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It is now evident that noncoding RNAs play key roles in regulatory networks

determining cell fate and behavior, in a myriad of different conditions, and

across all species. Among these noncoding RNAs are short RNAs, such as

MicroRNAs, snoRNAs, and Piwi-interacting RNAs, and the functions of

those are relatively well understood. Other noncoding RNAs are longer, and

their modes of action and functions are also increasingly explored and deci-

phered. Short RNAs and long noncoding RNAs (lncRNAs) interact with each

other with reciprocal consequences for their fates and functions. LncRNAs

serve as precursors for many types of small RNAs and, therefore, the path-

ways for small RNA biogenesis can impinge upon the fate of lncRNAs. In

addition, lncRNA expression can be repressed by small RNAs, and lncRNAs

can affect small RNA activity and abundance through competition for binding

or by triggering small RNA degradation. Here, I review the known types of

interactions between small and long RNAs, discuss their outcomes, and bring

representative examples from studies in mammals.
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Studies profiling transcription on a genome-wide level

over the past 15 years showed that regions between

protein-coding genes are frequently transcribed into

RNA molecules of various lengths [1–5]. In addition,

protein-coding genes are alternatively spliced and pro-

duce a variety of isoforms, some of which are unlikely

to encode functional proteins. The majority of stable

noncoding RNAs that are > 200 nt are capped,

spliced, and polyadenylated, and are collectively called

long noncoding RNAs (lncRNAs) [6]. A minority of

lncRNAs are processed into smaller RNAs that carry

out relatively well-defined functions in cells, such as

MicroRNAs (miRNAs), piRNAs, siRNAs, and snoR-

NAs [7–9]. Other types of small noncoding RNAs,

such as snRNAs and tRNAs are typically transcribed

independently [10]. Small RNAs are usually recognized

on the basis of specific sequences and RNA structures

by various proteins and form ribonucleoprotein (RNP)

complexes. For example, the Microprocessor complex

and Dicer recognize short motifs and structural ele-

ments in pri- or pre-miRNAs at various stages of pro-

cessing and Dicer assists loading of the processed

miRNA duplex into the RISC complex [7]. Many of

these RNPs are then guided by the small RNA to

other RNAs that carry short regions of sequence com-

plementarity. For example, miRNAs guide RISC to

RNAs containing seed matches (defined by comple-

mentarity to positions 2–8 of the miRNA), mostly

found in the 30 UTRs of protein-coding genes [11].

snoRNAs, on the other hand, guide complexes that

deposit RNA modifications, such as 20O-methylation

and pseudouridylation, to specific RNA targets, usu-

ally in other noncoding RNAs, such as ribosomal

RNAs [12].

The functions of the vast majority of lncRNAs

remain unknown, but an increasing number is
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implicated in a myriad of biological processes [13–16].
Some lncRNAs are differentially expressed or geneti-

cally perturbed in a variety of human diseases [17,18],

which further increases the interest in understanding

lncRNA functions and mechanism of action. It is clear

that the presently annotated lncRNAs are composed

of a number of families that utilize drastically different

mechanisms, and which currently are all bundled

together under the ‘lncRNA’ title due to our limited

understanding and hence very poor classification abili-

ties. The common modes of action that were proposed

have been reviewed extensively elsewhere [6,19], and

include regulation of gene expression in cis and in

trans, scaffolding of subcellular domains and com-

plexes, and regulation of protein activity and abun-

dance. Here I focus on the interface between lncRNAs

and small RNAs, and the implications of the interac-

tions between them on their functions. Most of the

examples I will present come from mammalian cells,

but the principles are likely applicable to other eukary-

otic species as well, as while lncRNAs evolve fast,

lncRNA features are largely similar in the species that

have been profiled [20]. As known interactions between

various ncRNAs have been recently quite exhaustively

listed elsewhere [21], I will focus here on the general

principles and possible outcomes of those interactions

(Fig. 1) and will not attempt to cover all reported

examples.

Long noncoding RNAs as precursors
for small RNAs

Short RNAs, including miRNAs and snoRNAs, are in

many cases produced from introns or exons of longer

‘hosts’. Some of these hosts are protein-coding genes,

but many are lncRNAs. If the small RNA is processed

from exonic sequence of those hosts, the processing

reaction typically exposes free RNA ends that lead to

rapid exonucleolytic degradation of the host. When

the small RNA is excised from an intron, the host

RNA stability is typically not affected. Recent studies

have assigned small RNA-independent functions for

hosts of snoRNAs [22–25] and miRNAs [26–28]. In

some cases, like H19, the lncRNA function was

described before a miRNA was discovered to be

encoded by the lncRNA locus [29–31]. H19 is also an

intriguing example in which regulated processing of

the host results in different relative abundances of the

host RNA and the encoded small RNA in different

cells [31]. In other cases, specific cellular decay path-

ways target the hosts and limit their accumulation.

For example, nonsense mediated decay [32] was shown

to preferentially degrade snoRNA host genes in the

cytoplasm [33].

Piwi-interacting RNAs (piRNAs), small RNAs

expressed primarily in the germline, are also produced

in many cases from lncRNA precursors [34,35]. In

some cases these lncRNAs are expressed in tissues

where the Piwi pathway is not active without the

lncRNAs being processed into piRNAs. It is thus

likely that lncRNAs that serve as precursors for small

RNAs sometimes function independently, with the

processing event mediating their stability, and poten-

tially offering an opportunity for post-transcriptional

regulation of lncRNA accumulation.

Small RNAs related to termini of long
noncoding RNAs

The vast majority of lncRNAs are capped at their 50

end and polyadenylated at their 30 end, by the same

complexes and proteins that process mRNAs. How-

ever, there are notable exceptions where the termini of

lncRNAs are specified and/or stabilized by pathways

that typically produce small RNAs. For example, the

30 ends of the MALAT1 lncRNA and of the long iso-

form of the NEAT1 lncRNA are formed by cleavage

by RNAse P, that is typically processing the 50 ends of
tRNAs [36]. This cleavage also specifies the 50 end of

tRNA-like small RNAs (called mascRNA in the case

of MALAT1), whose functions remain unknown. The

30 ends of MALAT1 and NEAT1 are then stabilized

by triple–helical structures that include a short genom-

ically encoded poly(A) tail [37,38].

As mentioned above, snoRNAs are occasionally

encoded in introns of lncRNAs. In most cases, the

intron host of the snoRNA is rapidly degraded from

both ends, and the snoRNA is stabilized by proteins

that form the snoRNP complex. In some cases, how-

ever, a single intron can encode two snoRNAs, and

lncRNA as small RNA precursor

Proteins recognizing the small RNA stabilize the lncRNA

Small RNA regulates lncRNA expression

lncRNA regulates small RNA stability

Fig. 1. Modes of possible interactions between small and long

RNAs.

2875FEBS Letters 592 (2018) 2874–2883 ª 2018 Federation of European Biochemical Societies

I. Ulitsky Interactions between short and long ncRNAs



following degradation, lncRNAs with snoRNAs in

both ends are formed, denoted sno-lncRNAs [39].

These lncRNAs are stable, accumulate in the nucleus

and can regulate alternative splicing globally by bind-

ing splicing regulators [39]. Interestingly, most of these

cases occur in the region shown to be critical for the

Prader-Willi Syndrome (PWS), and may be related to

the pathogenesis of this disease. Another sno-lncRNA,

called SLERT was recently shown to act in regulation

of RNA Polymerase I activity though binding DDX21

[40]. In the PWS region, there are also transcripts that

are 50 snoRNA capped and 30 polyadenylated (SPAs).

These are formed when a snoRNP protects the 50 end
of the transcript, allowing RNA polymerase to con-

tinue until a polyadenylation site. SPAs are stable

transcripts and they were also shown to bind several

splicing regulators and regulate alternative splicing

[41].

Regulation of lncRNA expression by
small RNAs

As lncRNAs are largely indistinguishable from

mRNAs on the molecular level, including a cap, a

polyA tail, and introns, it is expected that they would

be also regulated by small RNAs in the same way as

mRNAs. This indeed appears to be the case, and in

some systems, it was shown that such regulation has

interesting consequences for the lncRNA.

In Caenorhabditis elegans, ALG-1 argonaute protein

loaded with the let-7 miRNA binds the pri-let-7 pre-

cursor and promotes its processing, resulting in a posi-

tive feedback loop [42]. Conceptually similarly, in

mammals, miR-709 localizes to the nucleus through an

unknown mechanism and binds through an extensively

complementary sequence to the polycistronic pri-

miRNA of miR-15/16 miRNAs, inhibiting its process-

ing [43].

Extensive complementarity between a miRNA and a

lncRNA can also result in lncRNA cleavage, as first

exemplified by the cleavage of the CDR1as circular

RNA by miR-671 [44]. There are also numerous exam-

ples of lncRNAs that are targeted by miRNAs

through conventional seed sites (recently listed in [21]),

though the functional importance of these interactions

remains mostly unclear. Mechanistically, regulation of

lncRNA by miRNAs presumably occurs through the

same pathway that acts on mRNA targets – recruit-

ment of the cytoplasmic deadenylation complexes, fol-

lowed by decapping and RNA degradation [45]. Two

aspects of lncRNA biology may limit the relevance of

regulation by miRNAs: lncRNAs are typically more

nuclear than mRNAs [46,47], which makes them less

accessible to cytoplasmic RISC complexes, and they

are somewhat less stable (the observed difference in

stability between lncRNAs and mRNAs is variable,

largely due to differences in sets of considered

lncRNAs [48–50]). Less stable RNAs are less suscepti-

ble to regulation by miRNAs [51], and so miRNAs

may have limited impact on expression levels of

lncRNAs as a group.

Small RNAs other than miRNAs can also regulate

lncRNAs accumulation. Many lncRNAs are expressed

specifically in the testis, in particular in late-stage sper-

matocytes [35,52,53], where the piRNA machinery is

also active. The expression of hundreds of these

lncRNAs is increased by more than twofold in the testis

of Piwil1�/� mice which do not express piRNAs [35].

Only a minor fraction of the up-regulated lncRNAs are

piRNA precursors, and the sequences of lincRNAs

up-regulated in Piwil1 null mice match piRNA anti-

sense sequences, suggesting that piRNAs directly

repress some lncRNAs. Similarly, piRNAs were shown

to regulate lncRNA expression in flies [54].

Regulation of small RNA activity by
long noncoding RNAs

While regulation of long RNAs by small RNAs has so

far received relatively limited attention in the scientific

literature, the reverse activity – regulation of small

RNA activity by lncRNAs, has been the subject of

extensive study, and non-negligible controversy, in the

last few years. The main reason for this extensive

interest is the relative ease with which one can predict

possible interactions between lncRNAs and miRNAs,

and the considerable understanding of the functions

and targets of individual miRNAs. Therefore, when

one is faced with the formidable problem of hypothe-

sizing a mode of action or the regulatory targets of a

lncRNA, it is often appealing to propose that the

lncRNA regulates a particular pathway through bind-

ing and affecting the activity of a miRNA. Regulation

of miRNA stability by lncRNAs is also an appealing

mode of action, since turnover of miRNAs remains

quite poorly understood. On the one hand, miRNAs

are typically very stable [55], presumably protected

from general RNA decay pathways by the Argonaute

proteins. On the other hand, developmental transitions

and response to stimuli sometimes result in abrupt

down-regulation of some miRNAs [56–58], suggesting
active and specific turnover, and making target-depen-

dant decay an attractive possibility.

The interest in lncRNAs as potential ‘competing

endogenous RNAs’ (ceRNAs) increased in 2010 follow-

ing a report from the Pandolfi lab that PTENP1, a
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transcribed pseudogene of the PTEN tumor suppressor,

can compete with PTEN mRNA for binding of miR-

NAs [59]. This report also began the skepticism about

this phenomenon, as PTENP1 is expressed at much

lower levels than PTEN [60], and has to complete for

miRNA binding not just with PTEN, but also with tens

of thousands of other binding sites each miRNA has

throughout the transcriptome (Fig. 2). Since individual

miRNA-binding sites confer limited repression, it has

been proposed that multiple shared sites result in more

efficient crosstalk [61,62], but this does not resolve the

stoichiometric concerns about the ‘ceRNA hypothesis’.

Several recent studies used theoretical and experimental

tools to try and address the question of what magni-

tude of changes in abundance of a single RNA species

are required for affecting expression of other genes

through competition for binding of short RNAs. Jens

and Rajewsky [63] estimated ~ 22 700 binding sites

compete for miR-20a binding in unperturbed mono-

cytes. Under these conditions, thousands of new bind-

ing sites need to be introduced for meaningfully

altering the occupancy of miR-20a on any of its targets.

Indeed, artificial ‘miRNA sponges’ introducing such

numbers of sites were shown to lead to increases in

levels of individual targets without markedly affecting

miRNA expression levels [64]. In stark contrast,

changes in expression of endogenous genes, in particu-

lar the typically lowly expressed lncRNAs, almost never

reach levels that are predicted to have regulatory

impact via simple competition for binding.

Consistent with these predictions, an experimental

study in mouse liver and hepatocytes [65] found that

target overexpression that effectively doubles by the

number of available binding sites in the transcriptome

is needed for detectable changes in gene expression by

competition. Specifically, for miR-122, which is

expressed at 1.2 9 105 copies per cell in the liver, addi-

tion of at least ~ 200 000 of copies of the AldoA tar-

get, which contains three potent-binding sites for miR-

122, was required for detectable up-regulation of miR-

122 targets without affecting miR-122 levels. Similar

results were obtained when miR-122 was reduced by

~ 3-fold using antagomiRs, suggesting that miRNA

levels are less important for the threshold of expres-

sion above which competition becomes observable

[65]. In an in vivo setting, 20-fold increase in AldoA

levels, adding thousands of new binding sites, did not

have any detectable effect on miR-122 target expres-

sion levels [65]. These findings were recently corrobo-

rated in a follow-up study using mouse embryonic

stem cells (mESCs) as an additional system and testing

other miRNAs with different abundance ranges [66],

supporting the concept that the threshold above which

a ceRNA can start to influence abundance of other

miRNA targets is determined not by miRNA abun-

dance, but rather by the total number of miRNA-

binding sites, including low-affinity ones, throughout

the transcriptome.

Perhaps the most striking candidate for an endoge-

nous ‘miRNA sponge’ is the CDR1as circular lncRNA

that contains > 60 binding sites for the miR-7 miRNA,

and is expected to be resilient to repression by miR-7

due to its circular structure [67,68]. CDR1as indeed

acts as a miR-7 sponge in artificial settings [67,68], but

loss of CRD1as in mice is surprisingly associated with

decrease, rather than increase, in miR-7 levels in the

brain, and with increased levels of miR-7 targets [69],

suggesting that even the abundant CDR1as with its

dozens of high affinity sites for a single miRNA, likely

does not act as a miRNA sponge in the endogenous

TDMD - Target-directed miRNA decay

5'

lncRNA/mRNA 
target

Extensive 
complementarity

miRNA unloading/degradation

lncRNA/mRNA 
target

Competition

Binding sites throughout the 
transcriptome (typically >10 000)

Tailing+Trimming

RISC

ceRNA - Competing endogenous RNA

Fig. 2. Left: schematic illustration of the ceRNA activity, in which a single target (potentially with multiple binding sites) needs to be very

abundant to effectively compete with many other miRNA-binding sites throughout the transcriptome. Right: schematic illustration of TDMD,

in which a target harboring a highly complementary miRNA-binding site triggers miRNA decay.

2877FEBS Letters 592 (2018) 2874–2883 ª 2018 Federation of European Biochemical Societies

I. Ulitsky Interactions between short and long ncRNAs



setting. The reduction in miR-7 expression in CDR1as

null mice could be related to the activity of Cyrano

lncRNA, as described below.

Despite the doubt cast on the prevalence of ceRNA

activity, there is a rapidly growing number of studies

reporting ceRNA effect of individual lncRNAs. Most

of these studies are performed in cancer cell lines. For

example, as of March 2018, there are at least 17 stud-

ies reporting ceRNA activity of PVT1 [70–86], a mod-

erately abundant lncRNA, that is almost exclusively

nuclear [87,88], and therefore not expected to effec-

tively bind miRNAs. Strikingly, these studies collec-

tively implicate 10 different miRNAs as being

‘sponged’ by PVT1. The experimental evidence in such

studies is typically limited to over-expression of the

competitor (which typically pushes its levels way above

the physiologically relevant levels), or knockdown fol-

lowed by qRT-PCR of selected targets, which is typi-

cally difficult to interpret, as changes in expression can

result from other, miRNA-unrelated effects [63]. The

suggested ‘gold-standard’ for proving ceRNA activity

has been editing of endogenous miRNA target sites

(e.g., using CRISPR/Cas9) [63,66] and comprehensive

evaluation of the effect on other targets (e.g., by

RNA-seq followed by Sylamer analysis [89], testing for

specific de-repression of the miRNA targets), but to

the best of my knowledge, such experiments have not

yet been performed for any ceRNA candidate.

LncRNAs that degrade miRNAs
through extensively complementary-
binding sites

One way through which a relatively non-abundant

lncRNA can nevertheless regulate the activity of typi-

cally more abundant miRNAs is through binding sites

with special sequences or pairing topology, that would

trigger miRNA degradation upon binding [90]. Indeed,

the first example of lncRNAs acting on a miRNA was

the IPS1 lncRNA in plants that binds the phosphate

starvation-induced miR-399 through an extensively

complementary, yet uncleavable binding site [91]. This

activity leads to up-regulation of PHO2, which is an

endogenous target of miR-399. The same mechanism

was used to design inhibitors for other plant miRNAs

[91].

Although animal miRNAs typically do not act

through target cleavage and rarely have extensive com-

plementarity with their targets, there is accumulating

evidence that such target sites can efficiently affect

miRNA accumulation in animal cells. In 2010, Phil

Zamore and colleagues have shown through experi-

ments in flies that binding of miRNAs loaded in Ago1

to targets with extensive sequence complementarity

triggers tailing of the miRNA with non-templated

nucleotides (mostly adenines and uridines), miRNA

trimming, and eventual miRNA degradation [92], a

phenomenon referred to as target RNA-directed

miRNA degradation, or TDMD (Fig. 2). Similar

results were shown in HeLa cells in vitro [92]. Artificial

constructs containing highly complementary miRNA-

binding sites were shown to direct efficient miRNA

destruction in liver cells and mouse neurons, which

was also correlated with tailing and trimming of the

miRNA [93,94].

Recent studies have described endogenous targets

that cause strong TDMD through extensively comple-

mentary sites. The lab of Alena Shkumatava found that

a conserved RNA region, part of the libra lncRNA in

fish and of the 30 UTR of Nrep protein-coding gene in

mammals [95,96], binds and degrades miR-29b. This

has functional consequences in vivo, as animal behavior

is altered in zebrafish and mouse mutants where this

binding site is lost [96]. A preprint from the Bartel lab

[97] describes similar activity by the highly conserved

Cyrano (OIP5-AS1) lncRNA, which harbors an exten-

sively complementary binding site for miR-7 [95] (an

additional recent study suggested that Cyrano inhibits

miR-7 also in mESCs [98], but changes in miR-7 abun-

dance were not demonstrated in those cells).

There appear to be numerous parallels between the

TDMD caused by Nrep and Cyrano. Both RNAs are

quite abundant and predominantly cytoplasmic [96–98]
and both contain unusually complementary sites – the

highly conserved region in Cyrano contains an 8mer

pairing to the 50 of miR-7 and another 13 bases pair-

ing to its 30, thus pairing with all bases of miR-7

except 9 and 10 (Fig. 3) [95,97]. Nrep/libra conserved

region pairs with 11 bases at the 50 end of miR-29 and

nine bases at the 30 end, thus binding all bases of

Cyrano  AAGAACAACAAAAUCACCAAUGUCUUCCAUU 3′
           ||||||||||||||  ||||||||||
miR-7      UUGUUGUUUUAGUG--AUCAGAAGGU   5′

Nrep    UGAGACACUGAU---GAAUGGUGCUAUUUU 3′
           |||||||||   |||||||||||
miR-29b    UUGUGACUAAAGUUUACCACGAU     5′

UL114-145 AATUCCUGCACUAAAAAAAGAAGCACUUUACG 3′
              ||||||||       ||||||||||
miR-17     GAUGGACGUGACA-----UUCGUGAAAAC
miR-20a    GAUGGACGUGAUA-----UUCGUGAAAAC 5′

Fig. 3. Base pairing patterns between targets (top) and miRNA

(bottom) that result in TDMD. The seed pairing is highlighted in

bold.
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miR-29b except 12–14 (Fig. 3). These binding sites

lead to very efficient mRNA degradation. Scrambling

of the miR-29b-binding site in Nrep leads to a sharp

increase in miR-29b levels in the cerebellar granule cell

layer in mice, and ~ 5-fold increase of miR-29b in

in vitro differentiated neuronal progenitors [96]. Loss

of Cyrano or small changes in the seed of the miR-7-

binding site leads to a > 40-fold increase in mature

miR-7 levels in the mouse cerebellum and appreciable

increases in other tissues where miR-7 is expressed, as

well as in cultured neurons from Cyrano-deficient ani-

mals [97]. In both cases, pri- or pre-miRNA levels are

not affected. The activity of Cyrano appears much

more efficient than other described examples of

TDMD when copy numbers are considered, as a single

molecule of Cyrano accounts for loss of ~ 17 molecules

of miR-7, presumably because of other elements in this

lncRNA, or because of the specific neuronal context in

which it is active [97]. In any case, consistent with pre-

vious results [93], a target with an extensively comple-

mentary binding site can cause degradation of multiple

miRNA molecules. Cyrano activity is associated with

tailing and trimming of miR-7, though tailing does not

appear to contribute to trimming or miR-7 degrada-

tion [97]. Nrep is required for miR-29b trimming (no

substantial tailing was observed), and it is not clear if

this trimming is needed for miR-29b degradation [96].

Interestingly, the main consequence of Cyrano loss

is reduction in the levels of Cdr1as, a circular RNA,

which as mentioned above harbors a large number of

miR-7 sites. We observed a similar reduction with

transient knockdown of Cyrano using siRNAs in SH-

Y5Y cells (H. Hezroni and I. Ulitsky, unpublished

results). The mechanism through which this reduction

in Cdr1as occurs is still largely unclear, but it appears

to involve miR-671 that cleaves Cdr1as [97].

TDMD is also used by some viral ncRNAs, includ-

ing the Herpesvirus saimiri HSUR1 ncRNA and the

murine cytomegalovirus (MCMV) m169 mRNA both

containing binding sites for miR-27 that trigger

miRNA degradation [99–101]. These degradation pro-

cesses also trigger trimming and tailing of miR-27.

Similarly, the human CMV UL144–145 transcript

causes degradation of miR-17 and miR-20a though an

extensively complementary binding site (Fig. 3) [102].

The prevalence of TDMD by endogenous mam-

malian lncRNAs remains unclear, but its likely rare,

as efficient TDMD requires both seed matching and

extensive 30 complementarity [93,97] which is exceed-

ingly rare. The endogenous transcripts shown to cause

TDMD indeed both have binding sites conserved

throughout vertebrates, with perfect conservation of at

least 8 bases complementary to the 30 end of the mRNA

and extensive sequence conservation outside of the

miRNA-binding site. Further, TDMD appears to be

much more efficient in primary neurons than in other

cell types [93,97], though effects are seen in other tissues

as well [97], and the reasons underlying the preference

for neurons are not known. Therefore, the vast majority

of miRNA-binding sites in lncRNAs are not expected

to trigger TDMD.

Conclusions and future prospects

As miRNAs and related small RNAs are already

known to act in virtually every biological process in

mammalian cells, and the spread of lncRNA influence

is also increasing, it is likely that we will also see a

dramatic increase in the known interactions between

members of these two RNA classes. As lncRNAs are

in general very similar in their structure and modifica-

tions to mRNAs, the modes and outcomes of their

interactions with small RNAs also resemble those

already seen with mRNAs, and indeed, none of the

examples presented here, be it TDMD or cleavage by

piRNAs appear to be unique to lncRNAs. As men-

tioned above, lncRNAs and mRNAs differ in their

average abundance, stability, and localization, and

these properties may affect the prevalence of their

interactions with small RNAs, but it is important to

keep in mind that there are thousands of lncRNAs

that closely resemble mRNAs in each of those proper-

ties. Thus, the small-long RNA network, that is just

now beginning to be uncovered, is expected to remain

a vibrant and fertile ground for future discoveries, and

potentially even therapeutic interventions in a wide

array of contexts.
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