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The catenary problem for elastic cables is extended to the case of uniformly distributed loads and point
forces however oriented in space. The equilibrium equation is written in vector form and its solution, i.e.
the deformed shape of the elastic cable, is obtained in closed form for the cases of uniformly distributed
load, one point force and many point forces. The formulation is suitable to solve straightforwardly cable
structure problems, as shown in the numerical applications.
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1. Introduction Euler contributed to the study on the catenary, after a suggestion
The circumstance that a chord under self-weight is unable to
maintain its rectilinear configuration, in spite of the tension which
can be applied at its ends, was known already in 1638 by Galileo
Galilei; however, in Galilei opinion the configuration of the chord
was parabolic, in accordance with the flight path of a projectile
(Galilei, 1638). The mathematical treatment of the cable theory be-
gan in the latter half of the seventeenth century. The initial prob-
lem was to determine the equilibrium position of an inextensible
string hanging between two points and subjected to various load
conditions. In particular, the catenary problem consists in finding
the equilibrium shape of the cable under self-weight. The non-
parabolic shape of the chord was noted by Jungius in 1669 but
he was not able to find out the real mathematical expression of
the curve. The problem was proposed by Jakob Bernoulli in the Acta
Eruditorum (Bernoulli, 1691) and, after this date, was tackled and
solved separately by Huygens, via pure geometric considerations,
and by Leibniz (Bernoulli, 1692; Leibniz, 1691a,b) and Johann Ber-
noulli, Jakob’s brother, via the integral calculus. All the three solu-
tions were published in the Acta (Leibniz, 1691a,b). The name
catenary it seems was due to Huygens, who used it in 1690 in a let-
ter to Leibniz.

All the mentioned works did not take into account cable
extensibility. The Hooke’s law was postulated in 1675 as an ana-
gram (Hooke, 1675; Kurrer, 2008) and clearly written in 1678
(Hooke, 1678). After these dates, Bernoulli brothers were the
first who formulated the differential equation of equilibrium of
the elastic cable, following the law postulated by Hooke. Also
ll rights reserved.
of Daniel Bernoulli; he uses the variation calculus (the ‘‘method
of final causes’’) and shows that the equilibrium configuration is
determined by the lowest position of the barycentre of mass, i.e.
by the minimum of potential energy of the gravity forces (Euler,
1744; Timoshenko, 1983). From an engineering point of view,
the mathematical theory of cables allowed to define rules based
on analytical reasoning for the design of suspension bridges
(Navier, 1823).

Although the analytical expression for the solution of the
elastic catenary is nowadays well known and represents the ba-
sis of classical literature on cable structures (O’Brien, 1967;
Irvine, 1981), it seems worthy to extend the standard solution,
confined to the case of loads acting on the plane of the cable,
to more general load conditions. Indeed, after some centuries
the interest in the subject remains still relevant as cables are
widely used in structural engineering. Even if a major effort
has been devoted by researchers to numerical cable dynamics
and computational methods seem to allow the solution of any
problem, closed form solutions still preserve an important role
as they allow a drastic reduction of computational effort, a dee-
per understanding of the structural behavior and serve as bench-
mark solutions for numerical procedures. For static setting, the
exact solution for an elastic cable with distributed or concen-
trated vertical loads has been given in the work by Irvine and
Sinclair (1976), about two centuries after the discovery of the
static solution under self-weight. If the parabolic approximation
can be accurate for low sagged cables, the exact solution must
be preferred for more general case (inclined cables and/or spatial
load conditions). In addition the computational advantage of
using approximate solutions is not an issue with nowadays com-
puters so that, recent papers (Lepidi et al., 2007; Such et al.,
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2009; Huang and Lan, 2006; Andreu et al., 2006) make use of
the catenary equation for solving the static cable problem.

In this paper, the solution proposed in Irvine’s book (Irvine,
1981) for the static analysis of the elastic cable is extended to three
dimensions so to treat point forces and uniformly distributed load
anyway oriented in space, acting in the unstrained configuration.
The solution is cast in a compact vector form easy to handle even
for the case of many point forces, so to manage practical engineer-
ing problems.

The first part of the paper is dedicated to the derivation of the
solution for a generally oriented uniformly distributed load. The
inclusion of a point force arbitrarily oriented in space is then con-
sidered. Finally, the setting with many point forces is analysed and
thermal loads are introduced. A model validation is carried out
checking consistency with standard solution and assessing the
capability to predict out of plane displacements.

Two numerical applications are presented, related to a cable net
and a transport pulley system. The cable net, already treated by
other authors (Such et al., 2009; Huang and Lan, 2006; Peyrot
and Goulois, 1979) in the case of vertical loads only, is subjected
to a wind load which induces inclined cable configurations. The
transport pulley system, analysed by Such et al. (2009) and Bruno
and Leonardi (1999) under self-weight, is also studied in a three
dimensional configuration giving a complete description of its
structural behavior.

2. Extensible cables with uniformly distributed load

The catenary equation for extensible cables, assuming perfect
shear and bending flexibility, will be derived in this paragraph
according to Hooke’s law. Following the analytical treatment
adopted by Irvine (1981), the three dimensional case of uniformly
(and non-segmented) distributed load acting in the unstrained
configuration, in any direction in space, will be considered herein.

With reference to Fig. 1, the Lagrangian coordinate ‘ represents
the length of the unstrained cable (configuration C) between the
generic point and the cable origin. The figure assumes that cable
origin coincides with the origin or the reference system although
this may not be case, as for cable nets or 3D cable systems. Denot-
ing with L the unstrained cable length, it will be 0 6 ‘ 6 L. If the
equilibrium of the cable segment between the cable origin and
the point with abscissa ‘ is considered with reference to the
stretched state (configuration C⁄), the following equation is
obtained:

Tð‘Þ ¼ R � p‘ ð1Þ
Fig. 1. Unstrained configuration C and stretched configuration C⁄ under uniformly
distributed load.
where R ¼ ½Rx1 ;Rx2 ;Rx3 �
T is the vector collecting the reaction forces

at cable origin and p = pp is the vector of distributed load with con-
stant intensity p acting along the cable in the direction defined by
the versor p. Moreover:

Tð‘Þ ¼ Tð‘Þsð‘Þ ð2Þ

is the cable tension vector, parallel to the tangent versor in the
stretched configuration C⁄, given as

sð‘Þ ¼ dxð‘Þ
d‘�

ð3Þ

In the previous equation x(‘) = [x1(‘),x2(‘),x3(‘)]T is the vector defin-
ing the stretched configuration C⁄ of the cable and ‘⁄ = ‘⁄(‘) is the
length of the cable segment in the stretched configuration (see
Fig. 1). It is worth noticing that the coordinate function x(‘) has
the peculiarity to univocally locate the position (in the deformed
configuration) of a material point defined by the curvilinear abscis-
sa ‘ in the unstrained configuration.

The cable tension T(‘) is obtained by taking the norm of the two
sides of Eq. (1):

Tð‘Þ ¼ kR � p‘k ð4Þ

With a view to the concise exhibition of the solution, the following
quantities relative to non-dimensional forces are introduced:

r ¼ R
pL

; tð‘Þ ¼ Tð‘Þ
pL

ð5a;bÞ

In particular, r is the vector of the dimensionless reaction forces at
cable origin and t(‘) = kt(‘)k = T(‘)/(pL) is the dimensionless cable
tension.

Adopting dimensionless coordinates

s ¼ ‘

L
; s� ¼ ‘

�

L
ð6a;bÞ

and introducing the dimensionless position vector

nðsÞ ¼ xðsLÞ
L

ð7Þ

with 0 6 s 6 1, the equilibrium Eq. (1) may be rewritten as
follows:

tðsÞ ¼ tðsÞdnðsÞ
ds�

¼ r� ps ð8Þ

so that

tðsÞ ¼ kr� psk ð9Þ

With the aim of evaluating the stretched configuration, the Hooke’s
law is considered:

Tð‘Þ ¼ EA
d‘� � d‘

d‘
¼ EA

d‘�

d‘
� 1

� �
ð10Þ

where E is the Young’s modulus, A is the area of the cable section in
the unstrained configuration. Employing Eq. (5b), one gets:

d‘�

d‘
¼ ds�

ds
¼ vtðsÞ þ 1 ð11Þ

where

v ¼ pL
EA

ð12Þ

Resorting to chain rule of differentiation, dn/ds = (dn/ds⁄)(ds⁄/ds),
and according to Eqs. (8) and (11), the following equation is
derived:

dnðsÞ
ds
¼ tðsÞ

tðsÞ ½vtðsÞ þ 1� ¼ vðr� psÞ þ r� ps
kr� psk ð13Þ
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The sought solution is obtained by integrating the previous
equation:

nðsÞ ¼ v
Z

tðsÞdsþ
Z

tðsÞ
tðsÞ ds ¼ v

Z
ðr� psÞdsþ

Z
r� ps
kr� psk ds

ð14Þ
While the first integral can be easily solved, the second one requires
some manipulations, which are reported in Appendix A. Finally,
introducing the operator

qð�Þ ¼ kr� ð�Þk � pT ½r� ð�Þ� ð15Þ

one gets

nðsÞ ¼ v rs� p
s2

2

� �
þ ðI� ppTÞr ln½qðpsÞ� � pkr� psk þ c ð16Þ

where I is the identity matrix of order three. The constant vector c is
determined by imposing the coordinates of cable origin, n(0), so that
Eq. (16) is rewritten as follows:

nðsÞ ¼ v rs� p
s2

2

� �
þ ðI� ppTÞr ln

qðpsÞ
qð0Þ

� �
� pðkr� psk

� krkÞ þ nð0Þ ð17Þ

The unknown vector r must be evaluated imposing the coordinates
at cable end point, n(1), by employing a numerical method such as
Newton–Raphson. Once r has been calculated, the elastic catenary
is cast in closed form by Eq. (17) and the segment cable length in
the stretched configuration can be evaluated by means of Eq. (11),
so to read:

‘� ¼ Ls�ðsÞ ¼ L
Z s

0
ðvtðsÞ þ 1Þds ð18Þ

When Eq. (17) is written for plane problems it reduces to that pro-
posed by Irvine (1981), as will be shown in Section 6.
Fig. 2. Forces acting on the cable in the dimensionless coordinate system.
3. Additional one point force

Let us assume that one point force P acts on the cable. The equi-
librium Eq. (1) can be redefined as:

tðsÞ ¼ tðsÞdnðsÞ
ds�

¼ r� fUðs� sÞ � ps ð19Þ

where f = P/(pL) is the dimensionless point force applied at abscissa
s and U(�) is the unitary step function. For s 6 s the solution reduces
to that for cables with distributed load only, Eq. (17).

For s < s 6 1 the solution is given by the following expression:

nðsÞ ¼ v
Z s

s
½r� f � ps�dsþ

Z s

s

r� f � ps
kr� f � psk dsþ nðsÞ ð20Þ

where nðsÞ is given by Eq. (17) with s ¼ s. The first integral can easily
be solved, the second one is evaluated according to Eq. (A.7) in the
Appendix A, by replacing r with r � f, so that:

nðsÞ ¼ v ðr� fÞðs� sÞ � p
ðs2 � s2Þ

2

� �
þ ðI� ppTÞðr� fÞ

� ln
qðf þ psÞ
qðf þ psÞ

� �
� pðkr� f � psk � kr� f � pskÞ þ nðsÞ

ð21Þ

Finally, by introducing the explicit expression of nðsÞ:

nðsÞ ¼ v rs� fðs� sÞ � p
s2

2

� �
þ ðI� ppTÞ r ln

qðpsÞqðf þ psÞ
qð0Þqðf þ psÞ

� ��

�f ln
qðf þ psÞ
qðf þ psÞ

� ��
� pðkr� f � psk þ kr� psk

�krk � kr� f � pskÞ þ nð0Þ ð22Þ
The unknown vector r must evaluated imposing the coordinates at
cable end.

4. General solution for many point forces

The general case with many point forces arbitrarily oriented
and constant distributed load is now considered exploiting the
solution derived in Section 3.

With reference to Fig. 2, assume that the dimensionless point
forces fi = Pi/(pL) are applied at points si. For the first interval,
0 6 s 6 s1, Eq. (17) still applies. For the generic cable intervals,
si < s 6 si+1, provided that sN+1 = 1, s0 = 0, Fi ¼

Pi
j¼0f j and f0 = 0, the

solution is written as follows:

nðsÞ ¼ v
Z s

si

r� Fi � ps½ �dsþ
Z s

si

r� Fi � ps
kr� Fi � psk dsþ nðsiÞ ð23Þ

where n(si) is the solution at the end of the previous interval.
According to Eq. (A.7), the solution of Eq. (23) is:

nðsÞ ¼ v ðr� FiÞðs� siÞ � p
ðs2 � s2

i Þ
2

� �
þ ðI� ppTÞðr� FiÞ

� ln
qðFi þ psÞ
qðFi þ psiÞ

� �
� p kr� Fi � psk � kr� Fi � psikð Þ þ nðsiÞ

ð24Þ

Exploiting the recurrence relation between n(si) and n(si�1), i.e. the
solutions at the end of two contiguous intervals, and assuming
F�1 = F0 = 0 and si+1 = s, after some manipulation one gets:

nðsÞ ¼ v rs� Fisþ
Xi

j¼0

f jsj � p
s2

2

 !

þ ðI� ppTÞ
Xi

j¼0

ðr� FjÞ ln
qðFj þ psjþ1Þ
q Fj þ psj
� 	

" # !

� p kr� Fi � psk � krk þ
Xi

j¼0

ðkr� Fj�1 � psjk
"

� r� Fj � psjkÞ
#
þ nð0Þ






 ð25Þ

Eq. (25) applies to all cable segments, for the first segment (from
cable origin to the first force) it will be i = 0, whereas for the last
segment (from the last force to cable end) i = N.

The vector r is evaluated setting i = N and imposing the coordi-
nates at cable end. The implementation of Eq. (25) in a numerical
procedure is straightforward. All the calculations which will be
shown in the following have been performed by means of
Mathematica�.
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5. Thermal loads

In real applications the effect of thermal loads on the cable
should be taken into account. For example, during suspension
bridge erection stages the effect of thermal loads can be decisive
for the correct prediction of the geometry of the bridge in the final
configuration.

The thermal load can be easily added in the formulation by con-
sidering the total strain as the superposition of the elastic and ther-
mal contributions:

ds� � ds
ds

¼ vtðsÞ þ aDh ð26Þ

in which a is the linear thermal expansion coefficient and Dh the
temperature jump. Eq. (23) is modified as follows:

nðsÞ ¼ v
Z s

si

½r� Fi � ps�dsþ ð1þ aDhÞ
Z s

si

r� Fi � ps
kr� Fi � psk ds

þ nðsiÞ ð27Þ

The related solution is easily derived by suitable modification of Eq.
(25).
Table 1
Cable of Section 6 subjected to four point forces. Coordinates of the first forced point
decreasing the distributed load, derived by Eq. (25) and without distributed load,
derived by Eq. (31).

px2
ðkNÞ x1(‘1)(m) x2(‘1)(m) x3 (‘1)(m)

Eq. (25) 10 12.536 42.162 0.871
1 23.540 36.644 5.973
0.1 34.872 23.942 12.111
0.01 36.485 20.855 13.041
0.001 36.646 20.514 13.133
0.0001 36.661 20.480 13.142

Eq. (31) 0 36.663 20.476 13.143
6. Model validation

The model herein derived is consistent with the classical deriva-
tion of the elastic catenary. Indeed, if we consider only a vertical
uniformly distributed load, it follows that p = [0,1,0]T and
r ¼ ½rx1 ; rx2 ; rx3 �

T � ½rx1 ; rx2 ;0�
T . In Eq. (17), ðI� ppTÞr ¼ ½rx1 ;0;0�

T

and the two non-nil components of Eq. (17) reduce to:

n1ðsÞ ¼ vrx1 sþ rx1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x1
þ ðrx2 � sÞ2

q
� rx2 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
x1
þ r2

x2

q
� rx2

2
64

3
75 ð28Þ

n2ðsÞ ¼ v rx2 s� s2

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x1
þ ðrx2 � sÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x1
þ r2

x2

q� �
ð29Þ

where it has been assumed n(0) = [0,0,0]T. The quantity b ¼ rx2=rx1

is the ratio between vertical and horizontal components of
cable tension at first cable end. When supports are at the same
level, b coincides with the classical catenary parameter. With
some manipulation (see Appendix B), Eq. (28) can be rewritten as
follows:

n1ðsÞ ¼ vrx1 sþ rx1 sinh�1 rx2

rx1

� �
� sinh�1 rx2 � s

rx1

� �� �
ð30Þ

As in Irvine (1981), the apex ‘‘�1’’ means inverse hyperbolic func-
tion. If we substitute dimensional quantities, Eqs. (29) and (30)
coincide with those reported by Irvine (1981).

In order to validate the out of plane solution, a cable suspended
between supports at the same level has been considered, with
EA = 1.5708 � 109 N, L = 220 m, x0 = [0,0,0]T and xL = [100,0,0]T.
The uniformly distributed vector load is p ¼ 616:538½0;ffiffiffi

3
p

=2;1=2�T N=m, forming an angle of 30� with the vertical
axis. The solution by Eq. (17) gives R = [13163.2,58733.1,
33909.6]T N. Adopting the classic catenary solution, given
by Eqs. (29) and (30), with a vertical load kpk = 616.538 N/m, the
solution is Rx1 ¼ 13163:2 N and Rx2 ¼ 67819:1 N. This solution
coincides with the previous one albeit in a rotated reference
system.

It is interesting to note that in the case of a non-heavy elastic
cable, subjected to N point forces, in the interval ‘i < ‘ 6 ‘i+1, the fol-
lowing funicular of forces can be easily obtained:
xð‘Þ ¼ 1
EA

R‘�
Xi

j¼0

Pjð‘� ‘jÞ
 !

þ
Xi

j¼0

R �
Pj

k¼0Pj

R �
Pj

k¼0Pj




 


 ð‘jþ1

� ‘jÞ þ xð0Þ; ð31Þ

in which ‘N+1 = ‘ and the quantities with nil pedix are set to zero.
This equation simply states that the final position of a point of
the cable at abscissa ‘ is the sum of the elastic contribution of the
various segments, plus the initial position. It can be used to validate
Eq. (25), which must give the same result of Eq. (31) as the distrib-
uted load vanishes. To this aim, the same cable of the previous
example has been considered, loaded with four point forces P1 ¼
½50;0;0�T kN; P2 ¼ ½0;50;0�T kN; P3 ¼ ½0;0;50�T kN; P4¼ 1ffiffi

3
p ½50;50;50�T

kN applied, respectively at ‘1 = L/5, ‘2 = 2L/5, ‘3 = 3L/5, ‘4 = 4L/5.
An initial distributed load p = [0,10,0]T kN has also been applied.
When the distributed load vanishes, Eq. (25) must give the same
numerical solution of Eq. (31). In order to check the validity of
the model, the coordinates, in the stretched configuration, of the
first forced point (‘1 = L/5) have been chosen as control parameters.
Table 1 shows that the solution by the proposed model approaches
that obtained by the funicular method as the distributed load de-
creases from p to 10�5p. Fig. 3 shows the sequence of deformed
shapes of the cable when the distributed load p decreases.

7. Numerical applications

The effectiveness of the proposed formulation is tested with re-
spect to two example problems: a three dimensional cable system
with spring and a transport pulley system. For each of them two
different settings are considered. The first one involves cable
stretched configurations on the vertical planes, for which 2D equi-
librium formulation are suitable, and is aimed to test the solution
with those available in the literature. The second setting highlights
the versatility of the procedure to handle 3D stretched
configurations.

Each problem is modeled by a system of equilibrium equations
derived from Eq. (17) or Eq. (25) and enforcing the proper bound-
ary conditions, which will be reported in dimensional form.

7.1. Three dimensional cable system with spring

The three degrees of freedom structure, depicted in Fig. 4, con-
sisting of three cables jointly supported by a vertical spring, the
end of which freely rolls horizontally, has been addressed by Such
et al. (2009), Huang and Lan (2006), Peyrot and Goulois (1979). The
elastic cables have axial stiffness EA = 2.9105 N and are joined at
the same point A of coordinates xA = [400,0,300] m which is con-
nected to a vertical spring of stiffness k = [0,1000,0] N/m. Un-
strained cable lengths are L(1) = 580 m and L(2) = L(3) = 510 m,
cable weights are p(1) = [0,1,0]T N/m and p(2) = p(3) = [0,2,0]T N/m,
where the apex identifies the cable. A horizontal force
F = [0,0,�1000] N is applied in A, furthermore the cables, with



Fig. 4. Cable system with a spring.

Fig. 3. Deformed shape of a cable under a uniformly distributed vertical load p,
0.1p, 0.01p, 0.001 p and four point forces (gray lines) compared with the funicular
of point forces, i.e. the deformed shape for p = 0 (black line).

Table 2
Displacement at point A of the cable system with spring by different approaches.

u0 � x1;A � xð1Þ1 ðL
ð1ÞÞ v0 � x3;A � xð1Þ3 ðL

ð1ÞÞ w0 � x2;A � xð1Þ2 ðL
ð1ÞÞ

Proposed
method

26.471 41.138 �2.875

Peyrot and
Goulois
(1979)

26.473 41.135 �2.874

Huang and
Lan (2006)

26.471 41.138 �2.874

Such et al.
(2009)

26.527 41.105 �2.883

With horizontal distributed load:
Proposed

method
23.676 �40.468 �3.756
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coefficient of thermal expansions a = 6.510�6�C�1, are subjected to
a temperature increment Dh = 100�C. The coordinates of the initial
point of the cables are the following: xð1Þ0 ¼ ½800;400;300�T m,
xð2Þ0 ¼ ½0;0;0�

T m, xð3Þ0 ¼ ½0;0;600�T m. Eq. (17) must be imposed
for each cable, besides the thermal load is considered as shown
in Eq. (27). The following boundary conditions apply:

xð1ÞðLð1Þ;Rð1ÞÞ ¼ xð2ÞðLð2Þ;Rð2ÞÞ ð32Þ

xð3ÞðLð3Þ;Rð3ÞÞ ¼ xð2ÞðLð2Þ;Rð2ÞÞ ð33Þ

X3

i¼1

ðRðiÞ � pðiÞLðiÞÞ þ Fþ k xð1Þ2 ðL
ð1ÞÞ � x2;A

h i
¼ 0 ð34Þ

Eqs. (32) and (33) account for displacement constraint of cable
ends; Eq. (34) states the force equilibrium of node A in the global
reference system. These constitutes a set of 9 non-linear equations,
equal to the number of unknown quantities given by the compo-
nents of vectors R(i), which can be easily solved by choosing a suit-
able initial value. The convergence to the unique solution is very
fast. For example, given as initial guess R(1) = [�100,�100,�100]T N,
R(2) = [100,100,100]T N, R(3) = [100,100,�100]T N, 13 iterations are
needed by a Newton algorithm.

As a comparison, Table 2 lists the displacements of point A as
reported by Such et al. (2009), Huang and Lan (2006), Peyrot and
Goulois (1979), along with those given by the proposed formula-
tion. Fig. 5a shows the stretched configuration of the cables along
with the unstrained one; as expected the load conditions are such
that each cable maintains a vertical planar layout.

The procedure is now tested adding to previous loads a wind ac-
tion causing non-vertical cable layout, which cannot be reproduced
analytically by existing formulations, unless a different reference
system is chosen for each cable. Let us suppose that a horizontal
distributed load along x3, due to wind, is applied to the three
cables. As the cable is slightly extensible, for the sake of the exam-
ple the load can be applied to the unstrained configuration and
roughly approximated as uniformly distributed and equal to
px3
¼ 0:5qacDbU2, where qa = 1.25 kg/m3 is air density, cD = 1.2 is

the drag coefficient, b = 0.01 m is the diameter of the cables,
U = 20 m/s is the mean flow velocity. The distributed loads modify
as follows: p(1) = [0,1,3]T N/m and p(2) = p(3) = [0,2,3]T N/m. The de-
formed shape is plotted in Fig. 5b and the displacement of point A
is reported in Table 2. The guess solution is chosen with vertical
reaction components opposite to self weight and along x3 compo-
nents opposite to wind action. If R(1) = [�100,100,100]T N,
R(2) = R(3) = [100,100,100]T N are chosen as initial guess, 9 itera-
tions are required.
7.2. Transport pulley system

The static behavior of a cable system supported by a pulley was
studied by Such et al. (2009) and Bruno and Leonardi (1999) in or-
der to model ski lifts, electrical transmission lines and cable sys-
tems in erection procedures of long-span bridges. The example



Fig. 5. Unstrained (dotted line) and stretched (solid line) configuration of the cable system with a spring: (a) without wind force; (b) with wind force.
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discussed by Such et al. (2009) and Bruno and Leonardi (1999), see
Fig. 6, contemplates only planar stretched configuration and refers
to a cable with initial length L = 500 m, Young’s modulus
E = 16 GPa, cross section area A = 8.05 10�4 m2, linear density
m = 6.327 kg/m, linear weight px2

¼ 62:0679 N=m. The cable ends
are fixed at point 1 with coordinates x0 = [0,0,0]T m and at point
2 with coordinates xL = [300,�50,0]T m. A frictionless pulley lo-
cated at x2 = �100 m is let to move horizontally along x1.

Such et al. (2009) seek for the equilibrium configurations of the
cable under the assumption that the pulley is free to move hori-
zontally (i.e. it gives only a vertical force to the cable) and its radius
is negligible. Two equilibrium configurations were detected in the
paper, named C1 and C2 in Fig. 6. The authors state that their for-
mulation needs 15 equations to find the equilibrium configura-
tions. Bruno and Leonardi (1999) consider a more realistic pulley
whose radius is taken into account by adding some geometrical
parameters. For the problem under investigation the pulley radius
was set equal to 0.30 m. Considering that the pulley radius is very
small in comparison with cable length L, it is not surprising that
the equilibrium configurations detected by Bruno and Leonardi
(1999) basically coincide with those reported by Such et al. (2009).

Bruno and Leonardi (1999) also consider an auxiliary problem
where the pulley is now restrained at its position x1 which is trea-
ted as a variable quantity (i.e. the pulley has vertical and horizontal
Fig. 6. Stable (solid) and unstable (dashed) equilibrium configurations of the cable
system supported by a pulley located at x2 = �100 m and free to move in the
direction x1.
reactions). An equilibrium path varying the pulley position x1 is re-
ported in the paper.

Let us tackle the problem by means of the formulation proposed
herein, taking advantage of Eq. (22). When the pulley is free to
move along x1, the point load P = [0,P,0]T (i.e. the reaction of the
pulley) and its abscissa �‘ are considered as unknown quantities.
The solution is obtained by satisfying the following set of
equations:

xðL;R;PÞ ¼ xL ð35Þ
x2ð�‘;R;PÞ ¼ �100 ð36Þ
2ðRx2 � px2
�‘Þ ¼ P ð37Þ

As regards the boundary conditions (35), only the two equations re-
lated to directions x1 and x2 are meaningful, as the cable layout is in
the x1 � x2 plane. Eq. (36) sets pulley height; Eq. (37) matches the
tension at both sides of the frictionless pulley. Thus, 4 equations
with the unknowns Rx1 , Rx2 , P, �‘ define the problem.

The two stable equilibrium configurations C1 and C2 have been
correctly find out by the proposed formulation. A third equilibrium
configuration C3 (see Fig. 6), not reported in previous literature, has
also been spotted, although of unstable nature. Table 3 compares
the curvilinear pulley abscissa at equilibrium and cable tension
at pulley location with those given by Such et al. (2009) and Bruno
and Leonardi (1999), denoting with ag the acceleration due to grav-
ity. The guess values P = �25 kN, R = [2.5,3.5,0]T kN, �‘ ¼ 80 m, have
been adopted in order to find the first equilibrium point;
P = �35 kN, R = [2.5,3.5,0]T kN, �‘ ¼ 300 m for the second equilib-
rium point; P = �25 kN, R = [2.5,3.5,0]T kN, �‘ ¼ 120 m for the third
equilibrium point. The required iterations were respectively 7, 5, 6.

The auxiliary problem with the pulley restrained at position x1

has also been investigated. The pulley is supposed fixed at
xP = [x1,�100,0] m, the load is redefined as P ¼ Px1 ; Px2 ;0

� 
T . The
following set of equations has been iteratively solved, varying the
pulley coordinate x1:

xðL;R;PÞ ¼ xL ð38Þ
xð�‘;R;PÞ ¼ xP ð39Þ
kR � p�‘k ¼ kR � P� p�‘k ð40Þ

which define 5 meaningful equations with unknowns
Rx1 ;Rx2 ; Px1 ; Px2 ;

�‘.



Table 3
Curvilinear pulley abscissa at equilibrium and cable tension at pulley location for the
plane cable supported by a pulley free to move in the direction x1.

Bruno and Leonardi
(1999)

Such et al.
(2009)

Proposed
method

First equilibrium configuration
�‘ ðmÞ 111.07 110.96 110.833

Tð�‘Þ=ag ðkgÞ 1478.00 1481.23 1481.23
Second equilibrium configuration
�‘ ðmÞ 446.37 446.92 447.295

Tð�‘Þ=ag ðkgÞ 1830.00 1831.40 1833.02
Third equilibrium configuration (unstable)
�‘ ðmÞ – – 221.518

Tð�‘Þ=ag ðkgÞ – – 1083.68
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Fig. 7 shows the continuous equilibrium path representing the
value of the horizontal pulley reaction Px1 versus the pulley loca-
tion x1 at equilibrium configurations, i.e. the horizontal force aris-
ing at the pulley imposing its position. Unstable solutions are
symbolized by the dashed line, whereas the solid line stands for
stable configurations. In order to assess the type of equilibrium,
Fig. 8. Stable (solid line) and unstable (dashed line) equilibrium configuratio

Fig. 7. Equilibrium path of plane cable with pulley: horizontal pulley reaction Px1

versus pulley location x1 for stable (solid line) and unstable (dashed line)
equilibrium.
the total potential energy of the cable has been evaluated. Fig. 8
shows the equilibrium configurations for the scenarios marked in
Fig. 7.

The equilibrium points referenced to a pulley free to move are
detected from Fig. 7 as those for which Px1 � 0: point a identifies
the stable configuration C1, point f identifies the stable configura-
tion C2, point d2 identifies the unstable configuration C3. Fig. 7
shows that if the pulley is fixed in the range
100.62 m < x1 < 147.00 m, three equilibrium configurations are
possible, one is unstable the others are stable; then two cable lay-
outs are possible for a given pulley position. If the cable layout is
perturbed or it is that of an unstable configuration, the cable slips
so to assume a stable layout. If the pulley is fixed at a position with
x1 < 100.62 m or x1 > 147.00 m a single stable solution is possible.

Alternatively, one can impose the force at the pulley, free to
move along direction x1, and register its displacement. For exam-
ple, if one increases the horizontal force applied to the pulley,
starting from the first equilibrium point (point a) so to move it
to the right (toward point f), then once that point c1 is reached a
snap through instability phenomenon is encountered and the pul-
ley rapidly moves to point g.

The equilibrium path reported by Bruno and Leonardi (1999)
did not evidence the unstable branch and presents a discontinuity,
maybe due to lack of convergence, which is not encountered in the
present analysis.

The analysis has been repeated for a spatial cable system with
non-planar cable layout, where the pulley is let to move on the
new horizontal line with x2 = �100 m and x3 = 50 m. When the pul-
ley is free to move along x1, three equilibrium configurations are
detected, as in the previous case, and reported in Fig. 9. The guess
values P = [0,�27,1]T kN, R = [4.8,�6.9,0]T kN, �‘ ¼ 100 m, have
been adopted in order to find the first equilibrium point;
P = [0,�30,10]T kN, R = [5,10,1]T kN, �‘ ¼ 450 m for the second
equilibrium point; P ¼ ½0;�20;2�T kN; R ¼ ½2;4;1�T kN;�‘ ¼ 260 m
for the third equilibrium point. The required iterations were
respectively 6, 5, 6. The equilibrium path related to the case with
the pulley restrained at position x1, plotted in Fig. 10, assesses that
the cable behavior is analogous to the companion plane problem.
The curvilinear pulley abscissa at equilibrium is reported in Table 4,
along with cable tension at pulley location, denoting with ag the
acceleration due to gravity.
ns of the plane cable pulley system for the settings evidenced in Fig. 6.



Fig. 9. Equilibrium positions of cable with pulley in spatial configuration.

Fig. 10. Equilibrium path for 3D cable supported by a pulley.

Table 4
Curvilinear pulley abscissa at equilibrium and cable tension at pulley location for the
3D cable supported by a pulley free to move in the direction x1.

Proposed method

First equilibrium configuration
�‘ ðmÞ 126.122

Tð�‘Þ=ag ðkgÞ 1439.66
Second equilibrium configuration
�‘ ðmÞ 424.757

Tð�‘Þ=ag ðkgÞ 1775.31
Third equilibrium configuration (unstable)
�‘ ðmÞ 219.983

Tð�‘Þ=ag ðkgÞ 1099.43

N. Impollonia et al. / International Journal of Solids and Structures 48 (2011) 1268–1276 1275
8. Conclusions

The paper presents a model for obtaining the deformed shape of
an elastic cable under a uniformly distributed load and many point
forces, generally oriented in space. The model differs from other
approaches because the solution is given in a vector form, which
reduces to that contained in classic literature when only vertical
loads act on the cable. A remarkable closed form expression is pro-
posed which is able to cope with a set of cables with many in-span
point forces however oriented in space. A considerable advantage
is related to the easiness of operating in a global reference system.
The capability to reproduce non-planar layouts under generic point
forces represents a significant improvement with respect to exist-
ing approaches. Thermal loads may be considered too.

The model has been validated comparing the deformed shape
under skew uniformly distributed load with that obtained by a
classical formulation in a rotated reference system. Furthermore,
when 3D point forces are introduced, the convergence of the limit
case with vanishing distributed load to the funicular of forces has
been verified.

As shown in the applications, the proposed formulation is well
suited to be implemented for the numerical solution of complex
cable problems.

Appendix A

Scope of the appendix is to describe how the solution of the
integral

R tðsÞ
tðsÞds ¼

R
r�ps
tðsÞ ds has been pursued.

Considering that p is a versor then ps = p pTps, furthermore
ppTr = prTp, so that the integral can be written as:Z

tðsÞ
tðsÞ ds ¼

Z
r� ps

tðsÞ ds ¼
Z

r� ppT rþ prTp� ppTps
tðsÞ ds

¼ ðI� ppTÞr
Z

1
tðsÞ dsþ p

Z
tTðsÞp

tðsÞ ds

¼ ðI� ppTÞr
Z

1� pT tðsÞ
tðsÞ

� �
1

tðsÞ � pT tðsÞ ds

þ p
Z

tTðsÞp
tðsÞ ds ðA:1Þ

As the following relationship hold

dtðsÞ
ds
¼ tTðsÞ

tðsÞ
dtðsÞ

ds
¼ � tTðsÞp

tðsÞ ðA:2Þ
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dtðsÞ
ds
¼ d

ds
ðr� psÞ ¼ �p ðA:3Þ

d
ds
½tðsÞ � pT tðsÞ� ¼ � tTðsÞp

tðsÞ þ pTp ¼ 1� tTðsÞp
tðsÞ ðA:4Þ

Eq. (A.1) can be cast in the following formZ
tðsÞ
tðsÞ ds ¼ ðI� ppTÞr

Z
1

tðsÞ � pT tðsÞd½tðsÞ � pT tðsÞ� � p
Z

dtðsÞ

ðA:5Þ

The sought solution can be written asZ
tðsÞ
tðsÞ ds ¼ ðI� ppTÞr ln½tðsÞ � pT tðsÞ� � ptðsÞ þ c

¼ ðI� ppTÞr ln½kr� psk � pTðr� psÞ� � pkr� psk
þ c ðA:6Þ

Introducing the operator defined by Eq. (15), one gets:Z
tðsÞ
tðsÞ ds ¼ ðI� ppTÞr ln½qðpsÞ� � pkr� psk þ c ðA:7Þ
Appendix B

In order to show the equivalence between Eqs. (28) and (30),
the equality

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

q
� c

� �
¼ �sinh�1c ðB:1Þ

is first proved. Indeed, making the position c = sinhd, the following
manipulation clarify Eq. (B.1):

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

q
� c

� �
¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2d

q
� sinh d

� �

¼ ln cosh d� sinh d½ � ¼ ln e�d ¼ �d ¼ �sinh�1c ðB:2Þ

Thus, in Eq. (28):

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x1
þ ðrx2 � sÞ2

q
� rx2 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
x1
þ r2

x2

q
� rx2

2
64

3
75 ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rx2 � s

rx1

� �2
s

� rx2 � s
rx1

2
4

3
5

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

r2
x2

r2
x1

s
� rx2

rx1

" #
¼ �sinh�1 rx2 � s

rx1

� �
þ sinh�1 rx2

rx1

� �
ðB:3Þ
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