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Abstract—This paper reviews and compares several methods to
analytically obtain the transient response of transmission lines in
the time domain, in those cases where frequency independent pa-
rameters can be assumed. The distributed-parameter line is mod-
eled by the cascaded connection of a number of lumped-param-
eter 7r circuits, each one representing a fraction of the line length,
leading to a linear time-invariant (LTI) circuit.

The associated state-space equations are formulated, allowing
explicit expressions for the state variables to be written in the time
domain. The solution is then obtained by means of three different
approaches, all of them requiring that the natural frequencies be
previously computed, namely: eigenvector-based procedure, Van-
dermonde matrix method, and Lagrange interpolation formula.
Numerical integration by the trapezoidal rule is also considered
for comparison.

Two Kinds of test results are presented. First, accuracy of the
results provided by the LTI lumped-parameter model are com-
pared with those obtained using the Electromagnetic Transients
Program. Second, a comparison is performed in terms of the com-
putational cost involved in each method. Two cases of practical in-
terest are assessed, namely solving from scratch the state equations
and updating the solution for a new set of initial conditions.

Index Terms—Natural response, state variables, transient anal-
ysis, transmission lines.

1. INTRODUCTION

CCURATE determination of transmission line transients,

as a result of faults and switching operations, is necessary
for the design of protective devices and selection of adequate
insulation levels.

The distributed nature of transmission line parameters and
their frequency dependence makes it very difficult to obtain the
solution in the time domain.

Depending on the application and underlying assumptions, a
number of methods are available to obtain electromagnetic line
transients. Among these, the following techniques can be cited:
traveling wave methods (lattice diagram and Bergeron) [1],
Electromagnetic Transients Program (EMTP) [2], and Laplace
or Fourier transforms [3], [4]. In those cases where frequency
dependence of line parameters can be ignored, numerical in-
tegration of the state-space equations provided by a simplified
lumped-parameter model has been also proposed [5].
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In this paper, the state-space approach, by which the line is
modeled with a number of cascaded 7 networks, is also adopted.
In addition to the trapezoidal integration rule considered in [5],
this paper explores several techniques for the explicit solution
of the associated state-space equations. Results provided by the
cascaded connection of lumped-parameter circuits are com-
pared in terms of accuracy with those provided by the EMTP,
the standard tool for the analysis of fast transients in power
systems. Furthermore, a detailed analysis of the computational
cost involved in each method is performed.

Clearly, the state-space formulation adopted for transient
analysis is of application to generic linear circuits, provided all
distributed-parameter elements are replaced by a sufficiently
large number of lumped-parameter sections. However, the
analysis is intentionally restricted in this paper to the single
line case, the cascaded connection of lines and/or cables being
a trivial extension. On the one hand, these simple cases lead to
equation systems with tridiagonal structure, allowing explicit
expressions for the computational cost to be obtained. On the
other hand, a few classical and more recent applications can be
cited where the analysis of cascaded devices (circuit breakers,
shunt capacitor banks, transformers, lines, and cables) can be
of practical interest, namely:

* Insulation coordination of very high voltage systems, in
which switching transients play an important role [6]-[8].
This includes assessment of new arrangements and equip-
ment associated with switching devices, like single-pole
switching for capacitor banks, resistor insertion in mul-
tistage circuit breakers, etc. In this context, it has been
stated that a reduction of 0.2 pu in switching overvoltages
may lead to economic benefits when selecting insulation
equipment [3].

» Lightning surge propagation and attenuation [9].

» Test and assessment of more sophisticated digital protec-
tive relaying algorithms [10]-[12].

The paper is organized as follows: the EMTP line model is in-
troduced in Section II and the application of the cascaded nom-
inal 7 circuit for transient analysis is discussed in Section III.
The state-space model of transmission lines is then presented in
Section IV and the solution methods considered in this paper are
introduced in Section V. An example is studied in Section VI and
the computational cost is compared in Section VII. Section VIII
is devoted to the common case in which the analysis is repeated
for different initial conditions. Finally, conclusions are drawn in
Section IX.
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Fig. 1. Equivalent m circuit for steady-state analysis.

II. EMTP LINE MODELS
A. Steady-State Model

For frequency-domain steady-state analysis, both at the fun-
damental and harmonic frequencies, the transmission line can
be accurately modeled by the 7 circuit shown in Fig. 1.

The equivalent lumped parameters of Fig. 1 are given by:

_ sinh(+£)
Ze=(20—,
tanh (“’72)

5
=VZY (1)

where Z and Y represent the series impedance and shunt admit-
tance per unit length, respectively,

7 =R+ jwl
Y =G+ jwC 2

and / is the line length.
For medium length lines the equivalent 7 circuit shown in
Fig. 1 tends to the so-called “nominal 7 circuit,” with

Zem 72l Yr YL 3)

B. Transient Model

In addition to the explicit frequency dependence of the above
expressions, the line parameters are also functions of frequency.
Owing to this two-fold frequency dependence, the equivalent 7
circuit has no counterpart in the time domain. For time-domain
simulations, several alternative models exist [13], all of them
based on the decoupling introduced between the sending and
receiving ends by the wave traveling time.

The EMTP lossless line model is based on the Bergeron’s
traveling wave method [2]. In this ideal model, the single-phase
distributed LC line is characterized by two values, namely the
surge impedance, Z. = /L/C, and the speed of propagation,
v =1/ VILC.

In a real line, the series losses are taken into account by
lumping a resistance of R¢/4 at both ends of the line and a
resistance of R¢/2 in the middle. Experience with this model
[13] indicates that the error incurred by lumping the series
resistance is acceptable as long as R{ < Z..

A two-port model of the line can be obtained as shown in
Fig. 2, where [14]
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Fig. 2. EMTP transmission line model for time-domain analysis.
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Each integration step involves computing the current sources
(4) and (5), building and solving the nodal equations and then

updating i5(¢) and i,.(t).

III. CASCADED NOMINAL 7 CIRCUITS

When the frequency spectrum of the signals involved in the
simulation is not too wide, assuming frequency-independent
line parameters constitutes a reasonable simplification. In such
cases, cascading nominal 7 circuits is a simple alternative to ap-
proximating the effect of the hyperbolic correction factors for
time-domain transient simulations [13].

Fig. 3 shows a given length of line represented by connecting
N short nominal 7 sections in cascade. The parameters of each
nominal 7 network are determined by dividing the total resis-
tance, inductance, conductance and capacitance for the length
considered by the number of cascaded networks.

The number of sections to be used depends on the frequency
range of concern. A good approximation of the highest fre-
quency range represented by the cascaded nominal 7 circuits
is given by the following equation [15]

Nv
wl

Fig. 4 compares, for the 220-kV, 100-km line tested in Sec-
tion VI, the frequency response of the driving-point impedance
(receiving end open-circuited) corresponding to the exact m
model of Fig. 1 with that of the cascaded connection of 12
lumped = circuits. This diagram indicates that the approxima-
tion is acceptable up to the 4-5 kHz range.

Note however that, as explained in [13], [16], when the time
step of the simulation is larger than the line traveling time, 7,
the use of the nominal 7 circuit is the only viable alternative.

fmax = (7)

IV. STATE SPACE MODEL OF TRANSMISSION LINES

Unlike the distributed parameter line model, the cascaded
connection of nominal 7 circuits leads to a linear state space
model with a finite number of states. Each nominal 7 network
contains a series resistance and inductance, and a shunt conduc-
tance and capacitance as seen in Fig. 5.
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Fig. 3. Transmission line model based on N lumped-parameter 7 networks.
" ' ' — Distrbuted Parameters the one shown in Fig. 3, the source inductance current should
= 12 Plsectons be added to the state vector (in the same way, an inductance
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Note that A; is a tridiagonal matrix, whose eigenvalues can
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Fig. 4. Driving-point impedance frequency response.
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Fig. 5. 7 network section.

In this model, inductor currents and capacitor voltages consti-
tute state variables. In addition, for a typical configuration like

V. SOLUTION OF THE STATE EQUATIONS

Consider the linear time-invariant system

Xx=Ax+Bu ; x(0)=x¢ (11
where x € R™ is the state vector, u € R" is the excitation
vector, and A € R"", B € R™™ are known coefficient
matrices.

Among the long list of methods developed by mathematicians
to solve the above set of linear ordinary differential equations
[17], the following four, suitable for realistic systems, are se-

lected for comparison in this paper.

T _ 1
B, =[+ 0 0]
iR, -1
L, L,
2 =G =2
C C C
1 R =1
L L L
1 =G
C C
1
A= T

9
__1
C
-R -1
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1 =G =1
C C C
1 =R =1
L L L
2 —2 GJ
C CR,  C
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A. Trapezoidal Rule

By means of the trapezoidal integration rule, a differential
equation like (11) is easily converted into a set of discrete-time
equations, as follows:

At
X1 = X + 7[A(Xk+1 +xi) + B(ugs1 +ug)]  (12)

where At is the time step and xj, uy refer to the respective
magnitudes evaluated at ¢ = kAt¢. Rearranging (12) yields

(I — gA) Xp41 = (I + %A) X + %B(uk + llk_|_1).
(13)
Each integration step requires that a tridiagonal linear system
be solved, in which the coefficient matrix remains constant so
long as the time step is also constant. Note that, at intermediate
steps, all components of x must be computed so that the right-
hand side in (13) is fully defined for the next solution. In those
cases where only a single state variable is of interest (typically
the receiving bus voltage), the back substitution process during
the last step is not needed, but this saving is negligible.

B. Eigensystem-Based Solution

This and the remaining procedures require that the eigen-
values of A be previously computed. For simplicity, it will be
assumed that A has distinct eigenvalues, but the methods de-
scribed below can be extended to the unlikely case of multiple
eigenvalues.

The solution of (11) can be expressed as [18], [19]

X =Xy +Xp (14)
where x ¢ is the forced or steady-state solution of (11), and x;,
is the natural response satisfying the homogeneous system

Xh = Axh (15)
subject to the initial value
x5(0) = xo — x7(0).
The natural response has the generic form [20]
(16)

n
_ At
—g aje
j=1

where )\; are the eigenvalues of A (natural complex frequen-
cies), T'; are arbitrarily scaled eigenvectors and «; are scalars
selected in such a way that the initial conditions are satisfied,
that is

7)

0) = Z Oé]'T]
j=1

IfT = [Ty, To,..., T,,] denotes the similarity transforma-
tion matrix comprising the whole set of eigenvectors, the above
system can be written in matrix form as follows:

Ta = x,(0) (18)
where @ = [ai,s,...,a,]T. Note that, unlike in (13), the
coefficient matrix T is dense, i.e., all its elements are nonnull.

Each column T is previously obtained in a decoupled manner
by solving the homogeneous system

(A-XNIDT;=0,j7=12,...,n (19)
Some computational saving is possible if a single state vari-

able x; is of interest, as each «; coefficient needs to be multi-
plied only by T;;, rather than by the entire column vector T';.

C. Vandermonde Matrix

Instead of separately obtaining «; and T, the following
scaled eigenvector:
Cj = OleJ (20)
can be directly obtained. For this purpose, the i-th component
of the natural response is expressed as

n

whi(t) = cijeti=1,..,m. 21)
j=1
Next, the kth derivative of (21) is taken
®) - oni _
zp) (1) = T ZA cijedt i=1,...,n. (22

Finally, the following hnear equation system is obtained by
writing (22) successively for k = 0,...,n — 1, attime ¢t = 0

11 1 - 1 qren ni(0)
A1 Az Az e A Ci2 ‘TELi)(O)
AZa2 a2 L a2 cis |=| 22(0)
AT g D I B Pl ()

In the above system, the coefficient matrix is known as the
Vandermonde matrix [21], and the right-hand side vector can
be recursively obtained by taking the ith component of the se-
quence of vectors

X}L(O) =Xp — Xf (0)
x,(0) = Ax;, (0)
x(2(0) = Ax{"(0)

xi(0) = Axp*(0)

x"7V(0) = Ax{"72(0). (24)

Note that this approach is particularly suitable for those ap-
plications in which a single element of x is needed. If conven-
tional LU factorization [22] is employed to solve (23), it should
be kept in mind that obtaining subsequent state vector compo-
nents requires only the forward/backward elimination process
to be performed, as the Vandermonde matrix remains constant
and the right-hand side vector is readily available.

D. Lagrange Interpolation Formula

In terms of C;, (17) reduces to

> Cj=x4(0) (25)
j=1
By definition, the eigenvector C; satisfies
(A-)\I)C; =0 (26)
and, for any A\; # A;, also
(A - XNIC; = (A — \)C;. 27)



898

Multiplying both sides of (25) by all terms (A — \;I), except
for + = j, and taking into account (26) and (27), yields

[IA = XDxi(0) = T2 — X)C; (28)
i#j i#£]
or, rearranging
(A-\I)

i#]
which is known as the Lagrange interpolation formula. Note
that, while each solution of (23) provides a row of the similarity
transformation matrix, C = [Cy,Ca,..., C,], the Lagrange
formula constitutes a closed-form expression for each column
of C.

The computation of C; can be organized as a sequence of
matrix-vector products, from right to left, as follows:

1
Hi;éj()‘j = Ai)
[(A = AjaD) - [(A = A D) (0)]]]]

Nearly one-half of the computations can be saved when the
last state vector component, z.,, is exclusively sought, because
in this case only the last 2,3,...n — 1 elements of the inter-
mediate vectors, from left to right respectively in the expression
above, are needed to obtain the n-th element of each C;, as a
consequence of A being a tridiagonal matrix.

For this particular application, an interesting alternative arises
to obtain z,,. Let us define an auxiliary row vector 8 i, computed
from left to right as follows:

C, = [(A = AI). .. [(A—\_I)...

(30)

Bi = [[[len(A—MD]...(A= XD ..
(A= X\aD)]... (A= X0)] (3D
where e,, = [0,0,...,0,1]7. Then, the n-th component of each

eigenvector C; can be simply obtained by performing the inner
product
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Although this way of obtaining c,,; is not cheaper than the
direct application of (30), a significant computational saving can
be achieved if §; is stored when computed for the first time
and subsequently retrieved for different initial conditions (see
Section VIII).

VI. EXAMPLE: TRANSMISSION LINE DE-ENERGIZATION

This section presents an example aimed at comparing the re-
sults provided by the distributed parameter model of the EMTP
with those obtained by the cascaded connection of lumped-pa-
rameter m models. For illustration purposes, the Vandermonde
method is employed to determine the respective coefficients c;;
of the state-space model, assuming that only the load voltage is
required. Except for potential round-off errors, the same results
are provided by competing procedures.

The test case, shown in Fig. 3, refers to a 220-kV system
comprising a resistive load R,. = 96 (2, a voltage source with
R, =20, L, = 0.06 H, and a 100-km transmission line with
R = 0.07 Q/km, L = 1072 H/km, C = 1210~% F/km.
The conductance of the transmission line is neglected. Initially,
the line is in steady-state, fed by a 50-Hz sinusoidal voltage
v.(t) = 2204/2sin(1007t) kV. At time ¢ = 20 ms the opening
decision is taken and the breaker opens at the next zero current
crossing (¢ = tg). The time evolution of the load voltage, v,.(t),
is sought for ¢t > .

A. Steady State Response

For t < ¢, the time evolution of the load voltage and source

current is obtained by phasor analysis, yielding:
v(t) = 259200 sin(1007t — 0.45) V (33)

and
i5(t) = 2686 sin(1007t — 0.41) A. (34)

The time instant when the breaker effectively opens can be
obtained from

ey = m 18,1 (0)]. (32)  is(to) = 2686sin(100mty—0.41) = 0 = o = 21.3 ms. (35)
0 —5-10 ]
30 —70 =30
2.5-10 0 —2.5-10°
A= 30 70 =30 (36)
25.100 0 —2.5.10
30 =70 30
i 5-106  —5.2-10* |
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B. Natural Response

For ¢t > tg, 7, should be removed from the state vector. When
three nominal 7 circuits are adopted, the state vector for the
system shown in Fig. 3 reduces to

. . . T
x=[vy i1 vy iz U3 i3 U]

and the system matrix [see (36) at the bottom of the previous
page] whose associated eigenvalues are

A= —49-10*
Aoz = —99+41.7-10*
Ays = — 523+ j1.2-10*
Xe,7 = — 967 + jd.5- 103, (37)

Taking into account that the system is energized for ¢t < %y
with a sinusoidal source, the initial state x( can be calculated by
phasor analysis techniques, yielding (see equation at the bottom
of the page).

Solving the linear system (23) for 7
lowing {c;;} coefficients:

cr1 = 1590
—161.15 — j234.48 ; c73 = —161.15 + j234.48

7 provides the fol-

Cr2 =
c74 =64.83 4+ 71228 ; c75 = 64.83 — j1228
c76 = — 6087.64 — 79840.14 ; c77 = —6087.64 + 79840.14.
(38)
Therefore,

vr(t) — 15906—4.9-104(t—t0)
+ (=161.15 — j234.48)e<—99+j1-7-104><t—to>

+ (—161.15 + 5234.48)(~99=31.7:10") (t=10)
(64.83 4 j1228)(~523+71.:2:10%)(t=to)
(64.83 — j1228)e(—523—j1.2-104)(t—t0)
(—6087.64 — j9840.14)e(~967+74.5:10%)(t—to)
(—6087.64 + j9840.14)e(~967—74.5:10°)(t—to)

(39)

+
+
+ —
+ —
or, simplifying the above expressions
vp(t) = 1590~ 49:10" (t—t0)
— 569¢ 799110 ¢og(1.7 - 10*(¢ — to) + 0.97)
+ 2459.4¢ 523710 ¢o5(1.2 - 104 (£ — to) + 1.52)
—23142.179670%0) ¢os(4.5 - 103(t — to) + 1.02).
(40)
The solution obtained with three cascaded nominal 7 circuits
compares well with that provided by EMTP (see Fig. 6).
Fig. 7 shows an even better agreement for five cascaded nom-

inal 7 circuits. For ten or more 7 sections both curves virtually

superpose.
The line energization problem, omitted because of space limi-
tations, is solved in a similar manner, the major difference being
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the additional state variable associated with the source induc-
tance, 7.

VII. COMPUTATIONAL COST

In this section, a comparison of the computational cost
involved in the computation of x,(¢) during the line de-
energization is presented. The total number of floating point
operations, or flops, is used. Any arithmetic operation on real
arguments generates a flop. With complex arguments, each
multiplication/division generates six flops, while an addi-
tion/subtraction generates two flops.

For the following comparative analysis, the reader is referred
to data presented in Tables I and II, regarding the computational
cost of common matrix-vector operations.

xo = x5,(0) = [73902.4 —31.2 43680 —58.2 15574 —112.3 —10778]".
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TABLE 1
FLOPS INVOLVED IN THE SOLUTION STEPS OF LINEAR EQUATION SYSTEMS

Matrix type LU factorization Forward & backward
Real tridiagonal 3n—3 n —4
Complex tridiagonal 14n — 14 20n — 14 (eig. problem)
2,3 _ 1,2 1 2
Real dense Fn° —gn” —gn 2n° —n
TABLE 1I

FLOPS INVOLVED IN A MATRIX-VECTOR MULTIPLICATION

Matrix type Vector type Flops
Real tridiagonal Real 5n —4
Complex tridiagonal Complex 22n — 16

A. EMTP-Based Solution

In order to obtain the receiving-end voltage for the line shown
in Fig. 3, it is necessary to build and solve the nodal equations

> 0 vi(t)] _ [Ls(t)

0 z+a][v® 1(t)
and then to obtain line currents i,(¢) and is(¢) that will be
needed at instant ¢ + 7, [16]

is(t) = 252 — L(1)
i (t) =D 1)
Hence, a total of 18 flops/step are required, plus several ad-
ditional flops at the beginning to compute constant coefficients.
Note that the sending-end voltage is also required, and that elec-

trical magnitudes at intermediate points can not be obtained un-
less the line is split appropriately.

(41)

(42)

B. Trapezoidal Rule

Equation (13) can be rewritten for the zero-input case as

2 2
<IA_t — A) Xk+1 = (IA_t + A) Xk

Assuming the same step size is used throughout the process,
the computational cost consists of the following terms.

(43)

e Preliminary phase: 2n additions to obtain the matrices at
both sides of (43) plus the LU factorization of the coeffi-
cient matrix.

e Each step: Matrix-vector multiplication on the right-hand
side plus the forward/backward solution stage.

This yields a total of 5n — 3 flops for the preliminary phase
and 10n — 8 flops per iteration. Note the resulting linear cost,
owing to the special nonzero pattern of A,

The number of iterations depends both on the step size and
duration of the transient period. A reasonable step size for the
above example is 102 s, which means that the first 5 ms in-
volve 500 simulation steps. Table III summarizes the total flops
required by the numerical integration approach for the computa-
tion of the line de-energization. As discussed in Section V, there
is virtually no saving if only the receiving-end voltage, (),
is needed.
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C. Eigensystem-Based Solution

This and the remaining procedures require that the system
eigenvalues be available. Experience reveals that, for the kind
of circuits considered in this paper, at most two eigenvalues are
real. Therefore, for simplicity of analysis, it will be assumed
that all eigenvalues are complex in order to evaluate the com-
putational cost of the different methods. According to [23], ob-
taining the eigenvalues of a tridiagonal matrix by means of the
TLR algorithm involves about 2512 flops. This iterative scheme
applies implicit double shift LR iterations to the scaled tridiag-
onal matrix until all the eigenvalues are found.

Apart from obtaining the eigenvalues, the following compu-
tations are necessary.

» Eigenvectors: Computing each of the n/2 eigenvectors
(the rest are complex conjugate) involves building and
factorizing the coefficient matrix of (19). As this matrix
is singular, a zero pivot will be eventually detected. This
pivot and the respective element of the right-hand side
vector are set to 1, allowing T'; to be subsequently solved
by forward/backward elimination [24]. The total number
of flops required to obtain the eigenvectors is 18n2 — 14n.

e Vector a: Taking advantage of the eigenvector’s complex
conjugate symmetry, this column vector can be obtained
by rewriting (18) as a real-coefficient equation system
with an extra cost of n flops. The total number of flops
to obtain a in this way is (2/3)n3 + (3/2)n? — (1/6)n.

 Ifall state variables are needed, 3n2 flops should be added
to account for the products a;T; in (16). On the other
hand, only 3n additional flops are required to obtain a
single component of the state vector.

The total cost for this procedure is shown in Table III (all

variables) and Table IV (single variable) for different n values.

D. Vandermonde Matrix

The following items determine the computational cost in this

case, in addition to the computation of the eigenvalues.

e Assuming pairs of complex conjugate eigenvalues, ob-
taining the Vandermonde matrix requires n(n—1)/2 com-
plex multiplications (i.e., 3n> — 3n flops).

¢ Computing the entire set of terms mELk) (0) by the sequence
(24) involves 5n% — 9n + 4 flops.

e Taking advantage of the complex conjugate symmetry, the
system of (23) can be also rewritten in terms of a real
matrix, which is factorized only once.

* As many forward/backward elimination processes as
wanted state variables are performed to obtain the respec-
tive coefficients c;;.

Table III shows the total cost associated to this procedure.

It is worth noting the low cost that results when a single state
variable is sought (Table IV).

E. Lagrange Interpolation Formula

Besides the computation of the eigenvalues, this approach in-
volves the following preliminary steps.
e Computation of matrices A — NI (2n flops
each) .
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TABLE III
TOTAL FLOPS REQUIRED TO OBTAIN ALL STATE VARIABLES FROM SCRATCH

Trapezoidal Eigensystem Vandermonde Lagrange
2.3, 95 2 _ 85 3, 115 .2 , 7 3, 115 .2 , 7
n | 5n—3+500(10n —8) | $n° + Pn® — Pn | 1In° 4+ =2n + gn | 1In° + 220 + 1n
7 31032 2457 2377 4342
12 56057 7822 9002 20667
22 106107 29777 43377 122672
e Taking advantage of the complex conju- TABLE IV

gate symmetry, only n(3n—2)/8 terms of the
form A; —A; in (29) need to be computed.

Next, computing each of the n/2 column vectors C; com-
prises the following steps:

e The product of n—1 terms A;—)\; which is
then used to scale x3(0).

If all state variables are wanted then
n — 1 matrix-vector products are required.
As discussed above, if only the re-
ceiving-end bus voltage, z,(f), is needed,
just one component of the last matrix-
vector product, two components of the
previous product, and sSo on are necessary.

Table III shows the total cost associated to this procedure,
including the computation of eigenvalues (see Table IV for the
single variable case).

F. Comparison

In view of Tables III and IV, the following conclusions can be
drawn, as far as state-space solution approaches are concerned:

For the size of integration steps required in practice, the
trapezoidal rule is much more expensive than competing
methods based on explicitly obtaining each natural mode,
particularly for long-lasting transients.

The Vandermonde matrix approach is most appropriate
when a single state variable is needed.

When the entire state vector is wanted, the eigenvector-
based method is slightly cheaper.

The cost corresponding to the EMTP is included only in
Table IV, as the EMTP solution method does not allow the evo-
lution of intermediate variables to be obtained. For a transient
lasting 5 ms, like that of the example, the EMTP is more ex-
pensive than the Vandermonde scheme with 12 state variables.
Longer transients make eigenvalue-based approaches, whose
computational cost is independent of the simulation period,
more competitive.

Figures shown in Tables III and IV may be significantly af-
fected by the presence of nonlinear elements and switching de-
vices, which may force the step size to be changed and/or eigen-
values to be recomputed, depending on the solution approach.
Analyzing all these cases is however a cumbersome task, be-
yond the space limitations of a single paper.

TOTAL FLOPS REQUIRED TO OBTAIN THE RECEIVING-END
VOLTAGE FROM SCRATCH

EMTP | Eigensystem | Vandermonde Lagrange
n 9000 §n‘$ + 82—9712 % S+ %nz 1—;n3 + %nz
- %7 n - Q—f n . %n
9000 2331 1831 3100
12 | 9000 7426 5966 13137
22 [ 9000 28391 23511 70917

VIII. REPEATED SOLUTIONS

In practice, it is very unlikely that a single transient analysis is
performed. Most frequently, repeated solutions are carried out
aimed at finding worst-case situations (e.g., when statistically
characterizing switching overvoltages). Typically, the only dif-
ference among different simulation scenarios lies in the initial
conditions xp,(0).

In such cases, the Lagrange interpolation formula constitutes
the cheapest approach to obtain a single state variable by means
of (32), provided the coefficients B; are available from previous
runs.

Table V compares the cost involved in subsequent computa-
tions of the receiving-end voltage for the same line configuration
and different initial conditions.

It is worth noting that, as updating a single variable by
means of the Lagrange formulation involves just n inner
products, the EMTP is not competitive for this type of re-
peated solutions, unless the number of 7 sections is very high
and the simulation period very short. This applies not only
to the single line case analyzed in this paper but to systems
with arbitrary topologies.

IX. CONCLUSIONS

In this paper, several techniques to analytically obtain the
transient response of transmission lines have been reviewed
and compared. Assuming frequency-independent parameters,
the transmission line is modeled by the cascaded connection
of a number of lumped-parameter w circuits. State space
equations of the resulting system are written using inductor
currents and capacitor voltages as state variables. Once the
respective eigenvalues are computed, explicit time evolution
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TABLE V

FLOPS REQUIRED TO OBTAIN THE RECEIVING-END VOLTAGE FOR AN ALTERNATIVE SET OF INITIAL CONDITIONS

| EMTP | Trapezoidal

Eigensystem Vandermonde Lagrange
n 9000 | 500(10n —8) | Zn®+ 2n? + Lin | 7Tn2 —10n+4 | 2n%+2n
7 9000 31000 322 277 112
12 [ 9000 56000 1402 892 312
22 | 9000 106000 7887 3172 1012

of the state vector can be obtained by one of the following
methods: 1) eigenvector computation followed by the so-
Iution of a linear equation system involving the similarity
transformation matrix; 2) solution of a linear equation system
involving the Vandermonde matrix; and 3) application of the
Lagrange explicit formula for each eigenvector. Even though
these methods are relatively well known in linear time-invariant
circuit analysis, the way they are formulated and applied in this
paper, particularly concerning the application of the Lagrange
expression for repeated solutions, is original.

The state-space direct approach is first applied to the de-en-
ergization of a 50-Hz, 220-kV transmission line, the results
showing good agreement with those provided by EMTP sim-
ulations, particularly as the number of 7 sections adopted for
the line model increases.

An exhaustive analysis of the computational cost for each
method, including the trapezoidal rule for comparison, is per-
formed. It can be concluded that explicitly obtaining the state
vector is computationally much less demanding than the trape-
zoidal rule for the single line case considered in this paper. For
a reasonable number of 7 sections, the Vandermonde method
is even cheaper than the EMTP when a single variable is of
interest.

Approaches based on the state-space formulation remain
valid for linear networks with arbitrary topology, as state-space
equations can be always obtained and solved in a systematic
manner. However, assessing their computational cost in the
general case, particularly the component related to the compu-
tation of eigenvalues, constitutes a cumbersome task. Anyway,
the main advantage of the state-space formulation is that it
provides explicit expressions for the variables of interest in
terms of natural frequencies, including intermediate points,
rather than a set of discrete-time numerical values. Its main
drawback, apart from the bandwidth limitation, is that it can be
applied only to circuits which can be assumed to be linear for a
given time interval.

Attention is also paid to those cases in which repeated solu-
tions are needed for different sets of initial conditions, for which
the Lagrange formula clearly surpass other methods, including
the EMTP. Interestingly, the Lagrange expression for repeated
solutions developed in this paper is of application to general
linear circuits, provided the number of simulations compensates
for the cost of the first complete solution.

Although the proposed method has been worked out just for
single-phase lines, it can be applied to each propagation mode
of multiphase lines.
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