ESCOLA POLITEECNICA
ESCOLA POLITÉCNICA DA USP
Programa de Pós-Graduação ENGENHARIA CIVIL

PEF-5750
Estruturas Leves Ruy Marcelo de Oliveira Pauletti

Static Equilibrium of cables
 11/10/2018

Geometric nonlinearity

Consider a string of undeformed lenght ℓ_{r}, stretched to a length $\ell_{0}=L>\ell_{r}$ under an initial normal load N_{0} and under a concentrated load at midspan:

Consider also a linear elastic material: $\quad N_{0}=\frac{E A}{\ell_{r}}\left(\ell_{0}-\ell_{r}\right)=k\left(\ell_{0}-\ell_{r}\right)$

$$
\text { Where } k=\frac{E A}{\ell_{r}} \quad \text { is a "spring constant" }
$$

Geometric nonlinearity

- Equilibrium of node C is impossible at the undeformed configuration:
- Equilibrium is possible at a deformed configuration:

$$
\begin{aligned}
& \ell(u)=\sqrt{\ell_{0}^{2}+4 u^{2}} \\
& N(u)=k\left(\ell-\ell_{r}\right)
\end{aligned}
$$

- The resultant of the internal forces at node C is:

$$
P(u)=2 N \sin \alpha=2 N \frac{u}{\left(\frac{\ell}{2}\right)}=\frac{4 N}{\ell} u
$$

$$
P(u)=4 k\left(1-\frac{\ell_{r}}{\sqrt{\ell_{0}^{2}+4 u^{2}}}\right) u
$$

For $u \ll \ell_{0} \quad \therefore \quad \ell(u) \simeq \ell_{0} \quad ; \quad N(u) \simeq N_{0}$

$$
P(u) \simeq \frac{4 N_{0}}{\ell_{0}} u=k_{0} u
$$

k_{0} is a initial stiffness, around the initial straight configuration

A non-linear equilibrium problem:

$$
\begin{gathered}
\text { We seek } u^{*} \text { cuch that } \\
P\left(u^{*}\right)=F
\end{gathered}
$$

Defining the unbalanced load function:

$$
g(u)=P(u)-F
$$

Equlibrium corresponds to $\quad g\left(u^{*}\right)=P\left(u^{*}\right)-F=0$

Newton's Method
Expanding $g(u)$ in Taylor's series, around a trial displacement u_{i}

$$
g\left(u^{*}\right)=g\left(u_{i}\right)+\left.\frac{d g}{d u}\right|_{u_{i}}\left(u^{*}-u_{i}\right)+\left.\frac{1}{2} \frac{d^{2} g}{d u^{2}}\right|_{u_{i}}\left(u^{*}-u_{i}\right)^{2}+\ldots=0
$$

Truncating this expansion at the linear term we obtain a nonzero umbalanced load, thus corresponding to a diaplacement

$$
u^{\prime} \neq u^{*}
$$

We seek an approximation u_{i+1} such that

$$
g\left(u_{i+1}\right)+\left.\frac{d g}{d u}\right|_{u_{i}}\left(u_{i+1}-u_{i}\right)=0
$$

That is

$$
u_{i+1}=u_{i}-\left.\frac{d g}{d u}\right|_{u_{i}} g\left(u_{i}\right)
$$

Defining that Tangent Stiffness $\quad k_{t}^{i}=\left.\frac{d g}{d u}\right|_{u_{i}}$

$$
u_{i+1}=u_{i}-\left(k_{t}^{i}\right)^{-1} g\left(u_{i}\right)
$$

It can be shown that this recurrence, in a suficiently small vicinity of u^{*}, converges to it with quadratic rates (provided u^{*} is a stable point).

For the taut string:

$$
k_{t}=4 k\left[\left(1-\frac{\ell_{r}}{\ell}\right)+4 \frac{\ell_{r}}{\ell^{3}} u^{2}\right]
$$

where

$$
\ell=\ell(u)=\sqrt{\ell_{0}^{2}+4 u^{2}}
$$

Note that, as expected:

$$
\begin{aligned}
u \rightarrow 0 \therefore k_{t} \rightarrow 4 k\left(1-\frac{\ell_{r}}{\ell_{0}}\right. &)=\frac{4 N_{0}}{\ell_{0}}=k_{0} \\
& \text { (initial, geometric stiffness) }
\end{aligned}
$$

$u \rightarrow \infty \therefore k_{t} \rightarrow 4 k$
(equivalent to two rods of lenght $\ell_{r} / 2$ acting in parallel!

Exercise 1 - Derive k_{t} for a string loaded at midspan

$$
k_{t}=4 k\left[\left(1-\frac{\ell_{r}}{\sqrt{L^{2}+4 u^{2}}}\right)+4 \frac{\ell_{r}}{\sqrt{\left(L^{2}+4 u^{2}\right)^{3}}} u^{2}\right]
$$

Exercise 2 - Consider a string with $k=10 \mathrm{~N} / \mathrm{m}$, $L=2 \mathrm{~m}, \mathrm{I}_{\mathrm{r}}=1.5 \mathrm{~m}$. Plot $P(u)$ and $k_{t}(u)$.

Find u^{*} for $F=20 N$ using Newton's Method NEWTON'S METHOD
$i=0 \quad \therefore$ guess u_{0}
$\llbracket u_{i+1}=u_{i}-\left(k_{t}^{i}\right)^{-1} g\left(u_{i}\right)$
if $\left\{\left(\frac{\left|\Delta u_{i+1}\right|}{\left|\Delta u_{i}\right|}<\varepsilon_{u}\right) \wedge\left(\frac{\left|\Delta g_{i+1}\right|}{\left|\Delta g_{i}\right|}<\varepsilon_{u}\right)\right.$ stop
else $\quad i=i+1$
continue

The Dynamic Relaxation Method

DRM solves complicated nonlinear equilibrium problems,

$$
\mathbf{g}\left(\mathbf{u}^{*}\right)=\mathbf{p}\left(\mathbf{u}^{*}\right)-\mathbf{f}=0
$$

replacing the static problem by a pseudo-dynamic analysis, with fictitious masses and damping matrices

$$
\mathbf{M} \ddot{\mathbf{u}}+\mathbf{C} \dot{\mathbf{u}}+\mathbf{p}(\mathbf{u}(t))=\mathbf{f}
$$

For a single DOF, apply:
$\mathbf{f}(t)=\mathbf{f}_{0}$

DRM with Viscous Damping

$\mathbf{M} \ddot{\mathbf{u}}+\mathbf{C} \dot{\mathbf{u}}+\mathbf{p}(\mathbf{u})=\mathbf{f}_{0}$

DRM with Kinetic Damping

$$
\mathbf{C}=\mathbf{0} \Rightarrow \mathbf{M} \ddot{\mathbf{u}}+\mathbf{p}(\mathbf{u})=\mathbf{f}_{0}
$$

If the systems kinetic energy is arbitrary zeroed whenever it reaches a maximum, the system will eventually come to a rest, usually faster than with viscous damping:

DRM with Kinetic Damping

Transient of kinetic energy during the shape finding of a cable network via $D R$, with kinetic damping

Several instants of the DRM applied to a cable network

DRM shows no advantage to solve small to medium sized problems, whenever Newton's Method shows good, $2^{\text {nd }}$ order convergence;

It is a robust technique, much useful in cases where Newton's Method fails to converge;

DRM may brings economy for solution of very large problems, since the computational costs for Newton's method grows with the square of the number of DOF, whilst the cost of DRM grows linearly;

However, when the discretization is refined, the critical time-step is also reduced, and more steps are required for the system to come to a rest.

Polygonal cable

$$
\left.\begin{array}{l}
h_{i}=h^{*} \\
\sum M_{(i)}^{\text {left }}=0 \\
\sum F_{x}=0
\end{array}\right\} \Rightarrow H_{A}=H_{B}=\frac{V_{A} x_{i}}{h^{*}}=H \quad \text { 'Thrust' }
$$

$$
\sum M_{(i+1)}^{r i g h t}=0 \Rightarrow h_{i+1}=\frac{V_{B}}{H}\left(L-x_{i+1}\right)
$$

$$
\left(x_{i}, h_{i}\right) \Rightarrow\left(\ell_{i}, \alpha_{i}\right) \Rightarrow N_{i}=\frac{H}{\cos \alpha_{i}}
$$

Plane cable under distributed vertical loads

$\sum F_{x}=0 \Rightarrow-T_{0} \cos \theta_{0}+T(x) \cos \theta(x)=0 \quad \forall x$
$H=T(x) \cos \theta(x)=T_{0} \cos \theta_{0} \quad$ constant! ('Thrust')

Plane cable under distributed vertical loads

$$
\sum F_{V}=-V_{0}-\int_{0}^{x} w(\xi) d \xi+V(x)=0, \quad \forall x
$$

$$
V(x)-V_{0}=\int_{0}^{x} w(\xi) d \xi=0, \quad \forall x \quad \therefore \quad V(x) \text { is a primitive of } w(x)
$$

$$
\frac{d V}{d x}=\frac{d}{d x}\left(\int_{0}^{x} w(\xi) d \xi\right)=w(x)
$$

Plane cable under distributed vertical loads

$$
\sum M_{(0)}=V x-H y-\int_{0}^{x}(\xi w(\xi)) d \xi=0, \quad \forall x
$$

Deriving with respect to $x: \quad \frac{d V}{d x} x+V-H \frac{d y}{d x}-x w(x)=0$

$$
\frac{d y}{d x}=\frac{V}{H}=\frac{1}{H} \int w d x \quad \therefore \quad y=\frac{1}{H} \int\left(\int w d x\right) d x
$$

Cable under uniform vertical distributed load

$$
\left.\begin{array}{c}
w(x)=w_{0} \quad \therefore \quad y=\frac{1}{H} \int\left(\int w_{0} d x\right) d x=\frac{w_{0}}{2 H} x^{2}+C x+D \\
y(0)=0 \\
\left.\frac{d y}{d x}\right|_{x=0}=0
\end{array}\right\} \Rightarrow C=D=0 \quad \therefore \quad y=\frac{w_{0}}{2 H} x^{2} \quad, \text { a parabola! } \quad \begin{array}{r}
y=\frac{w_{0} L^{2}}{8 h} \quad \text { "Thrust formula" } \\
y\left(\frac{L}{2}\right)=h \Rightarrow\left(\frac{4 h}{L^{2}}\right) x^{2}
\end{array}
$$

Cable under uniform vertical distributed load

$T=\frac{H}{\cos \theta}$ is maximum at the supports, where $\cos \theta$ is minimum!

$$
T_{\max }=\sqrt{H^{2}+V_{A}^{2}}=\frac{w_{0} L}{2} \sqrt{1+\left(\frac{L}{4 h}\right)^{2}}
$$

Cable under uniform vertical distributed load

The lenght of a differential cable element is: $\quad d s=\sqrt{d x^{2}+d y^{2}}=d x\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{1}{2}}$
The total lenght of the cable is:

$$
\ell=\int_{-L / 2}^{L / 2} d s=\int_{-L / 2}^{L / 2}\left(1+\left(\frac{8 h x}{L^{2}}\right)^{2}\right)^{\frac{1}{2}} d x=\frac{L}{2}\left(\left(1+\lambda^{2}\right)^{\frac{1}{2}}+\frac{L}{4 h} \arcsin \lambda\right), \quad \text { where: } \lambda=\frac{4 h}{L}
$$

$$
\text { For small sags }, \frac{h}{L} \leq 0.1 \quad \Rightarrow \quad \ell \simeq L+\frac{8 h^{2}}{3 L} \quad \text { Lenght of the parabolic cable }
$$

Cable under uniform vertical distributed load

EX. 4 - Given $L=30 m, h=2 m, \quad$ find $a, H, N_{\max }, \ell$

$$
\begin{aligned}
& \text { Answers: } \\
& a=10.981 \mathrm{~m} \\
& H=30.15 w_{0} \\
& N_{\max }=35.64 w_{0} \\
& \ell \simeq 33.01 \mathrm{~m}
\end{aligned}
$$

Catenary cable (cable under self-weight)

cable of homogeneous material and uniform cros-section , $w(s)=w_{0}$
Setting the origin ad the cable's midpoint: $s(0)=0 ;\left.\quad \frac{d y}{d x}\right|_{s=0}=0 \quad ; \quad V(0)=0$

$$
\begin{gathered}
V(x)=\int_{0}^{x} w(\xi) d \xi=\int_{0}^{s(x)} w(s(x)) d s=\int_{0}^{s} w_{0} d s=w_{0} s \\
\frac{d y}{d x}=\frac{V}{H}=\frac{w_{0}}{H} s
\end{gathered}
$$

Catenary cable (cable under self-weight)

$$
\text { But } \quad d s=d x\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{1}{2}}=d x\left(1+\left(\frac{w_{0} s}{H}\right)^{2}\right)^{\frac{1}{2}}
$$

changing variables: $u=\frac{w_{0}}{H} s \Rightarrow d u=\frac{w_{0}}{H} d s \Rightarrow d s=\frac{H}{w_{0}} d u$

$$
\frac{H}{w_{0}} d u=d x\left(1+u^{2}\right)^{\frac{1}{2}}
$$

separating variables: $\quad d x=\frac{H}{w_{0}} \frac{d u}{\sqrt{1+u^{2}}}$

Catenary cable (cable under self-weight)

integrating at both sides: $\quad x=\frac{H}{w_{0}} \int \frac{d u}{\sqrt{1+u^{2}}}=\frac{H}{w_{0}} \operatorname{arcsinh}(u)+C$

$$
x=0 \Rightarrow s=u=0 \Rightarrow C=0
$$

$$
x=\frac{H}{w_{0}} \operatorname{arcsinh}\left(\frac{w_{0}}{H} s\right)
$$

Catenary cable (cable under self-weight)

Inverting: $s=\frac{H}{w_{0}} \sinh \left(\frac{w_{0}}{H} x\right) \quad$ lenght of the catenary cable stretch $[0, x]$
Therefore, $\frac{d y}{d x}=\frac{w_{0}}{H} s=\sinh \left(\frac{w_{0}}{H} x\right)$
Integrating, $\quad y=\frac{H}{w_{0}} \cosh \left(\frac{w_{0}}{H} x\right)+D \quad$ and imposing $\quad y(0)=\frac{H}{w_{0}}+D=0 \Rightarrow D=-\frac{H}{w_{0}}$

$$
\text { We arrive at the shape of the catenary cable: } \quad y=\frac{H}{w_{0}}\left(\cosh \left(\frac{w_{0}}{H} x\right)-1\right)
$$

Catenary cable (cable under self-weight)

Note that H is still unknow! It can be determined imposing y $\left(\frac{L}{2}\right)=\mathrm{h}$ Then numerically solving $\mathrm{h}=\frac{H}{w_{0}}\left(\cosh \left(\frac{w_{0} L}{2 H}\right)-1\right)$

For h~L/10, the parabola and the catenary practically superimpose:

Parabolic cable

$$
h=\frac{L}{5}
$$

Catenary cable

EX. 5 - Given $w_{0}=5 \mathrm{kN} / \mathrm{m} ; \quad h=6 \mathrm{~m} ; \quad L=20 \mathrm{~m}$, find $H, y(x)$ and ℓ

Answers: $H=45.945 \mathrm{kN}$;

$$
y(x)=9.189[\cosh (0.10883 x)-1]
$$

Deformations of a parabolic cable

Deformations of a parabolic cable

$$
\begin{gathered}
y_{r}=\frac{4 h_{r}}{L^{2}} x^{2} \rightarrow \ell_{r}=\int_{-\frac{L}{2}}^{\frac{L}{2}} \sqrt{1+y_{r}^{\prime 2}} d x \\
\left.\begin{array}{l}
y=\frac{4 h}{L^{2}} x^{2}\left\{\begin{array}{l}
\rightarrow(h)=\int_{-\frac{L}{2}}^{\frac{L}{2}} \sqrt{1+y^{\prime 2}} d x
\end{array}\right\} \Delta \ell=\ell-\ell_{r} \\
\rightarrow H=\frac{w L^{2}}{8 h}=N(x) \cos \theta(x)=\frac{N(\theta(x))}{\sqrt{1+y^{\prime 2}}} \\
\Delta \ell=\int_{-\frac{L}{2}}^{\frac{L}{2}}(1+\varepsilon) d s_{r}=\int_{-\frac{L}{2}}^{\frac{L}{2}} \varepsilon \sqrt{1+y_{r}^{\prime 2}} d x \\
\varepsilon=\frac{N(x)}{E A}=\frac{H}{E A} \sqrt{1+y^{\prime 2}}
\end{array}\right\} \Delta \ell=\frac{H}{E A} \int_{-\frac{L}{2}}^{\frac{L}{2}} \sqrt{\left(1+y_{r}^{\prime 2}\right)\left(1+y^{\prime 2}\right) d x}
\end{gathered}
$$

Deformations of a parabolic cable

$$
w(h)=\frac{8 h E A}{L^{3}} \frac{\int_{-\frac{L}{2}}^{\frac{L}{2}} \sqrt{1+\left(\frac{8 h}{L^{2}} x\right)^{2}} d x-\ell_{r}}{\int_{-\frac{L}{2}}^{\frac{L}{2}} \sqrt{\left(1+\left(\frac{8 h_{r}}{L^{2}} x\right)^{2}\right)\left(1+\left(\frac{8 h}{L^{2}} x\right)^{2}\right)} d x}
$$

Small deformations for a parabolic cable with small sags:

Consider a cable with $h=h_{r} \ll L$
Find the initial stifness of the cable for uniform transversal load.

$$
\left.\begin{array}{c}
\ell_{r} \simeq L+\frac{8 h_{r}^{2}}{3 L} \\
\ell \simeq L+\frac{8 h^{2}}{3 L} \\
\sqrt{1+y_{r}^{\prime 2}} \simeq \sqrt{1+y^{\prime 2}} \simeq 1
\end{array}\right\} \Delta \ell=\frac{H L}{E A}
$$

Ex. 6 - Small deformations for a parabolic cable with small sags:

Stiffness around the initial shape ($h=h_{r}$):

$$
\begin{aligned}
k_{0} & \simeq \frac{128}{3} \frac{E A}{L^{4}} h_{r}^{2} \quad\left(\mathrm{em} \mathrm{~N} / \mathrm{m}^{2}\right) \\
u & \simeq \frac{w}{k_{0}} \quad \text { the stiffness drops with the square of the span! }
\end{aligned}
$$

Cables in 3D space

$$
\mathbf{x}=\mathbf{x}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}
$$

Cables in 3D space

$$
\frac{d \mathbf{x}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{x}(t+\Delta t)-\mathbf{x}(t)}{\Delta t}=\frac{d x}{d t} \vec{i}+\frac{d y}{d t} \vec{j}+\frac{d z}{d t} \vec{k}
$$

Cables in 3D space

$$
\left|\frac{d \mathbf{x}}{d t}\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} \neq 1
$$

Cables in 3D space

$$
\tau=\frac{\mathrm{dx}}{\mathrm{ds}}=\mathbf{x}=\mathbf{x}(s)
$$

Cables in 3D space

$$
\frac{d}{d s}(\boldsymbol{\tau} \cdot \boldsymbol{\tau})=2 \frac{d \boldsymbol{\tau}}{d s} \cdot \boldsymbol{\tau}=0 \quad \Rightarrow \quad \frac{d \boldsymbol{\tau}}{d s} \perp \tau, \quad \forall s
$$

$$
\mathbf{v}=\frac{\frac{d \boldsymbol{\tau}}{d s}}{\left\|\frac{d \boldsymbol{\tau}}{d s}\right\|}=\frac{\frac{d^{2} \mathbf{x}}{d s^{2}}}{\left\|\frac{d^{2} \mathbf{x}}{d s^{2}}\right\|} \quad \text { Osculating Plane }
$$

$$
\boldsymbol{\beta}=\boldsymbol{\tau} \times \mathbf{v}
$$

Frenet-Serret Triedron $\{\boldsymbol{\tau}, \boldsymbol{v}, \boldsymbol{\beta}\}$

Cables in 3D space

Curvature: $\quad \kappa=\left\|\frac{d \boldsymbol{\tau}}{d s}\right\| \quad \Rightarrow \quad \frac{d \boldsymbol{\tau}}{d s}=\kappa \mathbf{v}$
Curvature Radius: $\quad \rho=\frac{1}{\kappa} \quad \Rightarrow \quad \frac{d \boldsymbol{\tau}}{d s}=\frac{\mathbf{v}}{\rho}$
In can be shown that:

$$
\kappa=\frac{\left\|\mathbf{x}^{\prime} \times \mathbf{x}^{\prime \prime}\right\|}{\left\|\mathbf{x}^{\prime}\right\|^{3}} \quad \text { where } \mathbf{x}^{\prime}=\frac{d \mathbf{x}}{d \theta}
$$

For plane curves: $\mathrm{y}=\mathrm{y}(x)$

$$
\kappa=\frac{\left|y^{\prime \prime}\right|}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}
$$

Osculating Plane

Cable Equilibrium in Vectorial Description

Deriving with respect to $s: \quad \mathbf{b}(s)+\frac{d}{d s}(N(s) \boldsymbol{\tau}(s))=\mathbf{0}$

$$
\mathbf{b}(s)+\frac{d N}{d s} \boldsymbol{\tau}+N \frac{d \boldsymbol{\tau}}{d s}=\mathbf{0}
$$

Cable Equilibrium in vector Description

$$
\begin{aligned}
& \text { We arrive at a system of } \\
& \text { three scalar equilibrium } \\
& \text { equations: }
\end{aligned}\left\{\begin{array}{l}
\frac{d N}{d s}+b_{\tau}=0 \\
\frac{N}{\rho}=p \\
b_{\beta}=0
\end{array}\right.
$$

\otimes Tangential equilibrium is analogous to a axially loaded bar!

\otimes Transversal loading provoques curvature of the cable!
$\otimes \quad$ The cable adjusts its form in such a way that there is no binormal loading!

Velaria

cable under uniform transversal pressure p_{0}

$$
\mathbf{b}=-p_{0} \mathbf{v}
$$

$$
\frac{d N}{d s}=0 \Rightarrow N=N_{0} \quad \text { constant }!
$$

$$
\frac{N_{0}}{\rho}=p_{0} \Rightarrow \rho=\frac{N_{0}}{p_{0}}=\rho_{0} \quad \text { constant! }
$$

The velaria is a circular arch!

Velaria

Deformation of infinitely long panels:

$$
p=\frac{64 E t}{3 L}\left(\frac{\delta}{L}\right)^{3}
$$

Deformation of flat circular membranes of radius $R=L / 2$:

$$
p=\frac{3 E t}{3(1-v) R}\left(\frac{\delta}{R}\right)^{3}
$$

Flat Façades

Delta [cm]	$\mathrm{S}_{0}[\mathrm{kN} / \mathrm{m}]$	$\mathrm{S}_{\text {tot }}[\mathrm{kN} / \mathrm{m}]$	w [kN/m]
$\mathrm{R}=5 \mathrm{~m}$			
72.112	0.0	8.7	8.3
70	0.7	8.9	8.5
60	4.4	10.4	10.1
50	8.3	12.5	12.2
40	12.9	15.6	15.4
30	19.3	20.8	20.6
20	30.6	31.2	31.1
10	62.3	62.5	62.0
$\mathrm{R}=2.5 \mathrm{~m}$			
Delta [cm]	$\mathrm{S}_{0}[\mathrm{kN} / \mathrm{m}]$	$\mathrm{S}_{\text {tot }}[\mathrm{kN} / \mathrm{m}]$	w [kN/m]
28.618	0.0	8.7	8.3
20	5.1	7.8	7.7
10	15.0	15.6	15.5
5	31.1	31.2	31.2

