An Introduction to the Practical Use of
Coloured Petri Nets

Kurt Jensen
Department of Computer Science, University of Aarhus
Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark

Phone: +45 89 42 32 34, Telefax: +45 89 42 32 55
E-mail: kiensen@daimi.aau.dk, WWW: http://www.daimi.aau.dk/~kjensen/

Abstract: The development of Coloured PetNets (CP-nets or CPN) hdeen

driven by the desire to develop a modelling language — asdh®e timetheoreti-

cally well-founded and versatile enough to be used in prafticesystems of the
size and complexity found in typicatdustrial projects. To achieve this, wave

combined the strength of Petri nets with the strengtiproframminglanguages.
Petri nets provide the primitives for describing synchronisation of concysrent

esseswhile programminglanguagegprovide the primitives for definition oflata

types and manipulation of their data values.

The paper focuses on the practical use of Colo®etdi Nets. It introduces the
basic ideas behind the CPN language, and it illustrates how CPN models can be
analysed by means of simulation, state spaces and condensed state spauageThe
also describes how CP-nets can be extended with a time concept. In this way it is
also possible to use CP-néts performance evaluation, i.e., évaluate thespeed
by which a system operates. Finally, we describe a sebrmaputer tools that sup-
port the use of CP-nets. This tool set is usednloye than three hundred organisa-
tions in forty different countries — including seventy-five commercial companies. It
is available free of charge, also for commercial use.

The present paper does not contain famgnal definitions. Instead altleas and
conceptsare introduced byneans of anumber of small examples. Readers who
want to consult the formal definitions can find these in [1], [2], [3], and [4].|&te
ter is a 3-volume text book providing a detailed description of CP-netshaid
use. Volume 1 introduces the basic concepts and definitions. Volume 2 describes the
different analysis methods. Volume 3 describes experiefroes nineteen projects
in which CP-nets and the CPN tools have been put to practical use. Most of the
projects have been carried out in an industrial setting.

Keywords: High-level Petri Nets, Coloured Petri Nets, Practical Use, Modelling,
Validation, Verification, State Spaces, Tool Support.

Table of Contents

1 INtrodUCHION T0 CPNELS. ...ttt e 2
2 SIMUIALION Of CPNEIS. ... e 14
3 State Space Analysis Of CP-NEIS.......c.oiiii i 22
4 Performance Analysis of CP-NetS........cccoiiiiiiii e 34
5 HIierarChiCal CP-nets. . ..ot e 41
6 Condensed State SPaACESiu i 49
A O L0] [11 1= [0 o 1= 54
LS [T L] 10 2 56

To appear in the course material from the Advanced Course orNe&trDagstuhlGermany,1996.
The course material will be published in Lecture Notes in Computer Science, Springer-Verlag.

1 Introduction to CP-nets

This section contains an informal introduction to CP-nets. This is done by means of
an example that models a simple protocol, Fig. 1. The examfde tso small to
illustrate the typical practical use of CP-nets, but it is large enough to illustrate the
basic concepts of the CPN modelling language and the basic ideas behind the analy-
sis methods, such as simulation and state spaces. Throughout this paper we shall de-
velop a number of protocol models ange these to illustratdifferent aspects of
CP-nets. We do not claim that the described protocols are optimal (theyotre
However, the protocols are interesting enough to deserve a closer investigation, and
they are also complex enough for such an investigation to be non-trivial.

In contrast to most specification languages, Petri netstate and actiowori-
ented at the same time — providing an explicit description of botktdétes and the
actions. This means that timeodeller can determine freely whether — at a given
moment of time — he wants to concentrate on states or on actions.

The states of a CP-net are representednbgns ofplaces (which are drawn as
ellipses orcircles). In the protocokystemthere are ten different places. By con-
vention we write thenames of the places inside the ellipses. The names have no
formal meaning — but they have large practical importdncehe readability of a
CP-net (just like the use of mnemonic namesraditional programming). A simi-
lar remark applies to the graphical appearance of the places, i.e., thadkmess,
size, colour, font, position, etc.

1°(1,"Modellin")+

INTXDATA 1°(2,"g and An")+
1°(3,"alysis b")+ -

@ 1'(4,"y Means ")+ Received
1°(5,"of Colou")+ A
1°(6,"red Petr")+ AT
1°(7,"i Nets")+

n, e e
(.p) 18, ") if n=k
| if Ok(s,r) andalso
INTXDATA then 1'(n,p) NTXDATA str | |p<>stop

Transmit
Packet

Send (n.p) (n.p) else empty (n.p) then strip
Packet AJ B else str

K
1 \ 4
Receive
8 INT —y Packet
Teno ~— then k+1

else k

S if n=k
then k+1
- - else k
Receive ¢ (D) ¢ Transmit € @<
Acknow. n if ok(s,r) | Acknow. n
INT then 1'n INT
else empty
Sender Network Receiver

Fig. 1. CP-net describing a simple protocol

Each place has an associatgde determining the kind of data that the place
may contain (by convention the type name is written in italics, next to the place). In
the protocol system we use four different types. Pl8eeg] A, andB have the type
INTXDATA.This type is the cartesian product IbfTegersand DATA. The ele-
ments of the type represent packets to be transmitted oviletiaork Each packet
is a pair, where the first element is the packet number (ofItypg while thesec-
ond element is the data contents of the packet, i.e., a text string (@APA.

During the execution of a CP-neaich place will contain a varyingumber of
tokens. Each of these tokens carries a data value that belongs to thaessguiated
with the place. As an example, Figshows that plac&endstarts with the follow-
ing eighttoken values which each represents a packet to be transmitted over the
Network

(1,"Modellin™)
(2,"g and An")
(3,"alysis b")
(4,"y Means ")
(5,"of Colou")
(6,"red Petr")
(7,"i Nets")
(8,"###).

In Fig. 1 there is & in front of each token value. This tells us that there is exactly
one token that carries the value. In general, several tokens may have the same token
value, and then we havenaulti-set of token values, such as:

1°(2,"g and An") + 2°(3,"alysis b") + 1°(5,"of Colou")

in which we have one token with val§2,"g and An"), two tokens with value
(3,"alysis b") and one token with valu®,"of Colou") A multi-set is similar to a

set, except that there may be several appearances of the same element. If we add the
element(3,"alysis b")to the set:

{(2,"g and An"), (3,"alysis b"), (5,"of Colou™)}

nothing happens, because the element already belongs to the set. However, if we add
the elemen(3,"alysis b")to the multi-set:

1°(2,"g and An") + 1°(3,"alysis b") + 1°(5,"of Colou")
we get a multi-set with four elements instead of three:
1°(2,"g and An") + 2°(3,"alysis b") + 1°(5,"of Colou").

The integers in front of the "-operator aralled coefficients In our example
(2,"g andAn") and(5,"of Colou") have one as coefficient, whi(8,"alysis b") has
two as coefficient. All othewalues of the type have zero as coefficient (hedce
they are omitted).

For multi-sets, we define operations for addition, scalar-multiplication, compari-
son, size and subtraction as illustrated in Fig. 2, where all multi-setslements
from theset{a,b,c,d,e} Notice that subtraction of two multi-sets,—m; only is
defined wherm, > m,.

Now let us consider the remaining nine place&im 1. The placé represents
packets that have been given to Ketworkby theSenderpart of the protocol (but

not yet transmitted by thetworR. Analogously, placd representgpackets that
have been transmitted by thietwork(but not yet taken by thieeceivermpart of the
protocol). These twglaces have the same type as pl&end and initially they
contain no tokens. Pladeeceivedwill contain a single token representing ttiata
in those packets that have been receifigdoring the contents ofluplicates and
packets received out afrder). Initially, nodata has been received and hetiere
is a token with the empty text strifig (of typeDATA). At the end of the transmis-
sion we expecReceivedo contain the text string:

"Modelling and Analysis by Means of Coloured Petri Nets".

PlacesC andD are analogous tplacesA andB, except that they represent ac-
knowledgements being seftom the Receiverto the Sender Each acknowledge-
ment carries a number and no other data. Hence the tygesamdD areINT. The
placesNextSendandNextRecrepresent counters that keep the number of the next
packet to be sent/received. They have the tiE and each of them starts with a
single token with valué. The two last placeSPandSA have the typden0,which
contains all integers between zero and ten. The use of these places will be explained
later.

A state of a CP-net is callednaarking. It consists of amumber of tokens posi-
tioned on the individual places. Each token carries a value which belongs to the type
of the place on which the token resides. The tokens that are preseparatalar

Addition (element-wise)

E + :

ml m2 ml+m2
Scalar multiplication (element-wise)
H CHe e
3 * [¢] = RS
Ce > Cele D
ml 3*mil
Comparison (element-wise)
B < ([[]® = true
ml m2
Size (number of elements)
7

m2

Subtraction (only if m2 = m1)

@, [k RN :
@D - @D

Fig. 2. Some operations on multi-sets

place are called the marking of that place. By convention we write the initial
marking with an underline, next to the place. When the specification of the initial
marking is lengthy, we may omit the underlining (as done&stmd.

For historical reasons we sometimes refer to token values asdokaurs and
we alsorefer todata types asolour sets This is a metaphoric picture where we
consider the tokens of a CP-net to be distinguishfiibla each other anthence
“coloured” — in contrast to ordinary low-level Petréts which have “black” indis-
tinguishable tokens. The types of a CP-net can be arbitrarily complex, e.g., a record
where one field is a real, another a text string and a third a list of integers. Hence, it
is much moreadequate to imagine a continuum of colours (like in physiss¢ad
of a few discrete colour values (like red, green and blue).

The actions of a CP-net are representedrigans oftransitions (which are
drawn as rectangles). In the protocol system there are five different transitions. An
incoming arc indicates that the transition may remove tokens the correspond-
ing place while an outgoing arc indicates that the transition may add tokens. The ex-
act number of tokens and their data values are determined lbydlexpressions
(which are positioned next to the arcs). Transit@BendPackethasthree surround-
ing arcs with two different arc expressiofis;p) andn. Two of the arcs are double
arcs. Each of these is a shorthdad two opposite directed arcs with identical arc
expression. Hence there are really five different arcs (two incoming arcaed
outgoing). The arc expressions contain two free variabled:typeINT andp of
type DATA. To talk about amccurrence of the transitionSend®acketwe need to
bind n to a valuefrom INT andp to a valuefrom DATA. Otherwise, we cannot
evaluate the arc expressigimsp) andn.

Now let us assumthat we bind the variable (of transitionSendPackej to the
value 1, while we bind the variable to the value’'Modellin". This gives us the
binding:

<n =1, p="Modellin">
for which the arc expressions evaluate to:

(n,p) - (1,"Modellin™)
n - 1.

This tells us that an occurrence of transiteend?acket(with the above binding)

will remove a token with valu€l,"Modellin") from place Sendand a token with
value 1 from place NextSend Both tokens are available, i.e., present at the two
places, and hence transiti@end?acketis enabled with the given binding. This
means that the transition magcur. When the transition occurs, the twpecified
tokens will be removed from the inpptacesSendandNextSend Simultaneously,
three tokens will be added to the outplaces:Sendand A will get a token with
value(1,"Modellin"), while NextSendwill get a token with valud.. Hencethe total
effect of the occurring transition is to add a token representing packet number one
to placeA. Intuitively, this means that th8enderpart of our model transfers a
copy of packet number one to the input buffer of Network We do noremove

the packefrom place Send.This isbecause it may be necessaryrétransmit it.
Neither do we increase the counidextSend.This isbecauseur protocol ispes-
simistic, in the sense that it will keep retransmitting a packet, until it gets a positive
acknowledgement confirming that the packet has been received.

There are of course many other bindings that we mayfdry transition
SendPacket However, none of these are enabled in the initial marking obrbi-
col system. This can be seen as follows. PNedSendhas only one token and this
token carries the valuke Hence, we need tbind the variablen to 1. This means
that the arc expression on the incoming arc from pheredwill evaluate to a value
on the form (1,...). However, Send only has one token on thigorm:
(1,"Modellin"), and hence the variabpemust be bound ttModellin".

A pair consisting of a transition and a bindiigpr the variables appearing on
the surrounding arcs) is calledbanding element Above, we have seen that the
binding element:

(SendPacket, <n = 1, p = "Modellin">)

is enabled in the initial marking. We have at&en that iwill lead to amarking

which is identical to the initial marking, except that a new token wadlue
(1,"Modellin") has been added to plage The new marking is shown in Fig. 3,
which is a screen dump tak&om the CPN simulator. The number wkens on

each place is indicated in the small circle next to the place, while the detailed token
values are indicated in the text string next to the small circle. The t@dees can

be shown or hidden. This is convenient, e.g., when the valgesomplex. As an
example, there are CPN models in which a typical token value is a list of up to
50,000bank records. When this is the case, no one will like to have the token value
displayed directly on the CPN diagram.

INToaTa (81 (L Modellin’ (D~

+1°(2,"g and An")

+1°(3,"alysis b") - -
+1°(4,"y Means ") Received

+ 1°(5,"of Colou") DATA A
+ 1°(6,"red Petr")
(n,p) +1°(7,"i Nets")
+ 1°(8,"###") . if n=k
if Ok(s,r) | andalso
INTXDATA then 1°(n,p) INTXDATA str | |p<>stop
Send (n.p) '® (n.p) Transmit | else empty (n.p) then strp
Packet Packet else str
@1‘(1,"Mode||in")
8
Teno Y
enU 11718 = .
—/ Receive
1)1'8 Packet
8 INT : ac
SA @1‘1 if n=k
Teno ~_ then k+1
Ise k
. —_ % if n=k
then k+1
- - else k
Receive @ < Transmit <€ c
Acknow. n if Ok(s,r) | Acknow. n
INT then 1'n INT
else empty
Sender Network Receiver

Fig. 3. Marking after occurrence @endPacket

In Fig. 3, transitionSend?acketandTransmitPackethave a thicker border line.
In this way the CPN simulator indicates that these two transitions émalaed
bindings, while the other transitions have nbar SendPackei we can use the
binding which we used above (and no others). This corresponds to a retransmission
of packet number one. FdransmitPacket the situation is slightly more complex,
since we now havéour different variablesn of typeINT, p of type DATA, s of
type TenOandr of type Tenl TenO contains all integers between zero and ten,
while Tenlcontains all integers between one and ten (all the mentioned values in-
cluded). In the marking of Fig. 3, plack has a single token with value
(1,"Modellin"). From this it follows thanh must be bound td while p must be
bound to"Modellin". PlaceSPhas a single token with val@ From this itfollows
that s must be bound t&. The variabler only appears on an outgoing arc, and
hence it can be bound to any value of its type — without influencing the enabling of
the transition. This means that we get ten different enabled bindings:

<n =1, p="Modellin", s=8, r=%

<n =1, p="Modellin", s=8, r=2

<n =1, p="Modellin", s=8, r=3

<n =1, p="Modellin", s=8, r=9

<n =1, p="Modellin", s=8, r=18.
1°(1,"Modellin") (e

INTXDATA + 1(2."g and An") @

+ 1°(3,"alysis b") - .

+1°(4,"y Means ") @
+1°(5,"of Colou") DATA A
+1°(6,"red Petr")

(n,p) + 1°(7,"i Nets")
U@) o if n=k

INTXDATA 'then(ls\’(?,’p) INTXDATA andaiso

str | |p<>stop
then str\p
else str

Transmit else empty (n,p)

(n.p) .CA\ (n.p)
>/

\ 4
. Receive
3 : Packet
then k+1

else k

Receive Transmit

Ack D)% < S

cknow. n if Ok(s,r) | Acknow. n
INT then 1'n INT
else empty

if n=k
then k+1
else k

Network Receiver

Sender

Fig. 4. Marking after occurrence @endPacketandTransmitPacket

The function callOk(s,r) compares the values ofands, and it returndrue if and
only if r £ s. This means thaDk(s,r) will evaluate totrue for the first eight bind-
ings, while it will evaluate tdalsefor thelast two bindings. Whe®k(s,r) is true
the transition adds a tokémh,"Modellin") to B, otherwise no token is addeenfpty
denotes the empty multi-set). The CPN simulator will make astd@ction between
the ten enabled binding elements. Hence, the probahilitsuccessful transmission
is 80%, while the probability for losing the packet28%.By changing the value of
the token orSP, we can change the probabilities. If the token valu)jsve never
lose packets. If it i® we lose all packetsSPis a shorthand fosuccesgate for
packets.

Now, let usassumehat transitionTransmitPacketoccurs with one of thérst
eight bindings. This will lead to the marking shown in Fig. 4. Again we have two
enabled transitions. We can either retransmit packet number oneedys of the
binding element:

(SendPacket, <n = 1, p = "Modellin">),
or we can receive packet number one by means of the binding element:
(ReceivePacket, sn = 1, p = "Modellin", k=1, str="">).

When the latter binding element occurs, we remove/add the tokens shown in Fig. 5,
which again is (part of) a screen duriipm the CPN simulator. It isaken at a
breakpoint during the occurrence of transitReceivé’acket

The arc expressions on the three outgoing arcs compare the narobéne in-
coming packet with the numbkrof the expected packet. If the valwee identical

~ (Received
‘1
DATA 1‘"" \\,,

if n=k
andalso
INTXDATA str p<>stop
1\ (n,p) then strp
else str

1°(1,"ModeNn")

1™"Modellin"
1

then k+1 12
else k
if n=k
then k+1
else k
INT

Fig. 5. Tokens involved in an occurrence Réceivd’acket

(as in our situation) the packet is the expected one. TheRebeiveradds the data
p in the new packet to the dasér which already has beedReceived(unlessp is
equal tostopwhich denotes the constdit##"). The token value dtlextRecis in-
creased by one, and an acknowledgement is sent via @ldgg convention the ac-
knowledgement contains the number of the next packet thaRdbeiverwants to
get (i.e., the value &extReq. If the values oh andk differ from each other, the
packet is not the expected one. Then the packgh@ed. Receivedand NextRec
remain unaltered, and an acknowledgement is sen€CviAs before, the acknow-
ledgement contains the number of the next packet whicRéeeiverwants to get
(i.e., the value allextReq.

After the occurrence shown in Fig. 5, we have a marking in which fldes a
token with value2. The token represents an acknowledgement and it carabhs-
mitted (or lost) by means dfransmitAcknowledgement his transition works in a
similar way asTransmitPacket This means that the acknowledgement may be lost,
with a probability determined by the token at pl&ze

If the acknowledgement reaches pld2e transition Receivécknowledgement
becomes enabled. It updates thenber inNextSendby replacing the old valuk
with the numbem contained in the acknowledgement ¢ar case?). This means
that theSendemow starts sending packet number two, (2&',g and An").

After the occurrence of approximately fifty binding elements, the CP-net may
reach the intermediate marking shown in Fig. 6. From the left-hand part of the net,
we seehat theSenders sending packet number three. We asethat a copy of

1°(1,"Modellin") 1™"Modelling and
INTXDATA + 1°(2,"g and An") @Analysis b"
+ 1°(3,"alysis b") - .
+1'(4" Means ") Received
+1°(5,"of Colou") DATA A

+ 1°(6,"red Petr")

(n,p) + 1°(7,"i Nets") .
+1°(8," ") i Ok(sn) | if n=k
i S,I andalso
INTXDATA then 1°(n,p) [NTXDATA str | |p<>stop

Transmit else empty

Packet

then str*p
else str

Send (n,p) .@ (n,p)
Packet

if n=k

61‘8 @
“(SA)
Ten0 T~ then k+1

_ else k .
s —~—_ if n=k
i then k+1
T " else k
ransmi
if Ok(s,) | Acknow. < n)<
INT then 1'n INT
else empty
@1‘4
Sender Network Receiver

Fig. 6. Intermediate marking

10

this packet is present at plaBeFrom the right-hand part of the net, we see that the
string "Modelling and Analysis b"has beerReceived This is the contents of the
first three packets and thReceiveris now waiting forpacket numbefour. Hence

the packet o8 will be ignored by thdReceiver We also se¢hat an acknowledge-
ment is present at plaé® WhenReceivécknowledgemerdccurs,NextSendwill

be updated t@l, and this means that tt&enderwill start sending packatumber
four.

Notice that there is no guarantee that tokens are remiowsed a place in the
sameorder aghey were added. During a simulation pla&emay contain several
tokens and any of these may be selected as the next one to be transmited to
Analogously, forplacesB, C, andD. Hencepackets may overtake eaother atA
andB, while acknowledgements may overtake eattter atC andD. If desired, it
is easy to specify a queuing discipline. To do this we equip the phacBs C,and
D with a type that contains all lists over the previous type of the place. Each of the
places always has a single token. The initial value is the empty list, amsere
packets at one end of the list areimove packetsfrom the other end. This con-
struction is used so often that it will probably be directly supported in one of the
next versions of the CPN tools. Then a place can be specified as bgiurguang
place, and there will be no need to make the explicit insert and remove operations.
This will make the model more readable and faster to create. However, it is only
syntactical sugar for the list construction explained above, and hence it does not al-
ter the simulation or the state space analysis.

1°(1,"Modellin*) 1™"Modelling and

INTXDATA + 1°(2,"g and An") Analysis by Means
+ 1°(3,"alysis b") of Coloured Petri - .

+1°(4,"y Means ") Nets" @
+1°(5,"of Colou") DATA A
+1°(6,"red Petr")
(n,p) + 1°(7,"i Nets")
+1°(8,"#H#H#") if n=k
| if Ok(s,r) andalso

INTXDATA then 1°(n,p) INTXDATA str| |p<>stop

Send (n,p) .CA\ (n.p) Transmit | else empty (n.p) then strp
Packet >/ Packet else str
v
Receive
1)18 Packet
8 INT -
19 if n=k
Teno@ @ then k+1
else k)
s ~—~— if n=k
¢ then k+1
- - else k
Receive S Transmit < @‘
Acknow. [€ O Iif ok(s,;) | Acknow. n
INT then 1'n INT
else empty
Sender Network Receiver

Fig. 7. Final marking in which no transitions are enabled

11

When the last packet (with "###") muccessfully received by thReceiver
NextRecgets the valu® (one largerthan the number of packets). This value will
(via an acknowledgement) be communicated toS@eder ThenNextSendwill be
updated to nine and sending will stop — since no packet with this number exists. Af-
ter a few more steps, where thlacesA, B, C, andD are cleared forpackets/
acknowledgements, the CP-net will reach the final marking shown in Fig. 7. This
marking isdead, which means that it has no enabled transitions.

Even though the protocol is rather simple, it is not that easy to see that it actually
works correctly.What happensfor ingance, if the “last” acknowledgemegets
lost? By making a number of simulations the user can greatly increase his confi-
dence in therotocol. He may also prove the correctness by usingstidie space
tool or investigate the performance tmeans of timed CP-nets. We shaturn to
this in Sects. 2, 3, and 4, respectively.

In this paper, we do not model how tBendersplits a messagato asequence
of packets or how thReceivemreassembles the packets into a mesddgiher do
we model how the tokens &endand Receivedare removed at the end of the
transmission or how the packet numbersNextSendandNextRecare reset tdl.
These details can easily be added, but they are not necéssdhe discussion in
this paper.

In addition to the arc expressions, itpessible to attach a boolean expression
(with variables) to each transition. The boolean expression is caltpgaed. It
specifies that we only accept bindings for which the boolean expression evaluates to
true. As an example, we could add a guard 100 to transitionSendPacket.This
would prevent the sending of messages that have more than one hundred packets.

Above, we have seen that several binding elements may be enablethnkiag.

As an example, we saw that the marking in Fig. 4 has two enabled beldmgnts

(one involving transitionSendPacketand the other involving transitioReceive
Packej. Actually, these two binding elemerdse concurrently enabled which
means that they mayccur concurrently. The rule for concurrency is very sim-

ple. A set of binding elements are concurrently enabled, if there are sotokanyg

that each binding element can get those tokens that it (iemdghose specified by

the input arc expressions) — without sharing the tokens with other binding elements.
In general, it is possibléor a transition to be concurrentlgnabled with itself
(using two different bindings or using the same binding twice). Hensm from

one marking to the next, may involve a multi-set of binding elements. The multi-set
is demanded to be finite and non-empty. In the protocol example, each transition
has at least one input place with only one token. Two binding elements involving the
same transition will both need this single tokelencethe binding elements will be

in conflict with each other, and no transition can occur concurrently with itself.

An execution of a CP-net is described by means afcamirrencesequence It
lists the markings that are reached and the steps that occur. Above, wehside
ered an occurrencgequence witliive steps. We started in the initial marking and
ended in a marking where the valueNdxtSendandNextRechad been increased
to 2. To reach this marking we used five steps, which each contained alsimdie
ing element. First weised a bindindor SendPacket then a binding forTransmit
Packet a binding forReceivd’ackef a binding forTransmitAcknowledgemenand
finally a binding forReceivéAcknowledgement

12

There are many other occurrensequences. When raarking has several en-
abled binding elements, any non-empty and non-conflicting subset of these may be
chosen for the next step. This means that the CP-net has a non-deterministic behav-
iour. As an example, the CP-net for the protospécifies that retransmissions may
take place, but without providing details about when and how ofterhadpigens.
TransitionSend?acketis enabled in all reachable markings (except those where the
value atNextSendhas passethe number of the last packet). Thigeans that re-
transmissions may take place at any time, and with any frequeleoge, we have
occurrence sequences with no retransmissions (as the one we considered above) and
we also have occurrence sequences with a lot of retransmissions.

At first glance, it may seem strange that we do not specify the conditnmes
which retransmissions occur. Howevéat a lot of purposeshis is not necessary.

Most CP-nets are used to investigate the logical and functional correctnesyf a
tem design. For this purpose it is often sufficient to describe that retransmissions
may appear, e.g., because the network is slow. However it is not necessargn or
beneficial, to consider how often this happerthie protocol must be able toope

with all kinds of networks, both those which work so well that there are no re-
transmissions and those in which retransmissions are frequent. Later on we will see
that CP-nets can be extended with a time concept that allows us to describe the du-
ration of the individual actions and states. This will allow us to investigatpehe
formance of the modelled system, i.e., how fast and effectively it operates. Then we
will give a much more precise description of retransmissions (e.g., thabticey

when no acknowledgement has been received inside two hundred microseconds).

It can be shown that each CP-net can be translated into a behavioural equivalent
Place/Transition Net (PT-net) and vice versa. Since the expressive power of the two
formalisms are the same, there is no theoretical gain by using CP-nets. However, in
practice, CP-nets constitute a more compact, and much more convenient, modelling
language than PT-nets — in a similar way as high-level programlanggages are
much moreadequatdor practical programming thaassembly code andiuring
machines.

Attaching a data value to each CP-net token allows us to use fewehplaces
than needed in a PT-net. In a CP-net we can attach data values to the individual to-
kens. In a PT-net the only way we can distinguish between tokens is by positioning
them at different places. When a CP-net uses complex types (such as imeagsrs,
products, records, and lists), the equivalent PT-net dfsenan infinite orastro-
nomical number of places.

The use of variables in arc expressions means that each CP-net transition can oc-
cur with different bindings, i.e., in many slightly differeways — in asimilar way
as a procedure can be executed with different paraméterse, we can use a sin-
gle transition to describe @dass ofrelated activities, while in a PT-net we need a
transition foreach instance of such an activity. As an exanule, CPN model of
the protocol only has orfeendPackettransition. This transition is able to handle all
packets, even though they have different packet numbers and different data con-
tents. Analogously, there are only oReceivdackettransition. This transition
handles all packets, both those where the packet number matches and those where it
does not.

13

The above informal explanation of the enabling and occurrence rules tells us
how to understand the behaviour of a CP-net, and it explains the intuition on which
CP-nets build. However, it is very difficult (probably impossible) to make an in-
formal explanation which is totally complete and unambiguous. Thus it is extremely
important for thesoundness of the CPN language and the CPN toatsthe intui-
tion is complemented by a more formal definition, which can be fourjii],ir{2],
and [4]. However, it is not necessdoy the users to know the formal definition.
The correct use of the syntax is enforced by the syntax checker in thed®N
while the correctuse of the semantics énforced by CPN simulator and the CPN
tool for state space analysihis is analogous tprogramminglanguages, which
often are verysuccessfully applied by users whoe not familiar with thdormal,
mathematical definitions of the languages.

In this paper we only consider different versions of the protocol system, and
they are all quite simple. However, it is possible to use nmate complex types,
arc expressions and guards. The CPN tools describgd jpnovide computer sup-
port for modelling andanalysis by means of CP-nets. The CPN tools uséutie
tional language Standard ML [7], [8], af@] to specify types and net inscriptions.
For the protocokexample the declarations look as follows (which shouldatber
self-explanatory):

color INT = int;
color DATA = string;
color INTXDATA = product INT * DATA;

var n, k: INT;
var p, str: DATA,
val stop = "###",

color TenO = int with Q10;
color Tenl = int with 110;
var s: TenO; var r: Tenl;
fun Ok(s:TenO, r:Tenl) = (r<=s);

Examples of much more complex CPN models can be found in Vol.[4g.0Fhere

we give a quite detailed description of nineteen projects in which CP-nets and

Design/CPN have been used. Most of the projects havedagged out in an in-

dustrial setting, and they have been performed by many different user groups.
Please notice that it is only the CPN toold5hthat rely on Standard ML. The

general definition of CP-nets is independent of a concrete syntax and semantics for

net inscriptions, and therexists anumber of other tools that rely on other lan-

guages. Information abothese tools can be found on tRetri NetWWW pages,

[10]. Here you can also find a lot other information about high-level Petnets

and other kinds of Petri nets.

14

2 Simulation of CP-nets

As the individual parts of a CP-net are constructed they are investigated and de-
bugged by means of the CPN simulator — igsirailar way as gprogrammertests

and debugs new parts of lpsogram. Asindicated by the examples in Sect. 1, the
modeller is able to inspect all details of the reached markings. Heee#ime set of
enabled transitions and he can choose the binding elements that he waetsirto

This is the most manual amgteractive simulation mode. It is by nature very slow

— no human being can investigate more than a few markings per minutevdrkis
mode is similar to single step debugging in an ordinary programming language, and
it is often usedor the firstinvestigation of a new CPN mod@r new parts of a

large model). The purpose is to see whether the individual net components work as
expected.

Later on it is typical tauseother kinds of simulationsSome of thegraphical
feedback may be turned off and it may be left to the CPN simulatdnomse be-
tween the enabled binding elements (by meansrahdom number generator). In
this way it is possible to obtain much faster simulations. A totaliyomatic simu-
lation is executed with a speed of several thoussssper second (depending on
the nature of the CPN model and the power of the computer on which the CPN
simulator runs). It is obvious that no human being is able to observe the details of

1 A SendPack@(1:Top#1)
{n=1, p="Modellin"}
2 A SendPack@(1:Top#1)
{n=1, p="Modellin"}
3 A TranPack@(1:Top#1)
{n=1, p="Modellin",r=2,s =8}
4 A TranPack@(1:Top#1)
{n=1, p="Modellin",r=6,s =8}
5 A RecPack@(1:Top#1)
{k=1,n=1, p="Modellin", str =""}
6 A SendPack@(1:Top#1)
{n=1, p="Modellin"}
7 A TranPack@(1:Top#1)
{n=1, p="Modellin",r=5,s =8}
8 A RecPack@(1:Top#1)
{k=2,n=1, p="Modellin", str = "Modellin"}
9 A SendPack@(1:Top#1)
{n=1, p="Modellin"}
10 A TranAck@(1:Top#1)
{n=2,r=3,s=8}
11 A TranAck@(1:Top#1)
{n=2,r=4,s=8}
12 A RecAck@(1:Top#1)
{k=1,n=2}
13 A TranPack@(1:Top#1)
{n=1, p="Modellin",r=3,s =8}
14 A RecPack@(1:Top#1)
{k=2,n=1, p="Modellin", str = "Modellin"}
15 A SendPack@(1:Top#1)
{n=2,p="gandAn"}

Fig. 8. Simulation report

15

such a simulation by watching the CP-net and its marking. Hence, the simulation re-
sults must be shown in some other waystfaightforwardpossibility is to use the
simulation report. It is a text file containing detailed information about all the
occurred binding elements. For the protocol modetéort of the first 15 steps

may look as shown in Fig. 8. The “A” following the step number indicates that the
binding element was executed in automatic mode. The information after the @-sign
specifies the page, i.e., the part of the CP-net to which the occurring transition be-
longs. For the protocol model this is not very interestgigce the model is so
small that it only has one page. Howewer, a largecomplex model thisnforma-

tion becomes very useful.

Another way to record the results of a simulation is to add a humbepofrt
places to the CPN modelSuch placegyather historical information about the
simulation runs, without influencing the simulation.

In Fig. 9, we have added thrgdaces to theSenderpart. Theplace SenPack
tells us how many times the individual packets have been semurirexample,
packet number onbas been serfour times, packet number two six times and
packet number three twice. The pld®ecAck tells us which acknowledgements the
Senderhas received. Each acknowledgemeneiorded as a pair, where thest
element is a sequenoc@mber while thesecond is the contents of the acknowledge-

1°(1,"Modellin")
INTXDATA + 1°(2."g and An")

+ 1°(3,"alysis b")
+1°(4,"y Means ")
+ 1°(5,"of Colou")
+ 1°(6,"red Petr")
+1°(7,"i Nets")

+ 1°(8,"###")

INTXDATA
(n,p)

Receive «—0)
Acknow. n

INT i+1 INT

@1‘(1,2)+

1°(2,2)+ (i,n)
1°(3,2)+
1°(4,2)+
1°(5,3)+
1°(6,3)+
1°(7,3)

INTXINT

Fig. 9. Report places foEender

16

ment. Thesequenc&umber is obtaineffom theplaceCount In our example, we
have first receivedour acknowledgements with valug and then three acknow-
ledgements with valug.

In Fig. 10, we have added twidaces to théNetwork part. TheplacelLostPack
tells us about the lost packets. In our example, we have only lost one copy of packet
number two. The plackostAck tells us how many acknowledgements have
transmitted/lost. In our example, we have lost anknowledgement ansuccess-
fully transmitted eight.

In Fig. 11, we have added the plaRedPack It records thesuccessfully re-
ceived packets. The typRackSegcontains all lists of NTXDATA values. The
~n operator athe arc fromReceiv@acketto RedPack concatenates two lists. In
our example, we have received three packets. First we recgiyddodellin®),
then(2,"g and An") and finally(3,"alysis b").

A third way to record the results of a simulation is to useessagesequence
chart (also called an event trace). It provides a graphical overview of the activities
in the CP-net and may look as shown in Fig. 12. An occurrence @ðdacket
transition is shown by a horizontalrrow between the first andecond vertical
lines. The arrow idabelled with the packet beingansferred tothe Network
Analogously, a successful occurrencelodinsmitPacketis indicated by a horizontal
arrow between the second and third vertical lines. However, if the packet is lost, we

S (12

if Ok(s,r)
then empty
else 1'n

if Ok(s,r)
then 1°(n,p) INTXDATA

Transmit else empty
Packet

INTXDATA

®

(n.p)

Ten0

@ Transmit <_©

'if ok(s.n) | Acknow. :

INT then 1'n N
else empty if Ok(s,r)

then true
else false

@ @1‘false+ 8'true

BOOL

Fig. 10. Report places foNetwork

17

only get a small square at the second line.o&aurrence oReceivéacketis indi-
cated by two arcs (on®r the packet received and orfer the acknowledgement
being sent). If the packet is the correct one,alg® get a small square between the
two arcs. Occurrences dfansmitAcknowledgemerdre indicated in a similar way
as occurrences dfransmitPacket(but the arrows are now drawn from right to left
while the square dots are positioned at the third vertical line). Occurrences of
Receivécknowledgemerdre indicated as occurrencesSehdPacket(with arrows
from right to left).

In Fig. 12 we have an arc (or a square) dach step. This means that the mes-
sage sequence chart contains all the information in the simutafont. However,
it is much more common only to record a few key activities, e.g., &msrrission
of packets and acknowledgements. In this way we can obtain a condeesedw
of a lengthy simulation. By extracting the key activities and representing them in a
graphical way, it becomes fast taterpret thesimulation results. We can see
whether the CPN moddiehaves as expected. If this is not the case, we can see
where discrepancies appear. Then we can use interactive simulations or the simula-
tion report to make a closer investigation of these situations.

The message sequencharts are created hyeans of a standadibrary pro-
vided together with the CPN tools. The calls to libeary functions arepositioned
in codesegments which are pieces of sequential Standard ML code attached to the
individual transitions. When a transition occurs, the corresponding code segment is
executed. It may, e.g., read and write text files, update graphics orcalceiate
values to be bound to some of the variables of the transition. In this waypdke
segments provide a very convenient interface between the CPN model and its envi-
ronment, e.g., the file system.

DATA A

@1‘Model|ing and
Analysis b™

if n=k

andalso
INTXDATA str| | p<>stop
k

(n,p) then strip
else str
v U

1 plist
Receive
Q Packet RecPack

=

J

INT (D)1 if n=k plist™(if n=k PackSeq
then k+1 then [(n,p)]
else k ek else []) @1‘[(1,"Mode|lin"),
then k+1 (29 ahd An),
else k (3,"alysis b")]

INT

Fig. 11. Report place foReceiver

18

To update the message chart in Fig. 12, we §medPacketandTransmitPacket
the code segments shownHig. 13. MSCdiagramis a pointer to thenessage se-
quencechart, whilemkstcol'INTxDATA s a predeclared function providing a
string representation of the ML vale,p). The code segments of themaining
three transitions are similar.

Code segments can also be used to updiffierent kinds ofbusinesscharts.
For the simple protocol we may use the three charts shown in Fig. 14.

The first chart is dine chart showing how fast the individual packetge suc-
cessfully received (as a function of the steynber). From the line chart, we can
seethat packet number ongas receivedafter lessthan ten steps, packetimber
two after approximately twenty-five steps, packet number three after approximately

Sender Side Receiver Side
Sender of Network of Network Receiver
1] 1] 1] 1]
SendPack:
(1,"Modellin") v
Packet Lost:
(1,"MOQellin")
SendPack: o
(1,"Modellin") g
SendPack: R
(1,"Modellin") -
TranPack: R
(1,"Modellin") v
RecPack: R
(1,"Modellin") e
RecSucc:
"Modgellin"
P SendAck:
A 2
TranPack: R
(1,"Modellin") e
P TranAck:
D 2
RecPack: R
(1,"Modellin") -
SendAck:
h 2
SendPack: o
(1,"Modellin") g
P TranAck:
N 2
p Rec Ack:
h 2
TranPack: R
(1,"Modellin") e
SendPack: .
(2,"g and An") g
L | L | L | L |

Fig. 12. Message sequence chart

19

forty-five steps, and so on. The line chart is updated each time a new pasket is
cessfully received. This is done by a few lines in the code segmeRecHive
Packet

The second chart iskaar chart. It tells us how many times each of thackets
has been sent and with which result. From the bar chadeethat packenumber
one has been sent six times. One of these wasftnst,were received as failures
(i.e., out of order)and the last was successfulgceived. Analogously, we can see
that packet number twbas been sent six times, while packetsnber three and
four have been sent five times each. Finally, seethat packet number five has
been sent twice, and that both of these en route (i.e., on one of thetwork
placesA andB). The third chart is similar to the second, bbbws theprogress of
acknowledgements. The two bar charts are updated periodically, with intervals
specified by the modeller, e.g., for each fifty steps.

The three charts in Fig. 14 give us a lot of valuable information about the be-
haviour of the protocol. As an example, it is straightforwardsdethat failures
(i.e., overtaking) oftertausemore retransmissions than lost packets. It is aisy
to seethat we need more than ninetieps to successfullyansmit the first five
packets, while it with a perfect network (and no overtaking) should be possible to
do this in twenty-five steps.

input (n,p);
action
MSC.Message (IMSCdiagram)
{sender = "sender",
receiver = "sendernet",
label = "SendPack:"*"NEWLINE"
(mkst_col' INTXDATA(Nn,p))};

input (n,p,s,n);
action
if Ok(s,r) then
MSC.Message (IMSCdiagram)
{sender = "sendernet",
receiver = "receivernet",
label = "TranPack:"*"NEWLINE"
(mkst_col' INTXxDATA(Nn,p))}
else
MSC.Processmark (IMSCdiagram)
{process = "sendernet",
label = "Packet Lost:"*"NEWLINE"
(mkst_col'INTXDATA(Nn,p))};

Fig. 13. Code segments to produce the message sequence chart in Fig. 12

20

Packet No Packets Recelved

=
o

P NWkAOTO N OO

00

20 40 60 80 100 120 140 160 180 200

Step No.

packl 6 Packets
pack2 6
oack3 5 : Enroute
ost
pack4 5
. Failures
pack5 2
B Successes
pack6
pack?
pack8
7 8 9 10
7 8 9 10
1 1 1
ackl (n=2) 5 ACknOW
ack2 (n=3) 6 :
ack3 (n=4) 5 W Enroute
ack4 (n=5) 4 l Lost
B Received
ack5 (n=6) 0
acké (n=7) 0
ack7 (n=8) 0
ack8 (n=9) 0

1 2 3 4 5 6 7 8 9 10

Fig. 14. A line chart and two bar charts

21

Code segments can also be used to create and update more model repeeiic
sentations of thenarking (i.e., thestate of the modelled system). As an example,
Fig. 15 represents the state of a simple telephone protocol. It contanisfeéeant
phones. For each phone, aeethe state, e.glnactivefor u(9), Ringing for u(6)
and Connectedor u(7) andu(8). Moreover, weseethe relationships between the
phones. A thin dashedrrow indicates that a connection has been requesied,
that a numbeihas been dialled. The calling phonél0) hasNoTone while the
called phonai(2) may be in any state. A thicker non-dashed arrow indicates that the
request has been accepted and that the connection is being attempted. The calling
phoneu(2) has a tone with.ong intervals between beeps, while the called phone
u(6) is Ringing Finally, connections can be established, as indicated byehe
thick arrow fromu(8) to u(7). Both phones ar€onnected.

As mentioned above, code segments can be usedtetext files. In this way
selected results can be recorded, e.g., on a form which can be directly used as input
to a standard spreadsheet/charfimggram. This is a very efficient way of obtain-
ing customised high-quality representations of complex simulation results.

Code segments can also be used to read text files. This is, e.g., used to initialise a
model. In this way it becomes possible to change the imtaaking without modi-
fying the CPN model itself.

u(4) u(3)

o ©

Inac Short

u(1)

Short

u(10)

NoTo

u(9)

Inac

Fig. 15. A more system specific representation of the system state

22

3 State Space Analysis of CP-nets

As explained in Sect. 2 it is customary to debug and investigate a CPN model by
means of simulation. This works insamilar way agprogramtesting and hence it
can never prove the correctness of a model (unlesstiivial). Hence, weoften
complement simulation with the construction of one or more state spaces.

The basic idea behindsdate spaceis to construct a graph which has a node for
each reachable marking and an arc for each occurring binding ele3teaspaces
are also calledccurrence graphs or reachability graphs/trees The first of
these names reflects the fact that a stpce containall the possibleoccurrence
sequences, while the two latieamesreflect that the statspace containall reach-
able markings.

To be able to construct a state space of reasonable size, we often have to modify
the CP-net. For our protocol &¢m, we make three modifications. Firstly, we re-

INTXDATA
1°(1,"Modellin")+ " :
@ 1'(2,"g and An")+ Received
1°(3,"alysis")+ DATA
1°(4, st")
(n,p) _
) if n=k
if Ok . andalso
INTXDATA then 1°(n,p) /NTXDATA str| |p<>stop
Send (n,p) .@ (n,p) Transmit else empty then strp
Packet Packet else str
if Ok
n then empty
else 1'e
1 1 A4
INT) Packet
INT if n=k
K if Ok then k+1
n then empty o elsek if nek
else 1'e then k+1
- - else k
Receive Transmit € c
Acknow. n if Ok Acknow. n
INT then 1°n INT
else empty
Sender Network Receiver

color INT = int;

color DATA = string;

color INTXDATA = product INT * DATA;
varn, k: INT;

var p,str : DATA;

val stop = "###",

color E = with g;
color BOOL = bool;
var Ok : BOOL;

Fig. 16. Modified CP-net suitable for state space analysis

23

duce the number of packets from eight to four. Secondly, we introduce a new place
to Limit the number opackets/acknowledgements which can be present simultane-
ously at theNetwork i.e., at one of the placés B, C,andD. The new place has a
type E with only one possible value Intuitively, this means that tokens of this type
carry no data. Finally, we simplifthe decision mechanisfor transmitting/losing
packets and acknowledgements. For stptces it doesot makesensehat packets

are transmitted/lost with a certain probabilityence, wereplace theOk function

with a boolean variabl®k The modified CPN model for the protoatdn beseen

in Fig. 16.

Having made the modifications described aboveargeready to construstate
spaces. Let us start with the situation where the initial marking of plageis1'e
This means that theetwork(i.e., theplacesA, B, C,andD) contains at most one
packet/acknowledgement at a tinkéenceovertaking is impossible. The staipace
is small. It has33 nodes andl4 arcs. The initial and final parts of it are shown in
Figs. 17 and 18.

The rounded boxes are the nodes of the state space. Each of them represents a
reachable marking, and the content of this marking is described magied box
next to the node — places with an emptsirking are omitted and we also omit the
markings ofSendandLimit (the first one never changes, thecond is onlhadded
to limit the size of the state space). At the topFa@f. 17, we have a node with a
thicker borderline. Thisiode represents the initial marking. The text inside the
node tells us that this is node number one and theatsitone predecessor and one
successor (the latter information may be useful when we have drawn only a part of
a state space). Analogously, seethat node number twbas one predecessor and
two successors. By convention we gto denote the marking of node number

Each arc represents the occurrence of the binding element listed dadied
box on top of the arc. IM; the only enabled binding element is transition
SendPacketwith binding<n =1, p ="Modellin">. When this binding element
occurs, we reach markirlg,, in which there are two enabled binding elements. An
occurrence ofTransmitPacketwith the variableOk bound totrue will lead to
marking M5, while an occurrence ofransmitPacketwith Ok bound tofalse will
lead back to the initial markingl;. By convention we do not include arcs tleat -
respond tosteps withmore than one binding eleme&ucharcs would give us in-
formation about the concurrency between binding elements, but they amecest
sary for the verification of standard behavioural properties.

From Figs. 17 and 18, we capethat the statspace has eegular structure, in
the sense that some patterns are repeated. The subgraph nodes
{4, 5, 7, 9}has the same form as the subgraph of né28s 29, 31, 33} The only
difference is that the latter is “thrgmckets ahead” of the former. If vdgaw the
middle part of the state space, we will find two additional copies of the pattern.

Now let us investigate the more complex situation in which overtakipgssi-
ble. To do this, we construct a state space for the situation where thenatiihg
of placeLimit is 2'e The new statspace ionsiderably largethan the first one,
and hence we do not make any attempt to draw it. Instead we ask the state space tool
to make astate spacereport providing some key information about the behaviour
of the CP-net. The state space report has four parts.

NextSend: 1°1
NextRec: 1°1
Received: 1™

24

\

SendPack:

{p="Modellin",n=1}

TranPack:

{p="Modellin",n=1,0k=false}

NextSend: 1°1
NextRec: 1'1

A: 1°(1,"Modellin")
Received: 1™

)

2
1:2

TranPack:

{p="Modellin",n=1,0k=true}

NextSend: 1°1
NextRec: 1°1

B: 1°(1,"Modellin")
Received: 1™

NextSend: 1°1
NextRec: 1°2

C:12

Received: 1™"Modellin"

{n=2,0k=true}

NextSend: 1°1
NextRec: 1°2

D:12

Received: 1" "Modellin"

RecAck:
{n=2,k=1}

NextSend: 1°2
NextRec: 1°2
Received: 1"Modellin"

8
2:1

SendPack:

{p="g and An",n=2}

NextSend: 1°2
NextRec: 1°2

A: 1°(2,"g and An")
Received: 1""Modellin"

10
1:2

RecPack:

{str="",p="Modellin",

n=1k=1}

RecPack:
@ {str="Modellin",
4 p="Modellin",n=1,k=2}
2:2
N\
TranAck: TranAck:

{n=2,0k=false}

NextSend: 1°1
NextRec: 1°2
Received: 1""Modellin"

SendPack:
{p="Modellin",n=1}

NextSend: 1°1
NextRec: 1°2

A: 1°(1,"Modellin")
Received: 1™"Modellin"

TranPack:

{p="Modellin",n=1,0k=true}

NextSend: 1°1
NextRec: 1°2

B: 1°(1,"Modellin")
Received: 1 "Modellin"

Fig. 17. Initial part of state space

NextSend: 1°4
NextRec: 14

A 17(4," #HH")
Received: 1"Modelling
and Analysis"

NextSend: 1°4
NextRec: 1°4

B: 1°(4,"###")
Received: 1" "Modelling
and Analysis"

NextSend: 1°4

25

26
1:2

TranPack:
{p="###",
n=4,0k=true}

Py
3
)]
O
e}

{str="Modelling
and Analysis",
p="###",n=4 k=4}

RecPack:
{str="Modelling
and Analysis",
p="###",n=4,k=5}

NextRec: 1'5 28

C:15 2:2

Received: 1""Modelling

and Analysis" |
TranAck:

NextSend: 1°4

{n=5,0k=true}

NextRec: 1°5 30
D:1'5 1:1
Received: 1" "Modelling
and Analysis"
RecAck:
{n=5,k=4}

NextSend: 1'5
NextRec: 1'5
Received: 1"Modelling
and Analysis"

N

TranAck:
{n=5,0k=false}

2w
o N

NextSend: 1°4
NextRec: 1'5 29
Received: 1™"Modelling 21 |4 \
and Analysis"

SendPack:

(p="###",n=4}
NextSend: 1°4
NextRec: 1'5
A 1(4,"#H##") 31
Received: 1™""Modelling 1:2
and Analysis"

TranPack:

{p="###" n=4,0k=true

NextSend: 1°4
NextRec: 1'5

B: 1°(4,"###")
Received: 1""Modelling
and Analysis"

11

Fig. 18. Final part of state space

26

The first part looks as shown in Fig. 19. It contagtatistical information
about the size of the state space. We see that the state spd28 hades and.130
arcs. We have calculated thel state space, and this took odlgecond. The statis-
tical part also contains information about the SCC-graph of the state spacthe
number ofstrongly connectedcomponentsand the number of arcs that start in
one component and end in another. A strongly connected component is a maximal
subgraph in which it is possible to find a pdétbm anynode to any other node.
Strongly connected components are very useful to determine certain kinds of be-
havioural properties, and they can be calculated by standard algorithms (which are
linear in time and space). From Fig. 19 seethat there arel82 strongly con-
nected components ari¥3 arcs that start in one component and endnother.
Hence there are less strongly connected components than state space nodes. This im-
plies that the system has at least one strongly connected componemtongtthan
one node, and hence infinite occurreseguences &t. In other words, weannot
be sure that the protocol terminates — to achieve termination one usually limits the
number of retransmissions.

The second part of the stadpacereport contains information about thateger
and multi-set bounds. The upper part of Fig. 20 shows the upper andimbegar
bounds, i.e., the maximal and minimal number of tokens which the individual
places may have. Waeethat each of the places B, C, D,andLimit always has
between zero and two tokens. We asethat NextRec NextSend,and Received
always have exactly one token each. Finally, sgethat Sendalways has exactly
four tokens. None of this is surprising, but it is reassuriggause it indicates that
the system is working as expected.

The lower parts of Fig. 20 show theulti-set bounds. By definition, the up-
per multi-set bound of a place is tkenallest multi-set which isarger than all
reachable markings of the place. Analogously, the lower multi-set bound is the
largest multi-set which is smaller than all reachable markings of the place. The in-
teger bounds give us information about the number of tokens, while the multi-set
bounds give us information about the values which the tokens ngy éaom the
multi-set bounds we see that pladeandB may contain all four differenpackets,

Statistics

State Space
Nodes: 428
Arcs: 1130
Secs: 1
Status: Full

Scc Graph
Nodes: 182
Arcs: 673
Secs: 1

Fig. 19. Size of state space and the SCC-graph

27

Integer Bounds

Upper Lower

A 2 0
B 2 0
C 2 0
D 2 0

2 0
NextRec 1 1
NextSend 1 1

Received 1 1
Send 4 4

Upper Multi-set Bounds

A 2°(1,"Modellin")+ 2°(2,"g and An")+
2°(3,"alysis")+ 2°(4,"###")

B 2°(1,"Modellin")+ 2°(2,"g and An")+
2°(3,"alysis")+ 2°(4,"###")

C 22+ 2°3+24+ 25

D 22+ 2°3+24+ 25

Limit 2'e

NextRec 1'1+12+1°3+14+15

NextSend 1°1+12+1°3+14+1°5

Received 1™+ 1"Modellin"+ 1™'Modelling and An"+
1"Modelling and Analysis"

Send 1°(1,"Modellin")+ 1°(2,"g and An")+
1°(3,"alysis")+ 1°(4,"##4")

Lower Multi-set Bounds

A empty
B empty
C empty
D empty
Limit empty

NextRec empty
NextSend empty
Received empty

Send 1°(1,"Modellin")+ 1°(2,"g and An")+
1°(3,"alysis")+ 1°(4,"##4")

Fig. 20. Integer and multi-set bounds

28

while placesC andD may contain all foupossible acknowledgements. Remember
that an acknowledgement always specifiesrthmber of the next packet to bent
(hence we never have an acknowledgement with viglué/e also seéhat noother
token values are possible at these four places.

Notice that the upper multi-set boundAfs a multi-set with eight elements, al-
though the upper integer bound tells us that there never can be more than two to-
kens onA at a time. The two tokens can take the followiogr token values:
(1,"Modellin"), (2,"g and An"), (3,"alysis"), and (4,"###")Hence, wecan, e.g.,
have the markings:

1°(1,"Modellin™)
1°(1,"Modellin™) + 1°(3,"alysis")
2°(3,"alysis").

By this kind of argument, it is easy to see that the smallest multi-set whiaihgesr
than all possible markings @éfis the multi-set:

2°(1,"Modellin")+2°(2,"g and An"}27(3,"alysis"\+ 2" (4,"###").

A similar remarkapplies to the multi-set bounds Bf C, D, NexRec, NexSend,
andReceived

The two counter placddextSendandNextReccan take all values betweérand
5. PlaceReceivedmay contain four differenvalues — corresponding to the situa-
tions where we have received détam zero, one, two or threpackets (packet
number four contains "###" which we never copyRieceivel§l Finally, placeSend
has identical upper and lower multi-set bounds. This means that the markmg of
place never changes. Also the multi-set bounds are as expected, aindithi®s
that the protocol works as intended. However, the multi-set bounds also give us
some new knowledge. As an example, there are probably many readers who did not
notice, until now, that acknowledgements never carry the value

The third part of the state space report is shown in Fig. 21. It proviftasna-
tion about home and livenepsoperties. Ahome marking is a marking which is
reachable from all reachable markings, i.e., a marking which always can be reached
— independently of what has happened up to now.s@é&hat the protocohas a
single home markingW,3s. A deadmarking is a marking with no enablddansi-
tions. We see that the protocol has a single dead marking, and that theat&aty

Home Properties

Home Markings: [235]

Liveness Properties

Dead Markings: [235]
Dead Transitions Instances: None
Live Transitions Instances: None

Fig. 21. Home and liveness properties

29

is identical to the home markingience,let us take a closer look at thimsarking.
To do this we ask the state space tool to draw the 288ddt looks as follows:

Dead Marking / Home Marking

235
12:0

From this weseethat the markingM,35 corresponds to the state where falur
packets have been successfully received (and no t@kenkeft atplacesA, B, C,
andD). The fact thaMz3s is dead tells us that the protocolpiartial correct, i.e.,
if it terminates, we have theorrect result. The fact thél,3s is a homemarking
tells us that the protocdias the nicgroperty that it nevecan reach a stateom
which it is impossible to terminate with the correct result.
From thelivenessproperties we alsseethat there are ndead transitions.
This means that each transition is enabled in at least one reachable marking (which
is a rather weakroperty). Wealso sedhat there are ndve transitions. A live
transition is a transition that always, no matter what happens, can beoaived
once more. When there are dead markings (as in our protocol), there cannot be any
live transitions. At first glance, one might think that the existence of oeallings
would prevent the existence of hommarkings. However, by definition, rmarking
is always reachable from itself, and hence a dead marking may be artarkiag
(provided that it is the only dead marking). This is the case for the protocol system.
The fourth and final part of th&tate spaceeport isshown in Fig. 22. Ipro-
vides information about the fairness properties, i.e., how often the individunal
sitions occur. Weseethat SendPacketand TransmitPacketare impartial . This
means that each of them occurs infinitely often in any infinite occurreegeence.
In other words, if one ofhese transitionseases taccur, then the protocahust
terminate (after some final number of additional steps). There are two kitisr
of fairness properties, callddir andjust. They are weaker properties than im-
partiality, and hence they are automatically fulfilled $gndPacketand Transmit
Packet From Fig. 22 weseethat none of the remaining three transitions are im-
partial, fair or just.

NextSend: 1°5
NextRec: 1°5
Received: 1™"Modelling and Analysis"

Fairness Properties

SendPack Impartial
TranPack Impartial
RecPack No Fairness
TranAck No Fairness
RecAck No Fairness

Fig. 22. Fairness properties

30

The statespacereport is produced in few seconds -totally automatic. It con-
tains a lot of highly useful information about the behaviour of the CPN model.
Hence it is usually the first thing that the modeller asks for, when he has constructed
a state space. By studying the state space report the modeller gets a first rough idea,
whether his model works as expected. If sggtem containsrrors they are often
reflected in the state space report. As an example, one may be designing a system in
which the initial marking is expected to be a homarking. However, one may
forget to return a resource after itse. Then it is no longgrossible toreturn to
the initial marking, and this will be evidefrom thestate spaceeport. Tomake a
closer investigation of the problem, the user can ask thesgtatetool to find one
of those markings from which it is impossiblerturn tothe initial marking. The
modeller can alsask the system to find a pafftom the initial marking to the
marking which has the problem. In this way a counter exaimgmebeen praded.
Then it is, usually, easy to spot and correct the error.

Above, we have seen thistyss is the desired final marking, and we haalso
seen that it can be reachgdm any reachableystem state. Now let us investigate
how fast it can be reached from the initial marking. To do this we ask the system to
construct a path from the initial markirM; to M,3s. This is done by means of the
following query — the question is in the rectangular box, while the result is in the
rounded box.

Length of Shortest Path

length(ArcsinPath(1,235)); 620 sint)

ArcsIinPathis a predeclared Standard ML function provided by the szdeetool.
It returns a list of arcs constituting a shortest path between the two nodes specified
as arguments to the function. From the result, we see that at least twenty transitions
must occur, inorder to reachMoss from M;. This is not surprising. The shortest
path must be one in which we have no retransmissions and no overtakirgve/e
four packets and to process a packet (plus the corresponding acknowledgement) we
need one occurrence of each of the five transitions.

Next let us investigate the way in which we update NlextSendcounter. One
might expect that this counter is always increased (or left unchanged). However, the
following query tells us that there are a number of transition occurrences that actu-
ally decrease the value NextSend

Is NextSend Ever Decreased?

let S
fun Value_NextSend(n) = [973,951,934,921,920,895
ms_to_col(Mark.Top'NextSend 1 n) ,894,845,844,818,817,753
in ,729,663,648,587,573,567
PredAllArcs(fn a => ,517,499,497,429,428,360
Value_NextSend(DestNode(a)) < ,310,271,233] : Arc list
Value_NextSend(SourceNode(a)))
end;

31

The result of the query is a list containing all those arcs that fulfil the predicate
specified as the argument to the functfredAll Arcs. For an arc, the predicate
evaluates tdrue, if and only if the token value &extSendin the destination node
of a is strictly less than the token value in the source node ®he token value is
found by means of the local functidfalue NextSendlIt usesthe predeclared ML
function Mark.Top’NextSendo find the marking ofNextSend(in the specified
noden). The marking is a multi-set. It is converted into an integemegns of the
function msto_col (which converts a multi-set with one element into that element,
e.g.,1' 3into 3).

NextSend: 1°4
NextRec: 1'5
C:13+15

Received: 1™"Modelling
and Analysis"

TranAck:
{n=5,0k=false}

TranAck:
{n=3,0k=true}

284 281

2:3 3:3
SendPack: TranAck: TranAck:
{p="###",n=4} {n=3,0k=true} {n=5,0k=false}

320 316

1:4 3.2
TranPack: TranAck: SendPack:
{p="###",n=4,0k=true} {n=3,0k=true} {p="##H#",n=4}

351 347
1:3 2:3
\ /
TranAck: TranPack:
{n=3,0k=true} {p="###",n=4,0k=true}

NextSend: 1°4

368 NextRec: 1'5
2:2 B: 1°(4,"###")
D:1°3

Received: 1™"Modelling

RecAck: and Analysis"
{n=3,k=4}

NextSend: 1°3

NextRec: 1'5
jfEBZS B: 1°(4,"###")
’ Received: 1™"Modelling

and Analysis"

Fig. 23. A small interesting part of the state space

32

To investigate whNextSendis decreased, we make the drawing in Fig. 23. We
ask the system to display thiest arc in the result of the above query, i.e., arc
number973 (from node368to node385). Moreover, weuse theDisplayPredeces-
sorscommand to draw some of the nearest predecessors of368dafter a few
“backwards” steps wéind marking M249, Which is of interest. In thisnarking
NextSendhas the valud while NextRechas the valu®&. There is aracknowledge-
ment with value5 positioned at plac€. However, C has also an “old” acknow-
ledgement with valu8. This acknowledgement has existed for quite a while. It was
created when packet number threas expected. The old acknowledgement has
been overtaken by several “younger” acknowledgements. However, it mgyrstill
ceed and caudéextSendto be decreased ®

Another way to investigate the possible decreas&@fttSend is to ask how
much NextSendcandiffer from the NextRec This is done by means of tliel-
lowing query, which tells us that the difference car8p&, 1,and0. This result is
consistent with our analysis abowextReccan be at most five whillextSendis
at least one, bullextSendcan never be reset tessthan two —because waever
have acknowledgements with valile

Difference Between Counters

let 5[3,2,1,0] : INT list
fun Value_NextSend(n) =
ms_to_col(Mark.Top'NextSend 1 n);
fun Value_NextRec(n) =
ms_to_col(Mark.Top'NextRec 1 n)

in
remdupl(
EvalAllNodes(fn n =>
Value_NextRec(n) - Value_NextSend(n)))
end;

From our analysis above, it is quite obvious that an easy way to improye ator

col is to avoid decreasingextSend This can be achieved by modifying the arc ex-
pression of the arc frorRecAcknowledgemenib NextSend— so that itbecomes
max(n,k)instead ofi.

The algorithms used to generate the ssptcereport and to answer thenore
system dependent queries build upomwanber of proof rules. Each proof rule
states a relationship between a behaviopraperty of a CP-net and a property of
its state space. As an example, istsaightforward toseethat a marking is dead if
and only if the corresponding stagpace node has mmitgoing arcs. As anore
complex example, it can be seen that a marking is a home marking if and only if the
strongly connected component to which it belongs is the only one with no outgoing
arcs. A detailed description of the proof rules and the mathematical proofs of them
can be found in Vol. 2 of [4].

In this section, we have demonstrated that Spaees is aery efficient way to
investigate the dynamic behaviour of a system. The constructiorarelgsis of
state spaces are totally automatic. From the state space report the modeller gets a lot
of knowledge about the dynamic behaviour of the system. However, halsman
formulate his own queries. This can be done in two different ways. Eithasibg

33

a large number of predeclared query functions written in Standard Mthdase
used above) or by using a library that support queries in a CTL-like temporal logic.
The first approach is theasiesfor most users, while the second is the most gen-
eral. For complexystems the state space may be daitge, and the construction
may take several hours. This is, however, not a big prokiane it is totally auto-
matic and hence can be done overnight or in the limehk. It is often faster to
make a state space analysis than it is to makeraugh investigation byneans of
simulations.

One of the main drawbacks of the state space method is the so-called state explo-
sion problem. For many systems, the sti@ce becomes $arge that it cannot be
fully constructed. Our present state space tool supports state spaces with up to half a
million nodes and one million arcs (when the tool runs a machine with three hun-
dred Megabytes ofmemory). One of thevays to be able to handlarger state
spaces is aore condensed storage of the multi-sets encountdrgthg thestate
space construction. Our present representation is identical to the represarsadion
in the CPN simulator. This is far from being optimal, andexpect to be able to
improve it with as much as a factor one hundred.

A number of methods exist to alleviate the state explgsioblem, i.e., to con-
struct smaller statspacesvithout losing too much analytic poweBome of these
methods take a modular approach, while other avoids construction of all the se-
guences in which concwmt bindingelements can be interleavethere arealso
methods that exploit the inherent symmetries found in many systems. These meth-
ods are described in Sect. 6.

Another drawback of the stagpace method is thiact that a statspace is al-
ways constructefor a particular initial markingwhich often corresponds to only
one out of many differenpossible systenconfigurations. Above, we haw&hown
that the protocol works when we have at most two simultanpadkets on the
Network.With the present capacity of the state space tool, we can perform a similar
analysisfor state spacewith up to five simultaneous packets. These stpi@ces
have the sizes shown in Fig. 24. They are constructedSymbltra SparcEnter-
prise 3000. This machine has also been disedll the othersimulations andtate
spaces reported in this paper.

However, how can we know that the protocol still works when we aftawe
than five simultaneous packetsnfortunately the general answer is discouraging.

In theory, we cannot know thisr sure. However, in practice trstuation is not
that bad. If the protocol works for five simultaneous packetsverg likely that it
also works when morpacketsare allowed. Otheanalysis methodare more gen-

Limit Nodes Arcs Time
1 33 44 « 1 sec.
2 428 1,130 1 sec.
3 3,329 12,825 14ecs.
4 18,520 91,220 3 mins.
5 82,260 483,562 47 mins.
Fig. 24. Sizes of state spaces for the simple protocol

34

eral and provide a full proof thatsystemworks as expected for all configura-

tions. This is e.g., the case fplace invariant analysis. However, suahalysis
methods are often much less automatic. They usually involve a good deal of human
reasoning in the form of one or moneathematical proofs. This implies that the
methods are time-consuming and difficultuse by engineerdMoreover, they are
error-prone. What do youprefer? Asequence of automatically constructed and
automatically analysed stagpacesshowing that the protocol workir all cases
where there are five diess simultaneous packets — offivee to ten page manual
proof based on rather complex mathematical arguments.

With our present knowledge and technology, we cannot hope to arife
systems by means sfate spaces. However, we can use Sjaéees on selected sub-
nets. This is a very effective way to locate errors. A small mistake will often imply
that we do not get, e.g., an expected marking bound or an expectednaokieg.

It is also possible to investigatather complex CP-nets by means pértial state
spaceswhere we only develop, e.g., a fixed number of outgoing arcseéch
node. Such a method will very often catch desgmors —although it cannot count
as a full proof of the desired system properties. A partial sfgeecorresponds to
making a large number of simulation runs — the stpteerepresents the results in
a systematic way.

4 Performance Analysis of CP-nets

To investigate the performance sfstemsj.e., thespeed at which thegperate, it
is convenient to extend CP-nets with a time concept. To do this, we introduce a
global clock. The clock values represemiodel time, and they may either be in-
tegers (i.e., discrete) or reals (i.e., continuous). In addition to the token value, we
allow each token to carry tame value, also called dime stamp. Intuitively, the
time stamp describes the earliest model time at which the token can be.eised,
removed by a binding element.

In atimed CP-net a binding element is said to belour enabled when it sat-
isfies the requirements of the enabling réde untimed CP-nets (i.e., whethere
are the requiredokens at the input places and tipeard evaluates tdrue). How-
ever, to beenabled the binding element must also eady. This means that the
time stamps of the tokens to lEmoved must bé&essthan or equal to theurrent
model time.

To model that an activity/operation takesime units, we let the corresponding
transitiont create time stamps for its output tokens thatratiene unitslarger than
the clock value at whichoccurs. This implies that the tokens produced bye un-
availablefor r time units. It can be argued that it would be more naturaletay
the creation of the output tokens, so that they did not comeeksbence untilr
time units after the occurrence bhad begun. However, such an approach would
mean that a timed CP-net would get “intermediate” markings which dearog-
spond to markings in the corresponding untimed CPimextausehere would be
markings in which input tokens have been removed but output tokens et
ated.Hence wewould get a more complex relationship between the behaviour of
timed and untimed nets.

35

The execution of a timed CP-net is time driven, and it works in a similar way to
that of the event queues found in mantker languagedor discreteevent simula-
tion. The system remains at a given model time as long as there are exhbled
binding elements that are ready for execution. When no more bistiintgents can
be executed, at theurrent model time, theystem advances the clock to the next
model time at which binding elements can be executed. Each makistg in a
closed interval of model time (which may be a poir&,, a single moment). The
occurrence of a binding element is instantaneous.

1°(1,"Modellin")+
1°(2,"g and An")+
INTXDATA 1°(3,"alysis b")+
1°(4,"y Means ")+ "
1°(6,"red Petr")+ A
1°(7,"i Nets")+ DATA
(np) 1°(8, ")
n,p)@-+wait . if n=k
(n.p) ‘ if Ok(s,r) andalso
100 INTXDATA then 1'(n,p) /NTXDATA str | |p<>stop
wait Send (n.p) .C\ (n.p) Transmit | else empty .O (n.p) then str'p
<>
Packet A) Packet B else str
TIME
@+9 @+Delay()
8
k v
1 Teno 1 ,
INT Packet
& @ INT if n=k
Teno — then k+1 @+17
“*—\\\ else k
S if n=k
then k+1
Receive < O‘ Transmit < O‘ else k
Acknow. n D it Ok(s,) | Acknow. n S
INT then1'n INT
@+7 else empty @+Delay()
Sender Network Receiver

color INT = int timed;

color DATA = string;

color INTXDATA = product INT * DATA,
varn, k : INT;

var p,str : DATA,

val stop = "###";

color TenO = int with 0..10;
color Tenl = int with 1..10;

var s : TenQ; var r:Tenl;

fun Ok(s:TenO,r:Tenl) = (r<=s);

color NetDelay = int with 25..75 declare ran;
fun Delay() = ran'NetDelay();
var wait : TIME;

Fig. 25. Timed CP-net for the simple protocol

36

A timed CP-net for the protocaystem is shown ifrig. 25. The timed net has
the same net structure as the untimed net — except that a new\#dédeas been
added (in the left-hand side). This place is used to specify how longramstion
SendPacketshould wait before retransmitting a packet.

From the declarations it can Been that typéNT is timed. This means that the
corresponding tokens carry time stamps. The typ&F A, TenOandTenlare not
timed. Tokens of these types do mairry time stampsand hence they aralways
available. By convention, the structured tyl¢TxDATA is timed —because it
contains a componehNT which is timed.Hence, we concludtnat the fourplaces
Received, SPSA, and Wait have tokens without time stamps, while tleenaining
seven places have tokens with time stamps. For this system we undegan clock,
starting at zero. Hence, all time stamps in the initial marking are equal to zero.

We have added @me inscription (starting with@+) to each of the fivéran-
sitions. Intuitively, the time inscription describes how long time the corresponding
operation takes. Now let us take a closer look at the five different transitions in the
protocol system.

Send Packehtas a time inscription@+9. This implies that the tokens created at
A andNextSendget time stamps whicare 9 time unitslarger than the time* at
which the transition occurs. The output arc to pl@eadspecifies an additional
time delay to be usefbr the tokens added t&end This token will get a time
stamp which ig* + 9+ 100 (since the variablevait is bound to100). Intuitively, 9
represents the time used to send a packet, WB0és the time that has to elapse be-
fore a retransmission is done, i.e., bef@endPacketoccurs once mordor the
same packetdence, aretransmission will only happen if the number NeextSend
remains unaltered f@+ 100 time units, i.e., if no acknowledgeméhnt the packet
is received inside this time period.

TransmitPackethas a time inscription@+ Delay(), whereDelay is declared to
be an ML function returning a random element from the typtbelay(i.e., aran-
dom integer in the interval betwe@b and75). This implies that the duration of a
transmit operation may vary inside this interval.

ReceivéacketandReceivécknowledgemeritave time inscriptions specifying a
fixed duration {7 and7 time units respectively), whil€ransmitAcknowledgement
has a variableuration time, betwee5 and75. All time delaysare specified by
means of Standard ML expressiom$ence, it is easy to use statistical functions
specifying more complex types of delays (e.g., exponential distributions).

Note that the token iNextSendcarries a time stamp. Intuitively, this means that
the Sendercannot start a neBendPacketor a newReceivé@cknowledgemerds
long as one of these operations is already ongoing. IfStederhas multiple
threads, allowing an unlimited number®énderoperations to be performed at the
same time, we simply make the typeNéxtSenduntimed. A similar remark ap-
plies for the operations of tHeeceiverand the type oNextRec

In general, the time delays may depend upon the binding in questiornypon
the values of the input and output tokens. As an example it might, on some net-
works, be faster to lose a packet than it is to transmit it.

For a timed CP-net we require that each stmsists of binding elements which
are both colour enabled and readiencethe possibleoccurrencesequences of a
timed CP-net always form a subset of the possibturrencesequences athe cor-

37

responding untimed CP-net. This means that we have a well-defined and easy-to-
understand relationship between the behaviour of a timed CP-net and the behaviour
of the corresponding untimed CP-net.

In the timed CP-net for the protocol, we have only illustrated one cfitmgest
ways in which time stamps can be used.r@hoved tokensor a bindingelement
were required either to be without tirseamps or to have time stamps whware
lessthan or equal to the time valug at which the binding element occurs. At a
given place, all added tokens either got no time stamps or got identicadtdmps
which were equal to* plus a delay. In general, the situation can be considerably
more complex. For details see Vol. 2 of [4].

After a number of simulatiosteps the timed CP-net magach a dead final
marking with the contents shown in Fig. 26. In the markings displayed next to the
places, we separate the time stamps from the token values by an @ sign (which usu-
ally is read as “at”). From the tinsgamp ofNextRecit can be seen that tHast
packet was received at timi@9Q Analogously, the time stamp BextSendtells us
that the last operation of ttgenderwas finished at tim@832 The time stamps at
place Sendtell us the times at which the individual packets would have been re-
transmitted (had this become necessary). As an example, weeetrat thefirst
packet would have been retransmitted at tifig, the second at tim&31, thethird
at359 and so on.

By means ofour timed CPN model we canvestigate the performance of the
protocol, e.g., experiment with differemtiluesfor the retransmissiodelay speci-
fied by Wait A short delay increases the chance of making unnecestaaypsmis-

1‘(1,"Mode|lin")@[109]+
1°(2,"g and An")@[331]+ 1™"Modelling and

INTXDATA 1°(3,"alysis b")@[359]+ Analysis by Means
1°(4,"y Means ")@[583]+ of Coloured Petri
1°(5,"of Colou")@[939]+ Nets" - ©
@ 1'(6."red Petr")@[1486]+ Received
1'(7,"i Nets")@[1611]+ DATA
1°(8,"###") @[1845]
(n,p)
1°100 n,p)@+wait) if n=k
@ (n.p) if Ok(s,r) andalso
100 INTXDATA then 1°(n,p) INTXDATA str p<>stop
wait Send (n.p) (n.p) Transmit else empty (n.p) then strap
. A B else str
Packet Packet
TIME
@+9 @-+Delay()
n
8
K v
Ten0Y 191 1 -
(1)18 Receive
(118
8 T - Packet
Teno @1 9@[1790] then k+1 @+17
T else k
S T if n=k
then k+1
Receive O‘ Transmit ©‘ else k
Acknow. [D)% ok(s.n) | Acknow. < n
INT then 1'n INT
@+7 else empty @+Delay()
Sender Network Receiver

Fig. 26. Final marking of the timed CP-net

38

sions. It also increases the chance of overtaking and the chance Retewve
Acknowledgemerdperation is postponed, because $emderprocess is engaged in
a retransmission. A long delay means it may take too long beforgetiderrecog-
nises that a packet or an acknowledgement haslbeenBy making a number of
simulations, with different token values\Mait, we can determine the optimal value
for the retransmission delay.

To obtain reliable results we increase the numbepagketsfrom eight to one
hundred. We also want to be able to describe more realistic success ratesn@nd
we change the typeeenOandTenlto HunO andHunl (containing the integers in
the interval9..100and1..100 respectively). With this change, we would have one
hundred different enabled binding® transition TransmitPacket— for eachtoken
on placeA with a ready time stamp. Instead of calculatingtlaélse bindings and
then choosing one of them, we now use a predeclared fumatitdunl() to draw a
random elementrom the typeHunl The new randomisation method gives the
same result as the old one, but it is more effecsuge we do not calculatend-
ings which we do not use.

With these modifications, we get the simulation results showrign 27. Each
simulation took2-10seconds, and it was repeated ten times to obtain the mean value
and the standard deviation of the time and steps usedrtsfer one hundrepack-
ets. The number dfteps is aneasure of the computational resources used by the
protocol. It is proportional to the number of occurrenced @insmitPacketand
TransmitAcknowledgemerdnd henceproportional to theuse of bandwidth on the
network.

Success Rate: 90 %
Wait Time used Number of steps
20 13,092+ 345 2,154+ 54
50 13,931+275 1,260+22
100 14,850t510 871+18
200 16,983t1,275 56517

Success Rate: 99 %

Wait Time used Number of steps
20 13,750+177 2,405+38
50 13,576+317 1,341+26

100 13,867+246 916+22

200 13,416+308 504+4

Fig. 27. Simulation results for the simple protocol

39

From the simulation results it can be seen that a poor network 1@8thlosses)
has a cleatrade-off between use of bandwidth and transmission time. Ifnveée
more frequent retransmissions, ws&emore bandwidth, but we also achieiaster
transmission times. For a better network (wi#h losses) the situation dhifferent.
Here, we do not obtain any gain in transmission time by making freqaetmains-
missions.

In the simple protocol, analysed above, we use a pessimistic strategynédris
that we keep transmitting a packet until we receive an acknowledgement for it. Now
let us consider the more optimistic protocol shown in Fig. 28. In this protocol we
assumehat most packets wikhrrive without problemsand hence we transmit the

@ Initialise(100) ~ (Received
INTXDATA DATA
(n,p) (n,p)@+w2
if n=k
if Ok(s,r()) andalso
then 1'(n.p) INTXDATA

40,100 (wl,w2) INTXDATA sfr p<>stop
Transmit else empty @ (n,p)

Send (n.p) @ (n.p) then strip
Packet Packet

else str
TIMEXTIME ~ (W1,w2)
@+wl

@+9 if (n-a < d-1 @+Delay()
andalso p<>stop)
(n,a,d) then (n+1,a,d) 99
else (a,a,d) k \4
1,13 Huno 1
INTXINTXINT 29 @ INT Packet
Huno T~ @+17
(k,a,d) (max(k,max(n,a)), ~
max(n,a),d) S
R - . if n=k
eceive € @< Transmit then k1
Acknow. n ~= if Ok(s,r() Acknow. pv= else k
then 1'n
@+7 else empty @+Delay()
Sender Network Receiver

color INT = int timed;

color DATA = string;

color INTXDATA = product INT * DATA;
color INTXINTXINT = product INT * INT * INT;
varn, k, a,d: INT;

var p,str : DATA,

val stop = "###";

color HunO = int with 0..100;

color Hunl = int with 1..100 declare ran;
var s : HunoO;

fun Ok(s:HunO,r:Hunl) = (r<=s);

fun r()= ran'Hun();

color NetDelay = int with 25..75 declare ran;
color TIMEXTIME = product TIME * TIME timed,;
fun Delay() = ran'NetDelay();

var wl,w2 : TIME;

local
fun InitMark 0 = empty
| InitMark n = 1°(n,"." makestring(n)) + (InitMark (n-1));
in
fun Initialise(n) = 1°(n,stop) + (InitMark (n-1))
end;

Fig. 28. A second and slightly more complex protocol

40

next packet without waitinfor anacknowledgement of the packet which have

just sent. NowNextSendaontains a triple of integers. The first element is the num-
bern of the next packet to be sent. The second element is the number of the last ac-
knowledgement which theSenderhas received. Ththird element is the window

size, i.e., the maximal distandevhich we allow between anda. During a simula-

tion the first two values will change, while the third remains constant.

Now let us consider the arc expression on the arc fidemdPacket to
NextSend It determines the number of the next packet to be sent. As long as the
distance between anda is lessthand—1 and we have not reached the Ipatket
(with p=stop we increasen by one. Otherwisen is set toa which is thefirst
packet not yet known to be received by fReceiver.Whenever a new acknow-
ledgement is received the value @ is updated tanax(n,a) Simultaneously, we
update the first element MextSendfrom k to max(k,max(n,a))

For the new protocol, plad&ait has the typd IMEXTIME. This means that the
place now specifies twdifferent time values. The first time value determines the
delay between the sending of two different packets, while the second determines the
delay between retransmissions of a packet.

The performance of the optimistic protocol is investigated in a similar way as
the performance of the simple protocol. This gives the simulation results shown in
Fig. 29. A comparison of Figs. 27 and 29 shows us that the performance of the op-
timistic protocol is much better than the performance ofpb&simistic proteol.
Hence, we could start a more detailed investigation of the optimistic pro&gol,
to determine a good balance between the two delays specifi¥daily We could
also try to optimise the window size specified by the third element iNéxé&end
token. However, such investigations are outside the scope of this paper.

Success Rate: 90 % Window Size: 3

Wait Time used Number of steps
(20,20) 7,192+ 256 1,102+37
(40,50) 8.960t556 831142
(40,100) 9,288:489 804+33
(40,200) 10,27@&790 615+42

Success Rate: 99 % Window Size: 3

Wait Time used Number of steps
(20,20) 6,668:130 1,088+23
(40,50) 8,12#144 806+12

(40,100) 8,335t165 766118
(40,200) 7,904£230 510+10

Fig. 29. Simulation results for the optimistic protocol

41

5 Hierarchical CP-nets

The basic idea behinldierarchical CP-nets is to allow the modeller to construct a
large model by using a number of small CP-nets which are related to each other in
a well-defined way. This is similar to the situation in whiclpragrammercon-

structs a large program by means of a set of modules. Many CPN models consist of
more than one hundred individual CP-nets with a total of many hurpdaeds and
transitions. Without hierarchical structuring facilitissich a model would have to

be drawn as a single (very large) CP-net, and it would become totally incomprehen-
sible.

In a hierarchical CP-net it |gossible to relate a transition (and sterrounding
arcs and places) to a separate CP-net — providing a more precise and detailed de-
scription of the activity represented by the transition. The idea is analogous to the
hierarchy constructs found in many graphical description languages (e.gflodata
diagrams). It is also, in some respects, analogous to the moaolutepts found in
many modern programminignguages. At one level, we want to give a simple de-
scription of the modelled activity without having to consider internal details about
how it is carried out. At another level, we want to specify the more detailed behav-
iour. Moreover, wavant to be able to integrate the detailed specification with the
more crude description — and this integration must be done in such a way that it be-
comes meaningful to speak about the behaviour of the combined system.

Now let us consider a hierarchical version of our protocol. The bstract
description of the protocol is shown in Fig. 30. As before we haveralerand a
Network but now we have two differerReceivers: Reldol and Red\No2. The
CP-net in Fig. 3thas eight places anfdur transitions. Each of the transitions is
marked with an HS-tag indicating that it isabstitution transition (HS= Hier-
archy + Substitution). Thdashed boxes next to thtS-tagsare calledhierarchy
inscriptions and they define the details of the substitutions.

The first line of eachhierarchy inscriptionspecifies thesubpage i.e., the
CP-net that contains the detailed description of the activity represented bygrthe
responding substitution transition. In our example, we see that tranSiiedernas
a subpage with the same name as itself, and strdrastion Network Transitions
RedNol andRed\o2 both have a subpage callBéceiver During an execution of
the CP-net, there will be two separatstances of th&®eceiverpage, one foeach
substitution transition. Each dhesepage instanceswill have its ownmarking
which is totally independent of the marking of the other paggnce (in aimilar
way that procedure calls have private copies of local variables).

Now let us consider thesubpagedor our substution transitions. They are
shown in Fig. 31, and it can Iseen that thepre similar to theéSendey Network
andReceiverparts of the simple protocol in Fig. 1. Eaglibpage has mumber of
places which are marked with an In-tag, Out-tag or 1/0O-tag. Tplesesare called
port placesand they constitute the interface through whichdhlepage communi-
cates with itssurroundings. Through the input ports thépage receivetokens
from the surroundings. Analogously, teabpage delivers tokens to tearround-
ings through the output ports. A place with an I/O-tag is both an input port and an
output port at the same time.

42

Substitution transitiorSendernn Fig. 30has a single input plad®@ and a single
output placeA. These places are calledcketplaces More preciselyD is an in-
put socket for the&Sendertransition whileA is an output socket. To specify the re-
lationship between a substitution transition and its subpage, we must describe how
the portplaces of the subpagee related to theocket places of the substitution
transition. This is done by providingpeort assignment For theSendersubpage,
we relate the input pofd in Fig. 31 to the input socké& in Fig. 30. Analogously,
we relate the output pod in Fig. 31 to the output sockét in Fig. 30. Therela-
tionship between ports and sockets are listed in the hierarchy inscriptions. However,
to increase readability and brevity, we omit port assignments where the port and the
socket have identical names. Hence we do not list the assignfents andD—>D
in the hierarchy inscription ddender
Next let us consider theetworksubpage. Heréd, C1,andC2 are inputsock-
ets, whileB1,B2, and D are output sockets. The subpage hapasixplaceswhich
each has the same name as the socket to which it is assigned (and hence we do not
list the assignments in the hierarchy inscription). For the remaining two substitution
transitions the situation is a bit more interesting. RecNol1 we have the port as-
signmentB1—>B, C1->C andReceived1->ReceiveBorRed\o2 we have theort
assignmenB2—>B, C2—>C andReceived2—>Received
When a port place is assigned to a socket place, the two places become identical.
The port place and the socket place are just two different representations of a single
conceptual place. In particular this means that the port ansbtiiket places always
have identical markings. When an input socket receives a token frosurteeind-
ings of the substitution transition that token also becomes available at theparput
of the subpage, and hence the token can be used by the transitions on the subpage.
Analogously, the subpage may produce tokens on an opgutitSuch tokens are
also available at the corresponding output socket and hence they can be used by the

Abstract

Sender

HS

INTXDATA
INTXDATA

Bl
A
INTXDATA
B2
Network
HS
Network C1
INT
D
INTXINT Cc2

INT

RecNol

S |

Receivedl
DATA

Receiver
B1->B
C1->C

Receivedl->Received

RecNo2

S|

»(Received?
DATA

Receiver
B2->B
C2->C

Received2->Received

Fig. 30.

Most abstract page in a hierarchical version of the simple protocol

43

surroundings of the substitution transition. In our example, we have diffeeent
representations of plade one in the mosAbstractnet, one in th&sendersubpage
and one in thdNetworksubpage. A similaremark applies toB1, B2, C1, C2and
D, while ReceivedlandReceiveddnly have two representations each.

Now let us consider the three subpages in Fig. 31 in some more detailadibe
idea is that thesendersends messageghich the Network broadcasts to the two
Receivers Analogously, theReceiversend acknowledgements which tNetwork
transmits to th&ender.

The Sendersubpage is similar to th@enderpart in Fig. 1. The main difference
is thatNextSendnow models two counters — of@ eachReceiver Each acknow-
ledgement is a pair where the first elemgmecifies whether the acknowledgement
came fromRedNol or RecdNo2, while the second element contains tluenber of
the next packet which tieeceivemwants to get. When an acknowledgem@at,n)
is received, we update the counfer the correspondindreceiver.Based on our
discussion in Sect. 3, weplace the old counter vallkewith the valuemax(n,k)
Since packetare sent bymeans of broadcasts, tl&enderhas to send theame
packet to bothReceivers- even in the asewhere the two counters &textSend
have different values. An obvious solution is to demandSirederto use thamini-
mum of the two counter values, i.e., to follow theknowledgements of the most
unlucky Receiver However, instead we shall allow tBenderto use an arbitrary of
the two counter values. ForNetworkwith manylosseshis is lessefficient. How-
ever, it allows one of thReceiverdo get the entirenessage, even if thether Re-
ceiverstops to work, e.g., due to a crash.

(rec,n)

NextSend

(rec,k) (rec

1(Recl.1)+
1(Rec2.1

RECXINT

,max(n,k))

RECXINT

GAD)
Ten0o

S

if Ok(s,r)
then 1°(Recl,n)

Transmit
Acknow.

Acknow.

else empty

Sender Network Receiver
1°(1,"Modellin")+ toksy) NTXDATA
1'(2,"g and An")+ o
INTXDATA 1°(3,"alysis b")+ ”;e” L (”'tp) @
1°(4,"y Means ")+ else empty - -
@ 1°(5,"0f Colou")+ INTXDATA out Received
i\g."re,\? Pe;r”)+ (n,p) Transmit DATA
*(7,"i Nets")+
- 1°(8," ") Packet INTXDATA
' -In) if n=
s ifOK(s) @ ';':'d;so
INTXDATA then 1°(n,p) INTXDATA p<>stop
8 else empty out) N
Send (n,p) @ P then str'p
Packet Ten0 else str
Y

if n=k

Receive
Packet

then k+1
else k

if n=k

else empty
then k+1
Out
- - else k
Receive RECTNT
XINT .
Acknow. [€ (rec,n) @ if Ok(s,r) Transmit
then 1°(Rec2,n) INT

Fig. 31. Three subpages used by the substitution transitions in Fig. 30

44

The Networksubpage isimilar to theNetworkpart in Fig. 1. Howeveragain
there are a few differencesransmitPacketproduces packets at tvebfferent out-
put placeB1 andB2. The packets @1 are forRecdNol, while the packets &2
are for RecdNo2. It should be noted that we use the samagabler to determine
whether thepacketsfor B1 andB2 are lost or not. Thisneans that we model a
broadcast in which it is guaranteed thatRelceivergyet the same packets. If we re-
placer with two different variablesl andr2, we get a broadcast where one
Receivermay get a packet while the othdoes not. TransitiodransmitAcknow-
ledgemenhas now been split into two. Thigper transitiorhandles acknowledge-
ments fromRed\N o1 while the lower handles thoseom Red\No2. Both transitions
add information specifying where the acknowledgement came from.

The Receiversubpage is totally identical to thHeeceiverpart of Fig. 1.How-
ever, it should be noted that tfeceiverpage is used by two substitutibransi-
tions,RedNol andRed\o2. As explained above, this means that we will have two
instances of the subnet — during an execution. The two instances magiffenent
markings and different enabling. Otherwise they will be identical.

In the protocol example, we only have two levels in fglagie hierarchy — the
Abstractpage in Fig. 30 and the threebpages irFFig. 31. However, in practice
there are often up to ten different hierarchical levelsuBpage may contain sub-
stitution transitions and thus have its own subpages. It is often the caseptuys a
both hasordinary transitions and batitution transitions, i.e., that sonagtivities
are described in full detail, while other activities are described in a more coarse
way — deferring the detailed description to a subpage.

To give an overview of the relationship between the diffepages in a CPN
model, we use a padeerarchy graph as the osbown in Fig. 32. It contains a
node for each page. An arc between pages indicates that thatter is asubpage
of the former, i.e., that the source page contains a substitution transitiomsésat
the destination page as subpage. Each node is inscribed with a text that specifies the
page name and the page number. Analogously, &&cmay have a text thapeci-
fies the name of the substitution transition in question. As an example, Fig. 32
shows us that padédser Top#2has thirteen substitution transitions. One of tHd4e
useCall Del#16as subpage.

The page hierarchy graghows thedifferent pages andheir hierarchicalela-
tionship. However, in the CPN tools it is also an active device by which the user can
manipulate the pages. As an example, he can open a page by double-clicking the
corresponding page node. He can delete a page by deleting the page node and he can
remove the relationship between a substitution transition and its subpage by deleting
the arc representing the relationship.

The page hierarchy graph in Fig. 32 is taken from a CPN model that describes a
protocol for ISDN telephone networks. The big bracket indicates that each of the
five pages to the right of the bracket is a subpage of all (or nearly all) of the twelve
pages to the left of the bracket. Hence there are nearly sixty page instances, only for
these five pages. We alseethat some of the pages in thightmost part of the
page hierarchy graph have multiple instances. One of them has eight page instances,
while two otherpages havéehree instances eachAltogether the CPN model has
forty-two pages with a total of approximately ohendred page instanceBage
ISDN#1(in the upper leftorner) has a smalPrime next to it. This indicates that

45

ISDN#1is aprime page i.e., a page on the most abstract level. A CPN model has
a page instanctor eachprime page. Forach substitution transition onpaime
page we get a page instance of the corresponding subpafeséf pagenstances
have substitution transitions, we get paggancedor these, and so on — until we
reach the bottom of the page hierarchy (which is demanded to be acyclic).

It can be shown that eadherarchical CP-nehas a behavioural equivalent
non-hierarchical CP-net. To obtain the non-hierarchical net, we simply regdabe
substitution transition (and its surrounding arcs) by a copy of its subpage — “gluing”
each port place to the socket place to which it is assigned.

It should be noted that substitution transitions never become enableteaad
occur. Substitution transitions work as a macro mechanism. They silibpages to
be conceptually inserted at the position of the substitution transitions — without do-
ing an explicit insertion in the model. In Fig. 30 we have not provided any arc ex-
pressions for the arcs that surround the substitution transitions. These aeeesst
sary for thesimulation and state space analysis, since the substittiositions
never become enabled or occur. However, nevertheless they can be very useful.
They can give theeader of a model a first impression of the functionality of the
subpage. Moreover, the CPN simulator allows the modeller to specify that the sub-
page of one or more substitution transition shaltdmeporarily ignored. Then the
transition behaves as an ordinary transition — and the guard and arc expressions be-
come significant. By using this facility, and by changing the set of prime pages, it is
easy to debug selected pages t¢drge hierarchical CPN model without having to
“cut them out” of the model.

ISDN#1 Prime DECLARE#4

ER_TOP#2 REQ_GEN# NET_TOP#19 ROUTING#24 N_SETUP#22
> USER_TOP#2 }—>{UREQ_GEN#39) (NET_ -)N)
uo NO
NULL#3 }—{ NULL_SET#5) > NULL#20 > U_SETUP#21

Ul N2
o CALL_INI#6 > OVERLAP#29 N_HOLD#44)i
u2 N3 T
> OVERLAP#9 > OUTGOING#26 |——
N
u3 N4
>{OUTGOING#15 > U_HOLD#45 ki > CALL_DEL#28
ua) v
> CALL_DEL#16 (N_E_PART#27) (N_D_PART#31)
u7 U_PROG#41 NG [
> CALL_REC#11 > CALL_PRE#38
U_INFO#42
us N7
> CONNECT#12 U_REL#25 > CALL_REC#32
U9 N8
> INCOMING#13 U_DISC#23 ~ CONNECT#30
010 U_REL_CO#40 NS
N—o ACTIVE#7) > INCOMING#37
U1l N10
>{ DISCONNE#8 N—o{ ACTIVE#36 | J
u12 N11
[DISC_IND#18 > DISCONNE#33
u19 N12
> RELEASE#17 >{ DISCONNE#34
N19
~{ RELEASE#35

Fig. 32. Example of a more complex page hierarchy

46

It may be argued that it is adequate to force the modeller to create a one-to-one
correspondence between the arc expressions of a substitution transition and the be-
haviour of the correspondingubpage — because tlwdl make it easier to develop
methods allowing modular analysis. We think it is very important to dewalop
incremental analysis methods, built upon behavioural equivalence betwedii-the
ferent levels of description. However, we do not think that strict behavioural
equivalence is the only interesting relationship betweendifierent abstraction
levels. As an example, there are protocol models in which the arc expressions and
guards of a typical substitution transition specify the normal behaviour of an activ-
ity, while the subpage specifies tineore complex behaviour which secessary
when time-outs, retransmissions and special services are added.

The protocol system in Figs. 30 and 31 was described in a top-down manner, but
this does not necessarily mean that it was constructed in this way. It could just as
well have been constructed bottom-up or (more likely) by mixing the stnate-
gies.

The CPN editor supports the creation of hierarchical nets, and it iseasgyto
add new subpages — ogarrangethe page hierarchy in other ways. Whepage
gets too many places and transitions, we can move some of them to a new subpage.
This is done by a single editor operation. The ussects the nodes to be moved
and invokes the Move to Subpage command. Then the editor:

» checks the legality of the selection (it must form a subnet bounded by transitions),

* creates the new page,

* moves the subnet to the new page,

 creates the pomlaces by copying those places whigbre next to theselected
subnet,

« calculates the port types (In, Out, or 1/0),

 creates the corresponding port tags,

 constructs the necessary arcs between the port nodes and the selected subnet,

» prompts the user to create a new transition which becomes the substianisia
tion for the new subpage,

e draws the arcs surrounding the new transition,

» creates a hierarchy inscription for the new transition,

» updates the page hierarchy.

As may be seen, a lot oather complex checks, calculations and manipulations are
involved in the Move to Subpage command. However, almost all of #nesauto-
matically performed by the CPN editor. The user osd#jects the subnet, invokes
the command and creates the new substitution transition. The rest of the work is
done by the CPN editor. This is of course opbssible because the CRiditor
recognises a CPN diagram as a hierarchical CP-net, and not justaleanatical
graph or as a set of unrelated objects. Without this property the user haxddo
do all the work bymeans of theordinary editing operations (which allow him to
copy, move and create the necessary objects). This would be possible — but it would
be much slower and much more error-prone.

There is also an editor command which turns an existing transition isti-a
stitution transition — by relating it to an existing page. Again, most of the work is

a7

done by the editor. The usselects thdransition and invokes the command. Then
the editor:

* makes the hierarchy page active,

» prompts the user to select the desired subpage; when the mouse isoveved
page node it blinks, unless it is illegal (because selecting it would makadke
hierarchy cyclic),

 waits until a blinking page node has been selected,

* tries to deduce the podssignment by means of a set of rules which looks at the
port/socket names and the port/socket types (In, Out, or 1/0O),

 creates the hierarchy inscription with the name and number dfulbygage and
with those parts of the port assignment which could be automatically deduced,

» updates the page hierarchy.

Finally, there is an editor command that replaces a substitution transition by the en-
tire content of its subpage. Also, this operation involves a lot of conualiexla-

tions and manipulations, but again all of them are done by the CPN editous&he
simply selects the substitutidransition, invokes the command aondes a simple
dialogue box to specify the details of the operation (e.g., whether the sudtadige

be deleted when no other substitution transition uses it).

The three hierarchy commands described above can be invoked in any order. A
user with a top-down approach would typically start by creating a page weaehe
transition represents a ratheomplex activity. Then a subpage is credimd each
activity. Theeasiest way to do this is to use the Move to Subpagenand. Then
the subpage automatically gets ttwrect portplaces, i.e., theorrect interface to
the substitution transition. As the new subpagyes modified, by addinglaces and
transitions, thesubpages may become so detailed that additional levedabplages
must be added. This is done in exactly the same way as the first level was created.

Hierarchical CP-nets alsaffer aconcept known afusion places This allows
the modeller to specify that a set of plaees considered to be identical, i.they
all represent a single conceptual place even though they are drawn as a number of
individual places. When a token is added/removed at one of the places, an identical
token will be added/removed at all the otipdaces in the fusion setrom this de-
scription, it is easy to see that the relationship between the members of a fusion set
is (in some respects) similar to the relationship betweenptaces whichare as-
signed to each other by a port assignment.

When all members of a fusion set belong to a single page and that page only has
one page instance, place fusion is nothing other than a drawing convenience that al-
lows the user to avoid too many crossing arcs. However, things becomemmueh
interesting when the members of a fusion set belong to several diffexges or to
a page that has several page instances. In that case, $etsatiow the user to
specify a behaviour which it may be cumbersome to describe without fusion.

There are three different kinds of fusion sgtabal fusion setsare allowed to
have members from many different pages, whdge fusion setsandinstance fu-
sion setnly have memberfrom asingle page. The difference between kst
two is the following. A page fusion unifies all thestances of its places
(independently of the page instance at which dygyear), and thisneans that the
fusion set only has one “resulting place” which is “shared” byinglances of the

48

corresponding page. In contrast, an instance fusion set only identifies place instances
that belong to thesamepage instance, and this means that the fusion set has a
“resulting place”for each page instance. The semantics of a global fusion set is
analogous to that of a page fusion set — instresethat there is only one “resulting
place” (which is commoffor all instances of all thearticipating pages). To allow
modular analysis ofhierarchical CP-nets, global fusisets should be usedith

care.

It is important to understand that the basic idea behind hierarchical CP-nets is to
allow the modeller to construct a large model by combining a numbeamatfl
CP-nets into a single model. This is similar to the situation in whigfogrammer
constructs a large program fromsat of modules and subroutines. However, the
idea is different fromthose approaches that relate two or more sepaudnieets to
eachother — in order to compare their behavioubut without combining them
into a single modelSuchapproaches are analogouspmgram transformations,
and the individual subnets are alternative descriptions of the same system.

As mentioned above, it is always possible to translate a hierarchical CP-net into a
non-hierarchical CP-net — which in turn can be translated into a PT-netméhiss
that the theoretical modelling powers of théiseee classes ofhets are thesame.
However, from a practical point of view, the three classeshave verydifferent
properties. To cope with larggystems we need to develsfrong structuring and
abstraction concepts. The first vesybstantial step on this path was raplace
low-level Petri nets with high-level nets. The second step is to intrddecarchi-
cal nets. In terms of programmirlgnguages, the first step can be compared to the
introduction of types — allowing therogrammer to workwith structured data ele-
ments instead of single bits. The second step may then be compared to the develop-
ment of programming languages with subroutines and modules — allowipgahe
grammer to construct a large model as a set of smaller models which are related to
eachother in a well-defined way. From a theoretical point of viewachine lan-
guages (or even Turing machines) are equivalent to the most powerful npodern
gramming languages. From a practical point of view, this is of course not the case.
One of the most important limitations that system developers face today is their own
inability to cope with many details at the same time. In order to developreatyke
complex systems, they need structuring and abstractionepts that allow them to
work with a selectedpart of the model without being distracted by the low-level
details of the remaining parts. Hierarchical nets provide the Petri net modeller with
such abstraction mechanisms.

The concept of hierarchical nets is much younger than the concept of high-level
nets, and this means that thierarchy conceptsare likely to undergo many im-
provements and refinements (in the same way thafirgtevery simple concept of
subroutines has undergone dramatanges to become tipgocedure concept of
modern programming languages). In other words, we do not claim thatuowent
proposal will be the “final solution”. However, we do think that it constitutes a good
starting point forfurther researcland practical experiences in the areahtdrar-
chical nets.

The intention has been to make a sethigrarchy constructs which is general
enough to be used with many different development methods and withdifgery
ent analysis techniques. When new methard@s developed, they will influence the

49

definition of the hierarchy constructs in tsame way thatodernprogramming
languages have been influenced by the progress in the areas of programming meth-
odology and verification techniques.

To evaluate the strength of the existimgrarchy constructs, the reader is en-
couraged to consult some of the industrial CPN models described in Vol[4R of
They illustrate that substitution transitions and fugbbeces can be used in many
different ways, and that they are quite efficient mechanisms to structure a large and
complex CPN model.

6 Condensed State Spaces

In this section we illustrate how the symmetries inherent in nsystems can be
exploited to obtain a more succinct state space analysis.

To illustrate the basic idea, let us again considertaearchical protocofrom
Sect. 5 — the one with twReceiverslt should be obvious that the two receivers be-
have in a similar wayHence, we caimterchange them without influencing the be-
haviour of the system. To make this a bit more explicit, consider the two markings
shown in Fig. 33. We do not list the markings of the pl&ms] SP, SAlandSA2

Marking M,

Sender
NextSend: 1'(Recl,2) + 1 (Rec2,3)
A: 1°(3,"alysis b")
D: 1'(Rec2,3)

Receiver Reblol Red\o2
NextRec: 12 13
Received: 1"Modellin" 1""Modelling and An"
B: 2°(2,"g and An") empty
C: empty empty

Marking M,

Sender
NextSend: 1'(Rec2,2) + 1 (Recl,3)
A: 1°(3,"alysis b")
D: 1'(Recl,3)

Receiver Reblol Red\o2
NextRec: 1'3 12
Received: 1 "Modelling and An" 1 ™"Modellin "
B: empty 2°(2,"g and An")
C: empty empty

Fig. 33. Two symmetrical markings

50

since they never change. Neither do we list the markings dléteork placesA,
B1, B2, C1 C2, and [Due to the porassignments these places havarkings that
are identical to the markings of the corresponding places iSe¢hderandReceiver
parts. An analogous remark applies to all the places iAls&actpart.

It is easy to see that markihdy can be mapped intd, (and vice versa) bper-
forming asystematic interchange of the tweceivers — including the tokaralues
at placedNextSend, AandD. Hence, we sathat M; andM, are symmetricHow-
ever, the two markings not only look symmetric — they also behave in a symmetric
way. To illustrate this let us consider the enabled binding elements which@se
in Fig. 34.

For each binding elemer; which is enabled irM;, we can find a symmetric
binding elemenb, which is enabledor M,. Again this is done by a systematic in-
terchange of the two receivers. Moreover, the binding elemenill lead to a new
marking M; which is symmetric to the markinigl, to which b, will lead. By re-
peating this argument, we camethat eacloccurrencesequencetarting inM; de-
termines a symmetric occurrensequencestarting inM, (and vice versa). This

Enabled binding elements M,

Sender
(SendPacket, «ec = Recl, n = 2, p = "g and An">)
(SendPacket, €ec = Rec2, n = 3, p = "alysis b">)
(ReceiveAcknowledgement, rec = Rec2, k =3, n =3

Network
(TransmitPacket, o = 3, p ="alysis b", s =8, r= >)
RecNo1l
(ReceivePacket, a = 2, p = "g and An", k = 2, str =" Modellin ">)

RecNo2
none

Enabled binding elements M,

Sender
(SendPacket, «ec = Rec2, n = 2, p = "g and An">)
(SendPacket, €ec = Recl, n = 3, p = "alysis b">)
(ReceiveAcknowledgement, rec = Recl, k =3, n =3

Network
(TransmitPacket, 0 = 3, p ="alysis b", s =8, r= >)

RecNo1l
none

RecNo?2
(ReceivePacket, a = 2, p = "g and An", k = 2, str =" Modellin ">)

Fig. 34. Two symmetrical sets of enabled binding elements

51

means thaM; andM, have symmetrical behaviours. If we know what tappen
from one ofthesemarkings, we also know what can hapgesm the other, and
hence it is sufficient to investigate one of the two markings.

Now let us consider the number of symmetry mappings, i.e., the number of
ways in which amarking/binding element can be mapped into symmetncatk-
ings/binding elements. There is a symmetry mappingeémh possibl@ermutation
of the receivers, i.e., two mappinfys two receivers,six mappingsfor three re-
ceivers,24 mappingsor four receivers,120 mappingsfor five receivers, and so
on. This means that a marking/binding element may have many symmaetede
ings/binding elementddence, wemay obtain a significant gain if it is sufficient to
consider one of these.

The symmetries determine equivalemtasses of statggnarkings) and equiva-
lence classes of state changes (binding elements). They make it possible to construct
a condensed state spaghere each node represents an equivalefass of states
while eacharc represents an equivalendass of state changes. Such a condensed
state space is often much smaller thandfrdinary state space and it is usuadliso
faster to construct.

To illustrate the strength and limitations of the symmetry method, we construct
state spaces for the hierarchical protocol with different numbers of receivers. To do
this, we modify the CPN model as described in the beginning of Sect. Bedifee
the number opackets to be sent, we limit tm&mber of simultaneougackets on
the Network and we replace the boolean functi©ok with a boolean variabld=ig.

35 shows the sizes of the different stepacesand the time used to construbem.
In the lower part, walso show the reduction factéor nodes and arcf.e., how
many times the condensed state spasenaller than the ordinargtate space). The
reduction factor should be compared to the number of symmetry mapgsiogs
in the rightmost column.

For some of theordinary state spacethe construction time is unknowithese
state spaceare so big that it is impossible to construct them with the presant
sion of ourstate spaceol. However, it is possible to calculdteeir sizefrom the
condensed state spaces. The construction of condensespsizgs istill on a quite
experimental level, and hence there is still plentyaafm for improvement of the
construction algorithm, in particular the efficiency of the ML function that deter-
mines whether two markings are equivalent to each other.

Although the condensed stapacesare smaller than the ordinagtate spaces,
they contain almost the sanmdormation — represented in a macendensed way.
Hence, we do not lose analytical power. Condensed state spaces can beusesl to
the same kind of behavioural properties as ordinary state spaces. The proof rules of
condensed state spaces are similar togptbef rules of ordinarystate spaces, but a
bit more complicatedince they have to deal with equivalerdt@sses ofimarkings
and equivalence classes of binding elements.

An introduction to the theory ofondensed state spacesn be found in3],
while a more detailed description can be found in Vol. 24@fThe latter defines
three different kinds otondensed state spaces. In state spathsequivalence
classes the modeller directlyspecifies an equivalenceslation for theset of
markings and an equivalence relation for the set of binding elements. |isEeats
with symmetries the equivalence relations are defined implicitly, by specifying a

52

set of symmetry mappings, similar to those uedour protocol example. The

symmetry mappings constitute an algebraic group, and this is sufficient to guarantee
that they induce equivalence relations on the set of markings and on the set of

binding elements. In statgpaceswith permutation symmetries the symmetry
mappings are implicitly defined. This is done by specifying howvtilaes of the
individual types used in the CPN model canpgeemuted. The permutationsed
for a given type must be a subgroup of all permutations on that typegdduian-
tees that the permutations indusgmmetry mappings whicform an algebraic
group. Each of the three kinds cdndensed state spaces ftasown set ofproof
rules and its own set a;loundnesgriteria. A detailed description of these can be
found in Vol. 2 of [4].

Ordinary State Spaces

Recs.| Limit | Packets Nodes Arcs Time
2 2 4 921 1,832 2ecs.
2 3 3 14,025 44,826 2 mins.
2 3 4 35,909 115,676 9 mins.
3 3 4 22,317 64,684 4 mins.
3 4 2 104,258 427,696 77 mins.
4 4 2 39,617 154,752 14 mins.
4 4 3 172,581 671,948 3 hours
5 5 2 486,767 2,392,458
6 6 2 5,917,145 35,068,448
7 7 2 71,479,607 495,935,350

Condensed State Spaces

Recs.| Limit | Packets Nodes Arcs Time Recs!
2 2 4 477 1.9 924 2.0 3 secs 2
2 3 3 7,037 2.0 22,360 2.0 4 mins 2
2 3 4 17,991 2.0 57,743 2.0 23 mins 2
3 3 4 4,195 5.3 11,280 5.7 2 mins 6
3 4 2 18,253 5.7 72,929 5.9 31 mins 6
4 4 2 2,559 155 8,085 19.1 1 mins. 24
4 4 3 9,888/ 17.5 32,963 20.4 8 mins 24
5 5 2 8,387 58.0 31,110 76.9 8 mins. 120
6 6 2 24,122/ 245.3 101,240 346,41 hour 720
7 7 2 62,625 1,141 290,018 1,710 10 hours 5,040

Fig. 35. Sizes of state spaces and condensed state spaces
(using interchanging of receivers)

53

Above, we have illustrated how stedpacedor our protocolcan be condensed
by interchanging the different receivers. However, as show@),inhe statespaces
for our protocol mayalso be condensed usingdéferent equivalencerelation.
Here, we consider two markings to be equivalent, if they are identical when we ig-
nore thevalues of those packets and acknowledgementsatkatold”. A packet is
considered to be old if it has a packetmber which islessthan the value at
NextRec It is easy tocseethat two different oldpackets have the same effesityce
none of them match theurrentvalue of NextRec Analogously, an acknowledge-
ment is considered old if it contains a number whickessthan or equal to the
value atNextSend This means that the acknowledgement will have no effect be-
cause wenever decrease the value MExtSend To illustrate the strength dhis
equivalence relation, Fig. 36 shows gires of some staspacesand the timeused
to construct them. All statgpacesare for asinglereceiver. The twacondensation
techniques illustrated in Figs. 35 and 36 can be combined with each other, and with
other condensation techniques. Theoretical and practical work with this integration
is in progress, but outside the scope of this paper.

Ordinary State Spaces
Limit Nodes Arcs Time
1 33 44 « 1 sec.
2 293 764 1 sec.
3 1,829 6,860 @ecs.
4 9,025 43,124 56ecs.
5 37,477 213,902 11 mins.
6 136,107 891,830 2 hours
Condensed State Spaces
Limit Nodes Arcs Time

1 33 1.0 44 1.0 « 1 sec.
2 155 1.9 383 2.0 1 sec.
3 492 3.7 1,632 4.2 gecs.
4 1,260 7.1 5,019 8.6 Xecs.
5 2,803 11.2 12,685 16.9 3 mins.
6 5,635 24.2 28,044 31.8 9 mins.
7 10,488 -- 56,203 29 mins.
8 18,366 -- 104,442 81 mins.
9 30,605 -- 182,754 3 hours
10 48,939 -- 304,445 8 hours

Fig. 36. Sizes of state spaces and
(using equivalence relation for “old” packets and acknowledgements)

condensed state spaces

54

7 Conclusions

Below, we list a number of reasons for using CP-nets. We do not claim that CP-nets
are superior to all other modelling languag8sch claimsare, in our opinion,
made far too often — and they nearly always turn out to be ridiculous. However, we
do think that forsome purposes CP-nets are extremely useful, andttiggther

with some of the other modelling languages, they should be a standard part of the
repertoire of advanced system designers and system analysts.

1. CP-nets have a graphical representatidine graphical form is intuitively
very appealing. It is vergasy tounderstand and grasp — evien people who are
not familiar with the details of CP-nets. This is due to the fact that CPN diagrams
resemble many of the informal drawings that designers and engineerswmiske
they construct and analyse a system.

2. CP-nets have a well-defined semantidich unambiguously defines the be-
haviour of eachCP-net.The presence of the semantics makes it possibimpte-
ment simulators for CP-nets, and it also forms the foundation for the famadj-
sis methods.

3. CP-nets are very general and can be used to describe a large varigiffert
ent systemsThe applications of CP-nets ranffem informal systems (such as the
description of work processes) to formajistems (such as communicatiproto-
cols). They also rangom softwaresystems (such as distributedjorithms) to
hardware systems (such as VLSI chips). Excerpts from a number of industrial CPN
models can be found in Vol. 3 of [4]. They cover a wide range of application areas.

4. CP-nets have very few, but powerful, primitivEse definition of CP-nets is
rather short and it builds upon standard concepts which many system modellers al-
ready know from simple mathematics and programming languages. This means that
it is relatively easy tolearn touse CP-nets. However, the smallmber ofprimi-
tives also means that it is possible to develop strong analysis methods.

5. CP-nets have an explicit description of bethtes andactions.This is in con-
trast to mostsystem description languages which desceliber thestates or the
actions — but not both. Using CP-nets, the reader may easily change the point of fo-
cus from states to actions, or vice versa.

6. CP-nets have a semantiwbich builds upon true concurrenggstead of in-
terleaving.In an interleavingsemantics it is impossible to have two actions in the
same step, and thesncurrency onlymeans that the actions caocur aftereach
other, in any order. A true-concurrency semantics is easier to work viidtatise
it is closer to the way human beings think about concurrent actions.

7. CP-netsoffer hierarchical descriptionsThis means that we can construct a
large CP-net by relating a number of small CP-nets to etsdr, in a well-defined
way. The hierarchy constructs of CP-nets play a role similar to that of subroutines,
procedures and modules pfogramminglanguages. The existence loferarchical
CP-nets makes it possible to model large systems in a manageable and modular way.

55

8. CP-nets integrate the description of contaold synchronisation with the de-
scription of data manipulationiThis means that on a single sheepaper it can be
seen what thenvironment, enabling conditions and effects of an action Megy
other graphical description languages work with graphs that only describe the envi-
ronment of an action — while the detailed behaviour is specified separately (often by
means of unstructured prose).

9. CP-nets can be extended with a time conCHps means that it is possible to
use the same modelling languafye the specification/validation of functional/
logical properties (such adbsence of deadlock) aqekrformance propertieéuch
as throughput, bottlenecks and waiting times).

10. CP-nets are stabl®wards minorchanges ofthe modelledsystem.This is
proved by many practical experiences anchéans that small modifications of the
modelled system do not completely change thecture of the CP-net. Iparticu-
lar, it is possible to add a new sequential process without changing teeutttre
representing existing processes.

11. CP-nets offer interactive simulations where the results are preseinésdly
on the CPN diagramrlhe simulation makes it possible to debug a large model while
it is being constructed — analogously to a gpoolgrammer debugginthe individ-
ual parts of gorogram as héinishes them. The data values of the moviakens
can be inspected.

12. CP-nets have mumber of formaknalysismethods by which properties of
CP-nets can be prove@he two most important analysis methods are known as state
spaces and place invariants. The first of these is described in this papesecdhd
is very similar to the use of invariants in program verification.

13. CP-nets have an elaborated setcomputer tools supporting their drawing,
simulationand formal analysis.This makes it possible to handle evange nets
without drowning in details and without making trivial calculatemors. The ex-
istence of such computer tools is very important for the practical use of CP-nets.

Acknowledgements

Many students and colleagues —particular at Aarhus University andeta Soft-

ware — have influenced the development of CP-nets, #irefysis methods and
their tool support. The development has been supported by several fgpantthe
Danish Natural Science Research Council. A more detailed description of individual
contributions can be found in the prefaces of [4].

56

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

K. JensenColoured Petri Nets: A High-level Languaf® SystemDesign
and Analysis.In: G. Rozenberg (ed.Advances inPetri Nets 1990 Lecture
Notes in Computer SenceVol. 483, Springer-Verlag 1991, 342—416. Also
in: K. Jenserand G. Rozenberg (eds.): High-leveétri Nets. Theory and
Application, Springer-Verlag, 1991, 44 -122.

K. JensenAn Introduction to the Theoretical Aspects of Coloured Petri Nets.
In: JJW. de Bakker, W.-P. de Roevds, Rozenberg (eds.): A Decade of
Concurrency, Lecture Notes in CompugienceVol. 803, Springer-Verlag
1994, 230-272.

K. Jensen:Condensed State Spacdes Symmetrical Coloured Petri Nets.
Formal Methods in System Design 2996), Kluwer Academic Publishers,
7-40.

K. Jensen:Coloured Petri Nets.Basic ConceptsAnalysis Methods and
Practical Use.Vol. 1: Basic Concepts, 1992. Vol. 2: Analysis Methd394.

Vol. 3: Practical Use, 1997. Monographs in Theoretical Computer Science,
Springer-Verlag.

K. Jensen, et aDesign/CPN ManualsMeta SoftwareCorporation and De-
partment of Computer Science, University of Aarhus, Denmark. Onténe
sion: http://www. daimi.aau.dk/designCPN/.

J.B. Jagrgensen, L.M. Kristensevierification of Coloured Petri Netblsing
State Spacewith EquivalenceClassesIn: B. Farwer, D.Moldt and M-O.
Stehr (eds.): Proceedings of Workshop on Reéis in SystenEngineering
(PNSE'97) Modelling, Verification, and Validation, HamburGermany,
Publication No. 205, Universitat Hamburg, Fachberich Informatik, 1997,
20-31.

R. Milner, R. Harper, M. TofteThe Definition ofStandard ML.MIT Press,
1990.

R. Milner, M. Tofte:Commentary on Standard MMIT Press, 1991.

L. Paulson:ML for the Working ProgrammeiCambridge University Press,
1991.

Petri Net WWW page&JRL: http://www.daimi.aau.dk/PetriNets/.

