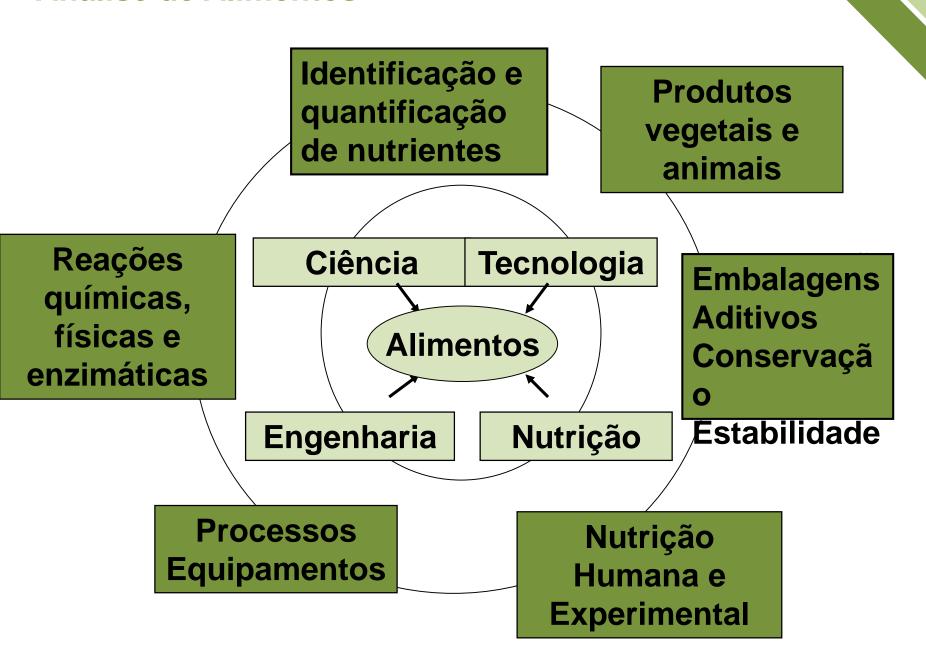
Análise de Alimentos II

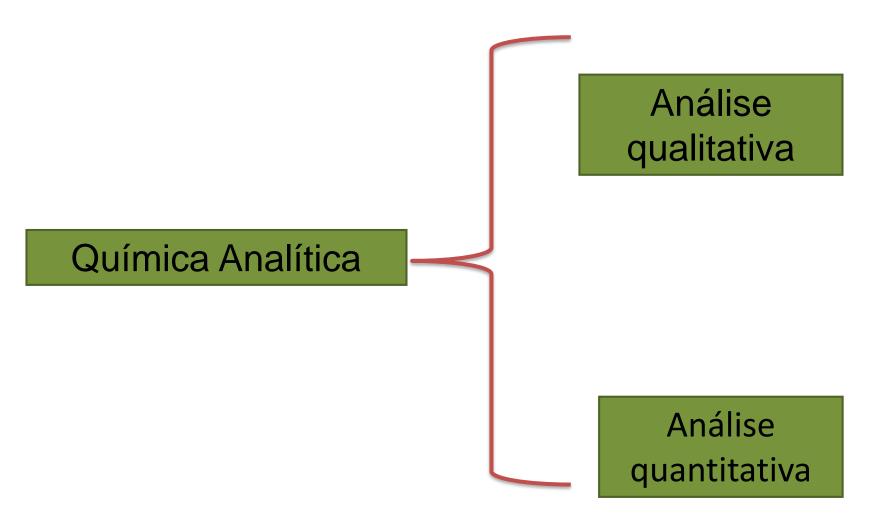
Capítulo 1: Aspectos gerais


Prof^a Dr^a Rosemary Aparecida de Carvalho

Pirassununga/SP Agosto/2017

Visão geral

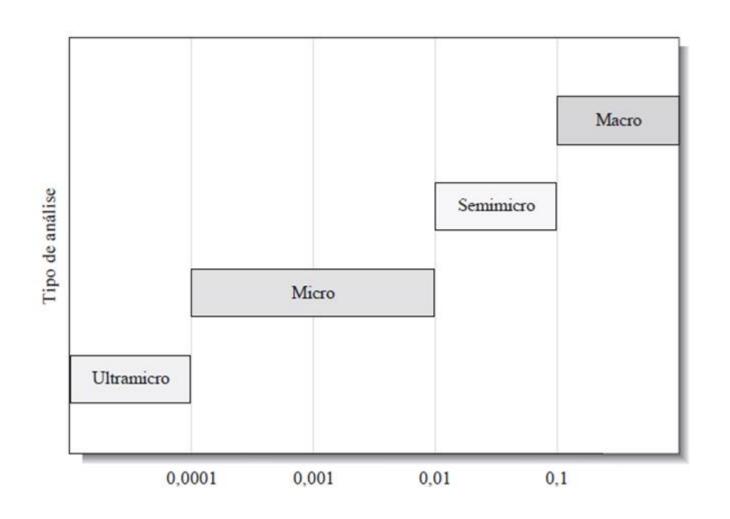
- - Envolve: separação, identificação e quantificação de componentes de uma amostra.
 - Desenvolvimento de métodos: determinação da composição química de materiais (amostras) e estudo da teoria envolvida.


Análise de Alimentos

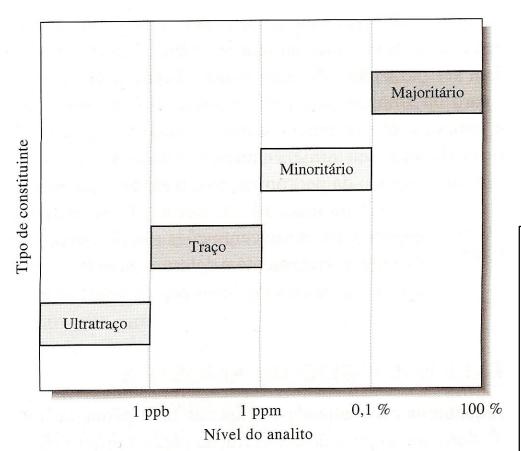
Aplicações

- Controle de qualidade (fabricação e estocagem do alimento processado).
- Caracterização de alimentos in natura:
 alimentos novos e desconhecidos
- Pesquisa de novas metodologias analíticas.
- Pesquisa de novos produtos.
- Controle de qualidade dos produtos existentes.

Tipos de análise


Tipos de análise Exercício extra sala

Análise qualitativa


Análise quantitativa

- Procurar em artigos científicos ou análises de rotina em indústrias
- Preparar um slide por grupo contendo referências utilizadas
- Será escolhido um membro do grupo para apresentação

Análises classificadas de acordo com a dimensão da amostra

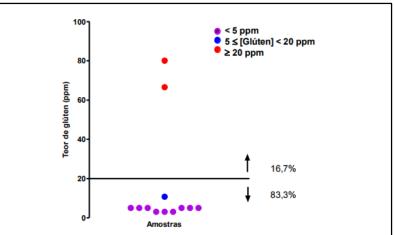
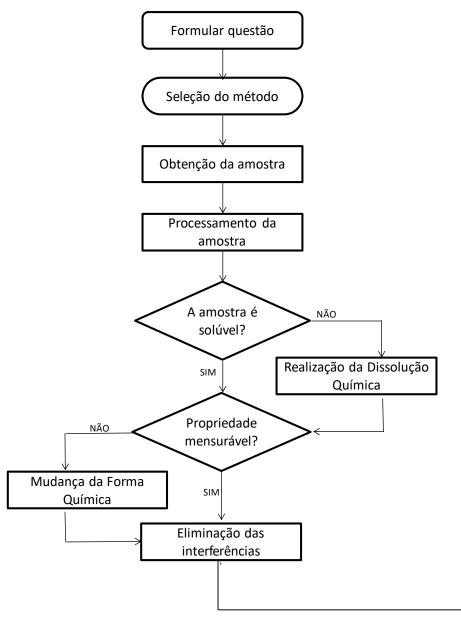

Análises classificadas de acordo com a concentração do analito

Tabela 3. Deposição de resíduos de aflatoxina, no figado e na carcaça de alevinos de jundiá, alimentados por 45 dias no experimento I, e por 35 dias no experimento II, com rações com diferentes concentrações (ppb kg⁻¹ de ração) de um pool de aflatoxinas.

Resíduo de aflatoxina B1 (ppb kg-1de tecido)			
	Exper	imento I	nento I
0	41	90	204
Nd	Nd	Nd	Nd
Nd	Nd	1,0	6,1
Experimento II			
0	350	757	1.177
Nd	1,6	4,0	12,9
Nd	1,8	3,1	6,7
	Nd 0 Nd	0 41 Nd Nd Nd Nd Experi	Nd Nd Nd Nd 1,0 Experimento II 0 350 757 Nd 1,6 4,0


Fonte: LOPES et al., 2005.

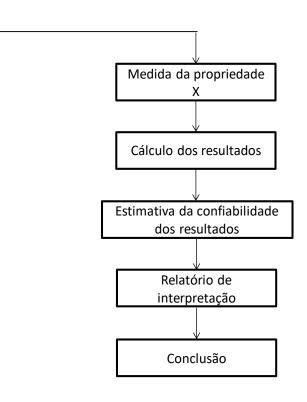
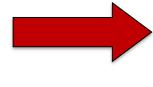


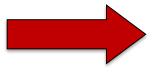
Gráfico 3 - Quantificação do glúten nos alimentos com rotulagem de "contem glúten" (grupo CG).

Fonte: SILVA, 2010.

Etapas gerais em uma análise química



Formular a questão

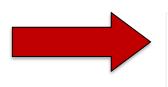

Propriedades Físicas

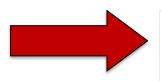
http://envolverde.cartacapital.com.br/onu-e-governoscombatem-ingestao-de-sodio-e-alimentos-processados/

Análises Químicas

Concentraçã o de ferro

Concentraçã o de sódio




http://envolverde.cartac apital.com.br/onu-egovernos-combatemingestao-de-sodio-ealimentos-processados/

http://envolverde.cartac apital.com.br/onu-egovernos-combatemingestao-de-sodio-ealimentos-processados/

Concentração de vitaminas

Concentração de proteínas

Selecionar procedimentos analíticos

1. Quantidade de amostra disponível:

Classificação para os métodos analíticos de acordo com o tamanho da amostra:

Classificação	Tamanho da amostra	Tipo de métodos	
Macro	≥ 0,1 g	Convencionais	
Meso (Semimicro)	10 – 100 mg		
Micro	1,0 – 10 mg		
Submicro	0,1 – 1 mg	Instrumentais	
Ultramicro	≤ 0,1 mg		
Traços	100 a 10000 μm (ppm)		
Microtraços	10 ⁻⁷ – 10 ⁻⁴ μm		
Nanotraços	$10^{-10} - 10^{-7} \mu m$		

2. Quantidade do componente analisado:

Classificação dos componentes em relação ao peso total da amostra:

Maiores: >1%

• Menores: **0,01 – 1**%

• Micro: <0,01%

Traços: (ppm e ppb)

Métodos
Convencionais
gravimetria e
volumetria

Métodos Instrumentais

equipamentos (pHmetro, espectrofotômetro, HPLC, GC, NIRs...)

3. Exatidão requerida:

Métodos clássicos: exatidão de até **99,9%** quando o analito encontra-se em mais de 10% na amostra.

Em quantidades <10% a exatidão cai significativamente, necessitando de **Métodos mais exatos e sofisticados**.

4. Composição química da amostra: presença de interferentes.

- Determinação de um componente predominante não oferece grandes dificuldades.
- Material de composição complexa necessidade de efetuar a separação dos interferentes potenciais antes da medida.

- **5. Recursos disponíveis:** nem sempre é possível utilizar o melhor método:
 - \$ Custo
 - Equipamento
 - **Tempo**

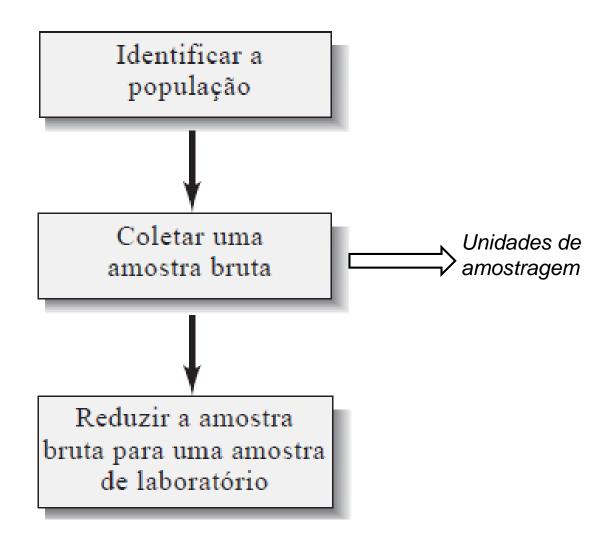
- Reagente

6. Número de amostras a analisar:

Muitas amostras – pode-se escolher métodos que requerem operações mais demoradas e trabalhosas, como a calibração de equipamentos, montagem de aparelhos e a preparação de reagentes, pois o custo destas operações se distribui sobre o grande número de amostras a analisar;

Poucas amostras – são preferíveis os métodos analíticos que permitem reduzir ao mínimo os preparativos preliminares e o custo da análise, ainda que o mesmo seja mais trabalhoso.

Exemplo de metodologias padronizadas


- AOAC (Official Analytical Chemists International): consiste no mais conhecidos e um dos mais completos compendium de análise de alimentos, o qual contém praticamente todo o tipo de análise (engloba produtos em geral) que se deseja realizar em alimentos;
- AACC(American Association of Cereal Chemists): consiste no compendium específico de análise de cereais e seus subprodutos;
- AOCS (American Oil Chemists' Society): consiste no compendium específico de análise de óleos, gorduras e seus subprodutos;

- Standart Methods for the Examination of Dairy Products: consiste no compedium específico de análise de leite e seus subprodutos;
- Standart Methods for Examination of Water and Wastewater: consiste no compedium específico de análise de água e resíduos aquosos.
- Instituto Adolfo Lutz
- LANARA (Laboratório Nacional de Referência Animal)
- Metodologias específicas descritas em Resoluções e Instruções Normativas (Ministério da Agricultura, Ministério da Saúde e ANVISA – Agência Nacional de Vigilância Sanitária)

Amostragem

- Objetivo: coletar uma porção representativa para análise (uma imagem mais próxima do universo estudado);
- Simples ou complexa: certeza de que a amostra de laboratório é representativa do todo antes de realizar a análise"
- Etapa mais difícil e a fonte dos maiores erros. A confiabilidade dos resultados finais da análise nunca será maior que a confiabilidade da etapa de

Amostragem



Amostragem

Preparação da Amostra

Exemplo 1: Determinação de carotenóides em amostra de abóbora

- Analise em espectofotômetro (450 nm)
- Curva de calibração utilizando β-caroteno como padrão
- Resultados expressos em base seca (mg de β-caroteno /100 g de amostra)

Preparação da Amostra

Exemplo 2: Extração de capsaicina em pimenta chili

Extração em fase sólida

https://www.youtube.com/watch?v=CYyDVZPaZng

Relatório de Interpretação dos resultados

A obtenção de resultados analíticos confiáveis não representa o final da análise química: o objetivo da análise é sempre alcançar alguma interpretação ou decisão.

Importante: replicatas para análises químicas devem sempre ser realizadas.

Table 5

The antioxidant capacities of mango seed kernel obtained from different extraction and hydrolysis conditions. A

Conditions	Antioxidant efficiency Ferric thiocyanate method (1/AA ₅₀)	Antiradical activity DPPH (A _{AR} , 1/EC ₅₀)	ABTS activity (mmol of trolox/g)
Shaking (method 1) Refluxing (method 2) Acid hydrolysis (method 3)	0.014±0.000 ^a 0.016±0.000 ^b 0.019±0.000 ^c	1.75 (0.15°) 2.60 ± 0.24° 4.16 ± 0.51°	1.03 ± 0.02 ^a 1.14 ± 0.02 ^b 1.41 ± 0.01 ^c
	(standard deviation). erscripts mean significant differences (P < 0.05) between conditional sample of plant parts.	tions,	

Valor

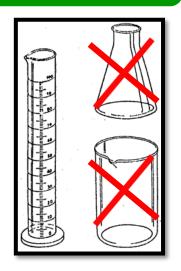
Desvio Padrão

Tipos de Erros

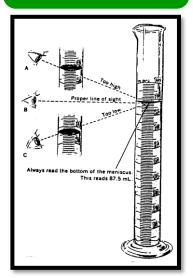
Toda medida possui uma certa incerteza que é denominada erro experimental.

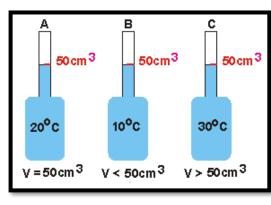
Portanto: os resultados de uma análise podem ser expressos com um alto ou com um baixo grau de confiança, mas nunca com completa certeza.

Tipos de Erros

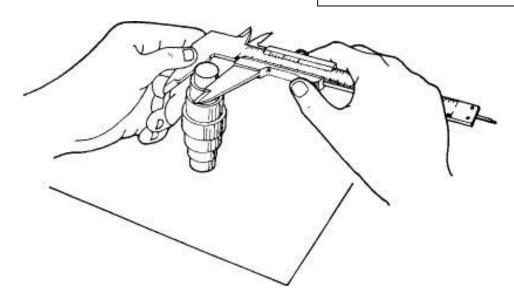

Classificação dos erros experimentais: erro sistemático e erro aleatório.

Erros sistemáticos (determinados)


Instrumentais


dos Métodos

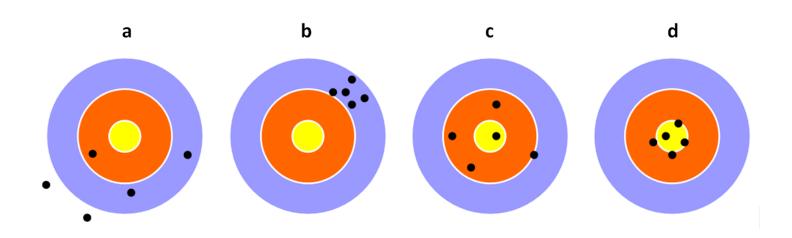
Pessoais


Ambientais

Tipos de Erros

Erros ____aleatórios

Resultante do efeito de variáveis que não estão controladas (e que muitas vezes não pode ser controlada).


Precisão e Exatidão

Precisão

Medida da reprodutividade de um resultado.

Exatidão

Se refere a quão próximo um valor de uma medida está do valor real.

PRECISÃO: NÃO EXATIDÃO: NÃO

PRECISÃO: SIM EXATIDÃO: NÃO

PRECISÃO: NÃO EXATIDÃO: SIM

PRECISÃO: SIM EXATIDÃO: SIM

Exemplos de Erros

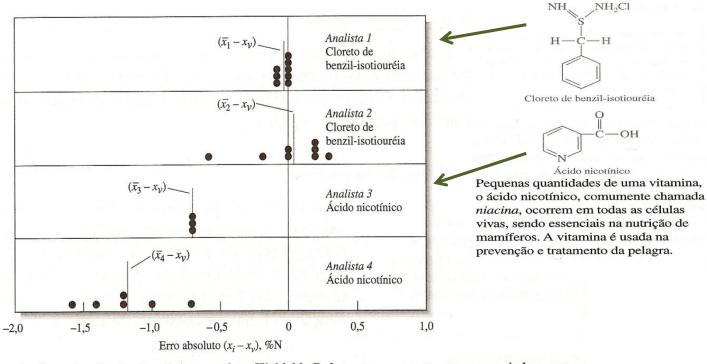
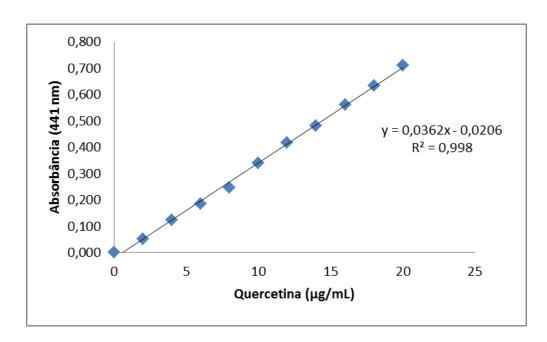



Figura 5-3 Erro absoluto na determinação de nitrogênio por micro-Kjeldahl. Cada ponto representa o erro associado a uma finica determinação. Cada linha vertical rotulada $(x_i - x_v)$ representa o desvio médio absoluto do conjunto de dados, do valor verdadeiro. (Dados de C. O. Willits; e C. L. Ogg, *J. Assoc. Offic. Anal. Chem.*, 1949, n. 32, 561. Com permissão.)

Curvas de calibração

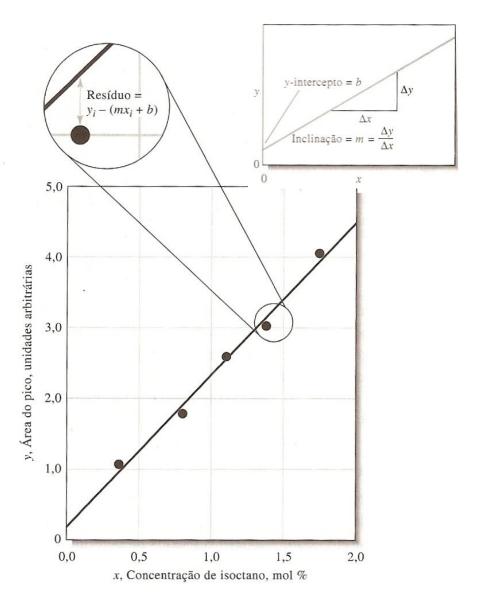
A - Padrão externo

- Preparado separadamente
- Calibrar instrumentos e procedimentos
- Não há efeitos de interferência de componentes da matriz

Exemplo: curva de calibração para análise de flavonoides utilizando quercetina como padrão.

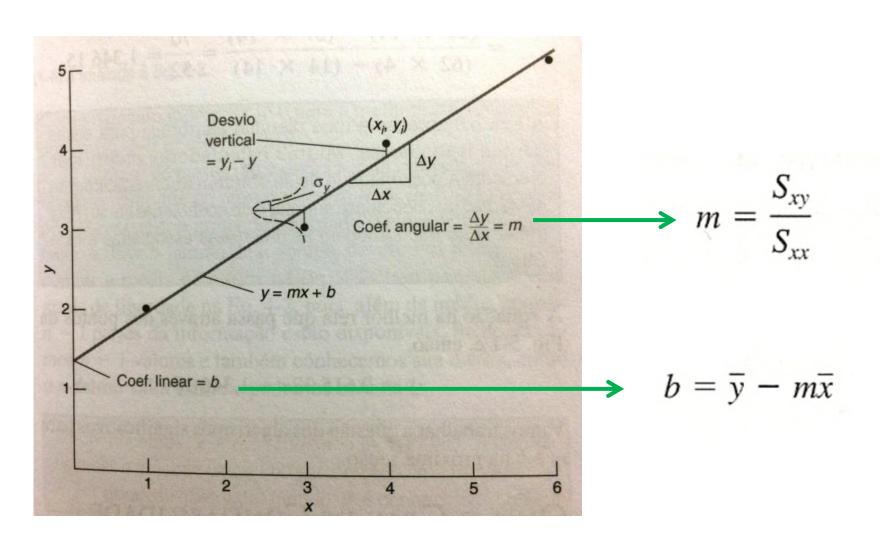
A - Padrão externo

Série de padrões externos contendo o analito (concentrações conhecidas)



A calibração é realizada obtendo-se o sinal (absorbância, área do pico, altura, outros)

Curva de calibração é preparada (forma: gráfico ou ajuste por meio de equação matemática)

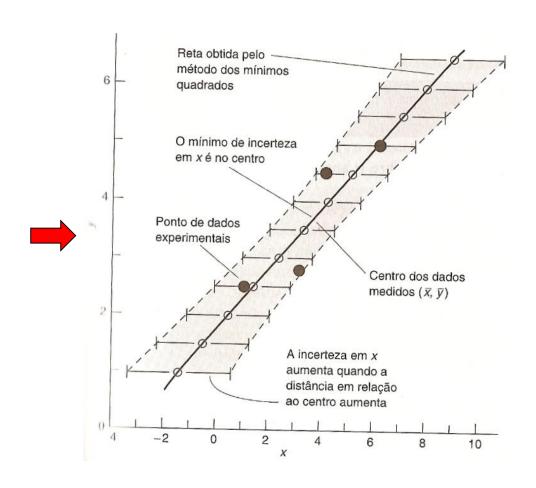

Método dos mínimos quadrados

CONSIDERAÇÕES

- ✓ Existe relação verdadeiramente linear entre a resposta medida e a concentração do padrão.
- ✓ Qualquer desvios de pontos individuais da linha reta é decorrente de erros na medida.

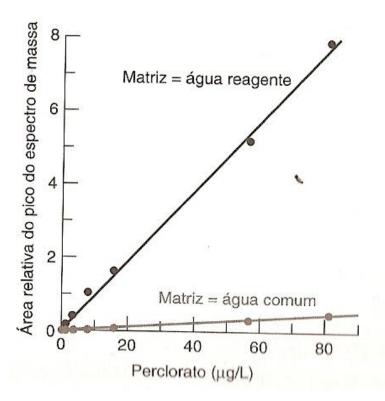
Quantidades úteis

Considerações


Normalmente preferese procedimentos de calibração com uma resposta linear

Considerações

Existe alguma restrição para o cálculo de uma concentração de analito desconhecida utilizandose uma curva de calibração?


B - Adição de padrão

- Quando adiciona-se um volume pequeno de padrão concentrado a uma amostra desconhecida, a concentração da matriz não muda.
- A partir do aumento de sinal deduzimos quanto de analito estava presente na amostra original.
- Extremamente útil quando a composição da amostra é desconhecida ou complexa e afeta o sinal do analito.
 - → Matriz: tudo que existe na amostra além do analito.
- → Efeito da matriz: mudança no sinal analítico causado por qualquer coisa na amostra diferente do analito.

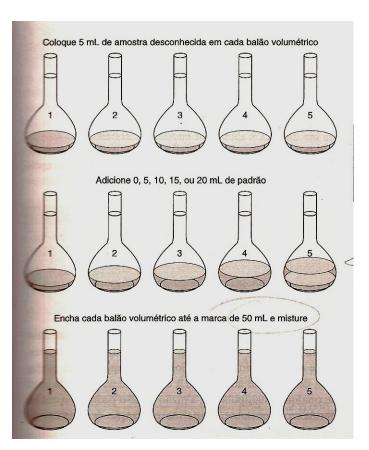
B – Adição de Padrão

Exemplo do efeito de matriz: análise de perclorato (CIO4⁻)

Concentração de perclorato > 1,8μg/L: pode reduzir a produção do hormônio da tireóide.
 Considerações

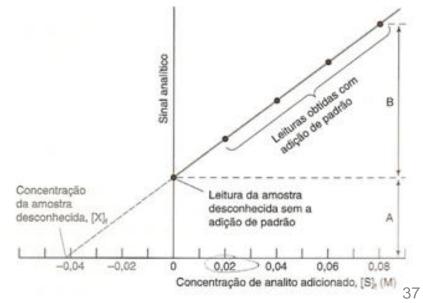
- √ Águas provenientes de diferentes fontes possuem concentrações diferentes de ânions.
- ✓ Não existe uma maneira de produzir, para esta análise, uma curva de calibração que se aplique a qualquer tipo de água

B – Adição de Padrão


Tipos de métodos de adição do padrão

- A) Método de adição de padrão de um único ponto.
- \triangleright Amostra com concentração inicial desconhecida de analito $[X_i]$: intensidade do sinal I_x
- Concentração conhecida de padrão (S) é adicionada a uma alíquota da amostra: intensidade do sinal I_{S+x} é observada.

 $\frac{concentração \ de \ analito \ na \ solução \ inicial}{concentração \ de \ analito \ mais \ padrão \ na \ solução \ final} \ = \ \frac{sinal \ da \ solução \ inicial}{sinal \ da \ solução \ final}$


B – Adição de Padrão

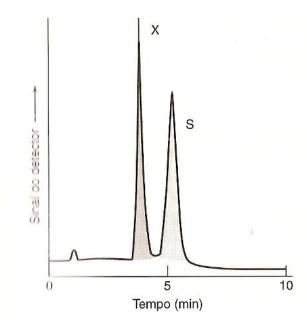
B) Método das adições múltiplas.

Adição de quantidades conhecidas de uma solução padrão em várias porções da amostra para um volume constante.

 $C_{padrão} = 0,200M$

C - Padrão Interno

- ✓ Quantidade conhecida de uma espécie que atua como referência é adicionada a todas as amostras, padrões e brancos.
- ✓ São especialmente úteis para análises em que a quantidade de amostra analisada ou a resposta do instrumento varia ligeiramente a cada análise por razões difíceis de se controlar.
- ✓ Quando a resposta relativa de um instrumento ao analito e ao padrão permanece constante num determinado intervalo dizemos que a resposta é linear


C – Padrão Interno

- ✓ Pode ter vários tipos de erros sistemáticos e aleatórios.
- ✓ Se os sinais do analito e do padrão interno respondem proporcionalmente às flutuações aleatórias do método instrumental, a razão entre esses sinais é independente destas flutuações.
- ✓ Se os dois sinais são afetados da mesma maneira pelos efeitos da matriz , o efeito da matriz também é minimizado.

C - Padrão Interno

Separação cromatográfica da amostra desconhecida (X) e padrão interno (S).

Fator de resposta: $\frac{\text{Área do sinal}}{\text{do analito}} = F \left(\frac{\text{área do sinal}}{\text{do padrão}} \right)$ $\frac{\text{do analito}}{\text{do analito}} = F \left(\frac{\text{do padrão}}{\text{concentração}} \right)$

$$\frac{A_{X}}{[X]} = F\left(\frac{A_{S}}{[S]}\right)$$

Considerações sobre Padrões

	Diferenças
Padrão externo	 Apenas o padrão utilizado para construção da curva de calibração.
Adição de padrão	 O padrão é a mesma substância que o analito. Quantidades conhecidas do padrão são adicionados a amostra.
Padrão interno	 O padrão é uma substância diferente do analito. O padrão é adicionado a amostra desconhecida O sinal do analito é comparado com o sinal do padrão interno.