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ABSTRACT - This paper presents a state variable technique 
for teaching power system transients using a personal 
computer. Transmission lines are divided into a series of 
pi-section segments. Each segment consists of a series 
resistance and inductance and a shunt conductance and 
capacitance. Using this line representation, a state model is 
formulated for the power system using the capacitor voltages 
and inductor currents as the state variables. The state 
equations describing the system are transformed to a set of 
linear difference equations through the use of trapezoidal 
integration. The state variables are updated by solving this set 
of equations. Nonlinear elements such as surge arresters may 
be included in the analysis. The technique presented here 
utilizes the student's knowledge of network theory and is easily 
implemented on a personal computer. 
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INTRODUCTION 
Electromagnetic transients in power systems may be 

produced by switching actions, faults, or lightning strikes. 
Students may investigate the effects of transients by using a 
tiansient network analyzer or a digital computer. A transient 
network analyzer requires the construction of a power system 
analog. Computer-based transient analysis techniques 
necessitate developing a mathematical model to  describe the 
transient behavior of the power system. These techniques are 
especially attractive for student investigation of transient 
phenomena because of the availability of low cost personal 
computers. This paper presents a state variable technique 
which can be used to teach a senior elective course in power 
system transients using the personal computer. 

89 WM 044-9 PWRS A paper recommended and approved 
by the IEEE Power Engineering Education Committee of 
the 'IEEE Power Engineering Society for presentation 
at the IEEE/PES 1989 Winter Meeting, New York, New York, 
.January 29 - February 3 ,  1989. Manuscript submitted 
September 1, 1988; made available for printing 
November 14, 1988. 

1293 

One popular computer program utilized by the electric 
utility industry is the Electromagnetics Transients Program 
(EMTP) [I], which is based on the ideas of Dommel 12-41. 
Simple equivalent networh,,are derived for all components in 
the system. Nodal equations are formulated for the system 
represented by the equivalent networks. The transient is 
calculated through repeat solutions of these nodal equations. 
Since EMTP is not user friendly, the student can easily become 
frustrated with it. In addition, EMTP requires an extensive 
background in power system analysis and will overwhelm the 
beginning student. Glover and Sarma [5] present a technique 
similar to  that used in EMTP for the solution of transient 
problems. Their computer program is much more user friendly 
than EMTP and, therefore, is much easier for the student to 
use. The classical lattice diagram technique [5,6,10] may be 
used in a study of transients. This technique uses an 
approximation to the travelling wave equation. The student 
needs to  understand the concepts of reflection coefficients and 
impedance matching, which are not network concepts. In 
addition, it is very difficult to  incorporate resistive effects. 
The lattice technique appears to  be more difficult to 
implement on a computer than the concepts behind EMTP [3]. 

The technique presented in this paper utilizes the 
student's background in network theory. It requires the 
formulation of a state model for the power system. Therefore, 
the student only needs a course in network theory as a 
prerequisite. Many network textbooks such as [7] present 
techniques for deriving state models for networks. The state 
variables are selected to  be the capacitor voltages and inductor 
currents in the network. The state equations describing the 
network can be written in the form 

& = A s +  Bu 

where is a vector of state variables, U is a vector of inputs, 
and A and B are matrices. Equation (1) may be solved using 
many techniques. Trapezoidal integration [7] is employed here 
to transform the state equations to a set of linear difference 
equations [SI 
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where b'[kT] = f(x[kT], u[kT], u[(k+l)T]) .  A' is a sparse 
mat,rix which is constant for a fixed time step T. The vector 
x[(k+l)T] is solved for by either finding the inverse of A '  or 
performing an LU factorization of A' to preserve the sparsity. 
The latter is utilized in this paper because of the special 
structure of the A '  matrix. Since A' is constant for a fixed 
time step, it is only factored once at tlie beginning of the 
simulation. The right hand side of (2) is recalculated at each 
time step. 

Nonlinear devices such as surge arresters are a part of 
electromagnetic transient studies. In [4], an iterative 
procedure is utilized to find a solution when a nonlinear device 
is present in the system. In this paper the nonlinear device is 
treated as a piecewise linear resistaiice. The A matrix is 
formrilatetl in symbolic form and is evaluated for tlie different 
values of the piecewise linear resisthiice. All A and A '  matrices 
are evaluated and factored or inverted before simulation 
begins. 

This state variable technique is easily implemented on 
the personal computer. The student only needs a routine to 
solve (2). Sparsity techniques can be ut,ilized in t,he LU 
fact,orization of A '  to reduce memory requircmeiits. Since A '  
only iiceds to be factored once and iterative procedures are 
unnecessary, the transient may be calculated quickly on a 
personal computer. This technique is illustrat,ed with a simple 
example. 

TRANSMISSION LINE MOnEI, 
The state variable technique discnssed here requires an 

equivalent network from which state equations can be written. 
The transmission line is modeled as an interconnection of n 
pi-networks. Each pi-network contains a series resistance and 
inductance and a shunt conductance and capacitance as seen in 
Figure 1. RI, L', C', and G'  are the resistance, inductance, 
conductance, and capacitance per unit length, respectively, of 
the transmission line. The resistance and inductance for each 
pi-network are determined by dividing the total resistance and 
inductance for the line by the number of pi-networks n. The 
shunt conductance and capacitance for each pi-network are 
determined in the same manner. One half of the calculated 
values is assigned to  each end of the pi-network in Figure 1. 

.if; 2 2 

Figure 1. Pi-network section for transmission line 

The 11 pi-networks are connected in  series as shown in 
Figure 2 to form the transmission line model. Note that the 
shunt elements of adjacent pi-networks are combined in 
parallel. The capacitor voltages and inductor currents are 
designated as the state variables. Examination of Figure 2 
indicates that the state equations for the transmission line 
have a special structure. The state for each of the shunt 
capacitors is affected only by the two inductors connected to it 
and the capacitor itself. This will be demonstrated more 
clearly with an example system in a later section. 

SOLUTION PROCEDURE 
The model of the transmission line presented in the 

previous section is combined with other component models. 
State equations are formulated for the system and can be 
written in the form of (1). This set of linear ordinary 
differential equations is transformed into a set of linear 
difference equations using trapezoidal integration [8]. If T is 
the time step, equation (1) becomes 

Ax[k+l ]  + Bu[k+l] + Ag[k] + Bu[k] ( 3 )  I 
The indices k and k + l  are utilized to indicate the values of 
or 
yields 

at time t=kT or t=(k+l )T,  respectively. Rearranging (3) 

Figure 2. Transmission line model 



If the inputs 11 are known for all discrete points in time 
t=kT for k = 0, 1, 2 . . ., x[k+l] can be determined using (4). 
Define 

(5) 

All matrices in (5) are constant for a fixed time step; 
they are evaluated before simulation begins. An LU 
factorization is also performed on A' before simulation begins. 
The vector y [k ]  must be evaluated at each discrete point in 
time. 

Because of the transmission line model employed here, A 
is a tridiagonal matrix. Therefore, A' and A" are also 
tridiagonal. Only the nonzero elements of A" and B' are 
stored to decrease memory requirements and execution time. 
In order to retain the sparsity of A, Crout reduction [9] is 
utilized to obtain an LU factorization of A' considering its 
tridiagonal nature. Crout reduction may be applied to a 
system of linear equations if the diagonal entries of L are 
nonzero [9]. For a set of n equations in n unknowns, Crout 
reduction requires only (5n - 4) multiplications/divisions and 
(3n - 3) additions/subtractions to solve the set of equations. 
This can result in considerable savings in execution time for 
large n. 

The simulation procedure will now be summarized: 

1. Calculate A', A", and B' from (5). 
2. Compute LU factorization of A'. 
3. Set k = 0. 
4. Calculate b'[k] from (6). 
5. Solve for x[k+l] using (4). 

7. Repeat 4, 5, and 6 until end of sirnulation. 
6. k = k + 1. 

EXAMPLE SYSTEM 
The state variable technique presented in this paper is 

illustrated using an example from [5 ] .  In this example, a 
lightning strike occurs at the center of a 20 kV, 10 km line 
which has R' = 0.05 Q/km, G' = 0.556 pS/km, L' = 1 mH/km, 
and C' = 11.11 nF/km. A transformer is connected to one end 
of the line which is modeled by a capacitance to ground of 
CT = 6 nF. The other end of the line is terminated in an open 
circuit. The lightning strike is modeled by an ideal square 
wave current source connected to a node in the middle of the 
line; the source has a magnitude of 20 kA for 20 ps. The 
transformer is protected by a surge arrester whose v-i curve is 
approximated as: RA = 2 MQ for VA < 55 kV and RA = 4.5 Q 
for VA > 55 kV. 
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Since the surge arrester and transformer are connected to 
one end of the transmission line, the shunt conductance and 
capacitance at  the end of the line in Figure 2 become (G/2 + 
l /RA)  and (C/2 + CT), respectively. If the state equations 
are formulated such that the odd-numbered state variables 
correspond to capacitor voltages and the even-numbered state 
variables correspond to inductor currents, the following A 
matrix results 

A =  

G 2  
.T -7 

1 R  1 
T --G -T  

1 G 1 
T -T -T 

1 R 1 
T -77 -t 

Only the nonzero entries of A are shown in (7). Note that the 
A matrix is tridiagonal for this system as was previously 
stated. With the exception of the first and last rows, the 
elements of the superdiagonal alternate between (-1/L) and 
(-1/C), and the elements on the subdiagonal alternate between 
(1/L) and ( l /C) .  

For the n section line in this example, there are 2n+l 
state variables. Since the square wave current source is the 
only source in this example, only one entry in B is nonzero. 
This current source is connected across one of the capacitors; 
therefore, this entry must have an odd subscript because the 
capacitor voltages are the odd-numbered state variables. The 
nonzero entry in B corresponding to the current source will be 
designated bn+l and has a value of ( l /C) .  

Two simulations are performed to illustrate the state 
variable technique. The transmission line is divided into 50 
pi-networks and a time step of 0.05 ps is employed. The 
example system is first simulated without the surge arrester. 
The simulation results are given in Figure 3. A second 
simulation is performed with the surge arrester included. Two 
A' matrices, one for RA = 2 MQ and another for RA = 4.5 Q ,  
are evaluated and factored for this simulation. When the 
voltage across the surge arrester exceeds 55 kV, its resistance is 
changed from 2 MQ to 4.5 0. The A' matrix corresponding to 
the lower resistance is now used in the simulation until the 
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Figure 3. Transformer voltage without surge arrester 

Figure 4. Transformer voltage with surge arrester 

surge arrester voltage drops below 55 kV. Figure 4 shows the 
results of this simulation. Figures 3 and 4 compare favorably 
with the results given in [5]  and with results obtained from 
EM T I’ . 

CONCLUSION 
This paper has presented a state variable technique for 

teaching power system transients. Transmission lines are 
inodeled as a cascade connection of pi-networks. Using this 
line model and other component models, the student can 
formulate a state model for the power system using elementary 
network theory. The state equations are converted to a set of 
linear difference equations using trapezoidal integration. If the 

inputs are known for all time, the response of the power system 

can be determined by repetitively solving this set of linear 
equations. This technique can be easily implemented by the 
student on a personal computer. A subroutine to solve a set of 
linear equations is all the student needs. The technique can 
also be extended to include nonlinear elements such as surge 
arresters. 
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