possess

a DNA methylation signature of the studied stressor that

rises above the expected tissue-specific differences in

DNA methylation.

There are gaps in our understanding of the ways in which

DNA methylation can impact gene expression and resul-

tant phenotypes as well as a lack of consensus on how

DNA methylation should be measured and analyzed.

Horvath [73,74] developed a method to calculate DNA

methylation age in a wide range of tissues. Increasingly,

acceleration of epigenetic age is being used to assess the

impact of various factors or stressors on DNAmethylation

[75–77]. Despite the inclination to consider the replica-

tion of specific CpG sites across different studies as the

gold standard, it is possible that this criterion is too narrow

and that promising leads will be abandoned. At this point,

we do not know which exposures will leave a detectable

methylation signature, and which ones will not. As the

field of human epigenetics continues to mature, it is

important to study the impact of a wide range of stressors

by assaying an increasingly comprehensive set of epige-

netic modifications across the genome and to publish both

positive and negative findings.

Continued study of diverse and healthy populations is

essential to better understand the basis of natural epige-

netic variation. These studies will help define the back-

ground level of natural variation above which associations

with disease phenotypes or psychosocial stress exposures

can be established. Furthermore, since epigenetic mod-

ifications are impacted by both genetic variants and

environmental stimuli, the study of population-level epi-

genetic variation is extremely fertile ground to investigate

the complex evolutionary history of humans.
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Günther S, Merfort I, Humar M: Disease relevant modifications
of the methylome and transcriptome by particulate matter
(PM2.5) from biomass combustion. Epigenetics 2017:1-14.

37. Appleton AA, Jackson BP, Karagas M, Marsit CJ: Prenatal
exposure to neurotoxic metals is associated with increased
placental glucocorticoid receptor DNA methylation.
Epigenetics 2017, 12:607-615.

38. Miller G: Epigenetics. the seductive allure of behavioral
epigenetics. Science 2010, 329:24-27.

39. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S,
Seckl JR, Dymov S, Szyf M, Meaney MJ: Epigenetic
programming by maternal behavior. Nat Neurosci 2004, 7:847-
854.

40. Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G,
Laplante DP, Szyf M, King S: DNA methylation signatures
triggered by prenatal maternal stress exposure to a natural
disaster: project ice storm. PLoS One 2014, 9:e107653.

41. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B,
Szyf M, Turecki G, Meaney MJ: Epigenetic regulation of the
glucocorticoid receptor in human brain associates with
childhood abuse. Nat Neurosci 2009, 12:342-348.

42. Mulligan CJ, D’Errico NC, Stees J, Hughes DA: Methylation
changes at NR3C1 in newborns associate with maternal
prenatal stress exposure and newborn birth weight.
Epigenetics 2012, 7:853-857.

43. Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M, Meyer A,
Elbert T: Transgenerational impact of intimate partner violence
on methylation in the promoter of the glucocorticoid receptor.
Transl Psychiatry 2011, 1:e21.

44. Rudahindwa S, Mutesa L, Rutembesa E, Mutabaruka J, Qu A,
Wildman DE, Jansen S, Uddin M: Transgenerational effects of
the genocide against the Tutsi in Rwanda: a post-traumatic
stress disorder symptom domain analysis. AAS Open Res
2018, 15:334-345.

45. Schür RR, Boks MP, Rutten BPF, Daskalakis NP, de Nijs L, van
Zuiden M, Kavelaars A, Heijnen CJ, Joëls M, Kahn RS et al.:
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