

Basic Communication Operations

Ananth Grama, Anshul Gupta, George
Karypis, and Vipin Kumar

To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003

Topic Overview

• One-to-All Broadcast and All-to-One Reduction
• All-to-All Broadcast and Reduction
• All-Reduce and Prefix-Sum Operations
• Scatter and Gather

• All-to-All Personalized Communication

• Circular Shift
• Improving the Speed of Some Communication

Operations

Basic Communication Operations:
Introduction

• Many interactions in practical parallel programs occur in
well-defined patterns involving groups of processors.

• Efficient implementations of these operations can
improve performance, reduce development effort and
cost, and improve software quality.

• Efficient implementations must leverage underlying
architecture. For this reason, we refer to specific
architectures here.

• We select a descriptive set of architectures to illustrate
the process of algorithm design.

Basic Communication Operations:
Introduction

• Group communication operations are built using point-to-
point messaging primitives.

• Recall from our discussion of architectures that
communicating a message of size m over an
uncongested network takes time ts +tmw.

• We use this as the basis for our analyses. Where
necessary, we take congestion into account explicitly by
scaling the tw term.

• We assume that the network is bidirectional and that
communication is single-ported.

One-to-All Broadcast and All-to-One
Reduction

• One processor has a piece of data (of size m) it needs to
send to everyone.

• The dual of one-to-all broadcast is all-to-one reduction.
• In all-to-one reduction, each processor has m units of

data. These data items must be combined piece-wise
(using some associative operator, such as addition or
min), and the result made available at a target processor.

One-to-All Broadcast and All-to-One
Reduction

One-to-all broadcast and all-to-one reduction among processors.

One-to-All Broadcast and All-to-One
Reduction on Rings

• Simplest way is to send p-1 messages from the source
to the other p-1 processors - this is not very efficient.

• Use recursive doubling: source sends a message to a
selected processor. We now have two independent
problems derined over halves of machines.

• Reduction can be performed in an identical fashion by
inverting the process.

One-to-All Broadcast

One-to-all broadcast on an eight-node ring. Node 0 is the source of the
broadcast. Each message transfer step is shown by a numbered,

dotted arrow from the source of the message to its destination. The
number on an arrow indicates the time step during which the

message is transferred.

All-to-One Reduction

Reduction on an eight-node ring with node 0 as the
destination of the reduction.

Broadcast and Reduction: Example

Consider the problem of multiplying a matrix with a vector.
• The n x n matrix is assigned to an n x n (virtual) processor grid. The

vector is assumed to be on the first row of processors.

• The first step of the product requires a one-to-all broadcast of the
vector element along the corresponding column of processors. This
can be done concurrently for all n columns.

• The processors compute local product of the vector element and the
local matrix entry.

• In the final step, the results of these products are accumulated to
the first row using n concurrent all-to-one reduction operations along
the columns (using the sum operation).

Broadcast and Reduction: Matrix-
Vector Multiplication Example

One-to-all broadcast and all-to-one reduction in the multiplication of a 4
x 4 matrix with a 4 x 1 vector.

Broadcast and Reduction on a Mesh

• We can view each row and column of a square mesh of
p nodes as a linear array of √p nodes.

• Broadcast and reduction operations can be performed in
two steps - the first step does the operation along a row
and the second step along each column concurrently.

• This process generalizes to higher dimensions as well.

Broadcast and Reduction on a Mesh:
Example

One-to-all broadcast on a 16-node mesh.

Broadcast and Reduction on a
Hypercube

• A hypercube with 2d nodes can be regarded as a d-
dimensional mesh with two nodes in each dimension.

• The mesh algorithm can be generalized to a hypercube
and the operation is carried out in d (= log p) steps.

Broadcast and Reduction on a
Hypercube: Example

One-to-all broadcast on a three-dimensional hypercube.
The binary representations of node labels are shown in

parentheses.

Broadcast and Reduction on a
Balanced Binary Tree

• Consider a binary tree in which processors are (logically)
at the leaves and internal nodes are routing nodes.

• Assume that source processor is the root of this tree. In
the first step, the source sends the data to the right child
(assuming the source is also the left child). The problem
has now been decomposed into two problems with half
the number of processors.

Broadcast and Reduction on a
Balanced Binary Tree

One-to-all broadcast on an eight-node tree.

Broadcast and Reduction Algorithms

• All of the algorithms described above are adaptations of
the same algorithmic template.

• We illustrate the algorithm for a hypercube, but the
algorithm, as has been seen, can be adapted to other
architectures.

• The hypercube has 2d nodes and my_id is the label for a
node.

• X is the message to be broadcast, which initially resides
at the source node 0.

Broadcast and Reduction Algorithms

One-to-all broadcast of a message X from source on a hypercube.

Broadcast and Reduction Algorithms

Single-node accumulation on a d-dimensional hypercube. Each node contributes a message X containing m words, and
node 0 is the destination.

Cost Analysis

• The broadcast or reduction procedure involves log p
point-to-point simple message transfers, each at a time
cost of ts + twm.

• The total time is therefore given by:

All-to-All Broadcast and Reduction

• Generalization of broadcast in which each processor is
the source as well as destination.

• A process sends the same m-word message to every
other process, but different processes may broadcast
different messages.

All-to-All Broadcast and Reduction

All-to-all broadcast and all-to-all reduction.

All-to-All Broadcast and Reduction on a
Ring

• Simplest approach: perform p one-to-all broadcasts. This
is not the most efficient way, though.

• Each node first sends to one of its neighbors the data it
needs to broadcast.

• In subsequent steps, it forwards the data received from
one of its neighbors to its other neighbor.

• The algorithm terminates in p-1 steps.

All-to-All Broadcast and Reduction on a
Ring

All-to-all broadcast on an eight-node ring.

All-to-All Broadcast and Reduction on a
Ring

All-to-all broadcast on a p-node ring.

All-to-all Broadcast on a Mesh

• Performed in two phases - in the first phase, each row of
the mesh performs an all-to-all broadcast using the
procedure for the linear array.

• In this phase, all nodes collect √p messages
corresponding to the √p nodes of their respective rows.
Each node consolidates this information into a single
message of size m√p.

• The second communication phase is a columnwise all-
to-all broadcast of the consolidated messages.

All-to-all Broadcast on a Mesh

All-to-all broadcast on a 3 x 3 mesh. The groups of nodes
communicating with each other in each phase are enclosed by

dotted boundaries. By the end of the second phase, all nodes get
(0,1,2,3,4,5,6,7) (that is, a message from each node).

All-to-all Broadcast on a Mesh

All-to-all broadcast on a square mesh of p nodes.

All-to-all broadcast on a Hypercube

• Generalization of the mesh algorithm to log p
dimensions.

• Message size doubles at each of the log p steps.

All-to-all broadcast on a Hypercube

All-to-all broadcast on an eight-node hypercube.

All-to-all broadcast on a Hypercube

All-to-all broadcast on a d-dimensional hypercube.

All-to-all Reduction

• Similar communication pattern to all-to-all broadcast,
except in the reverse order.

• On receiving a message, a node must combine it with
the local copy of the message that has the same
destination as the received message before forwarding
the combined message to the next neighbor.

Cost Analysis

• On a ring, the time is given by: (ts + twm)(p-1).

• On a mesh, the time is given by: 2ts(√p – 1) + twm(p-1).

• On a hypercube, we have:

All-to-all broadcast: Notes

• All of the algorithms presented above are asymptotically
optimal in message size.

• It is not possible to port algorithms for higher
dimensional networks (such as a hypercube) into a ring
because this would cause contention.

All-to-all broadcast: Notes

Contention for a channel when the hypercube is mapped onto a ring.

All-Reduce and Prefix-Sum Operations

• In all-reduce, each node starts with a buffer of size m
and the final results of the operation are identical buffers
of size m on each node that are formed by combining the
original p buffers using an associative operator.

• Identical to all-to-one reduction followed by a one-to-all
broadcast. This formulation is not the most efficient.
Uses the pattern of all-to-all broadcast, instead. The only
difference is that message size does not increase here.
Time for this operation is (ts + twm) log p.

• Different from all-to-all reduction, in which p
simultaneous all-to-one reductions take place, each with
a different destination for the result.

The Prefix-Sum Operation

• Given p numbers n0,n1,…,np-1 (one on each node), the
problem is to compute the sums sk = ∑ik= 0 ni for all k
between 0 and p-1 .

• Initially, nk resides on the node labeled k, and at the end
of the procedure, the same node holds Sk.

The Prefix-Sum Operation

Computing prefix sums on an eight-node hypercube. At each node, square
brackets show the local prefix sum accumulated in the result buffer and

parentheses enclose the contents of the outgoing message buffer for the next
step.

The Prefix-Sum Operation

• The operation can be implemented using the all-to-all
broadcast kernel.

• We must account for the fact that in prefix sums the
node with label k uses information from only the k-node
subset whose labels are less than or equal to k.

• This is implemented using an additional result buffer. The
content of an incoming message is added to the result
buffer only if the message comes from a node with a
smaller label than the recipient node.

• The contents of the outgoing message (denoted by
parentheses in the figure) are updated with every
incoming message.

The Prefix-Sum Operation

Prefix sums on a d-dimensional hypercube.

Scatter and Gather

• In the scatter operation, a single node sends a unique
message of size m to every other node (also called a
one-to-all personalized communication).

• In the gather operation, a single node collects a unique
message from each node.

• While the scatter operation is fundamentally different
from broadcast, the algorithmic structure is similar,
except for differences in message sizes (messages get
smaller in scatter and stay constant in broadcast).

• The gather operation is exactly the inverse of the scatter
operation and can be executed as such.

Gather and Scatter Operations

Scatter and gather operations.

Example of the Scatter Operation

The scatter operation on an eight-node hypercube.

Cost of Scatter and Gather

• There are log p steps, in each step, the machine size
halves and the data size halves.

• We have the time for this operation to be:

• This time holds for a linear array as well as a 2-D mesh.
• These times are asymptotically optimal in message size.

All-to-All Personalized Communication

• Each node has a distinct message of size m for every
other node.

• This is unlike all-to-all broadcast, in which each node
sends the same message to all other nodes.

• All-to-all personalized communication is also known as
total exchange.

All-to-All Personalized Communication

All-to-all personalized communication.

All-to-All Personalized Communication:
Example

• Consider the problem of transposing a matrix.
• Each processor contains one full row of the matrix.
• The transpose operation in this case is identical to an all-

to-all personalized communication operation.

All-to-All Personalized Communication:
Example

All-to-all personalized communication in transposing a 4 x 4 matrix
using four processes.

All-to-All Personalized Communication
on a Ring

• Each node sends all pieces of data as one consolidated
message of size m(p – 1) to one of its neighbors.

• Each node extracts the information meant for it from the
data received, and forwards the remaining (p – 2) pieces
of size m each to the next node.

• The algorithm terminates in p – 1 steps.
• The size of the message reduces by m at each step.

All-to-All Personalized Communication
on a Ring

All-to-all personalized communication on a six-node ring. The label of each
message is of the form {x,y}, where x is the label of the node that originally

owned the message, and y is the label of the node that is the final
destination of the message. The label ({x1,y1}, {x2,y2},…, {xn,yn}, indicates a

message that is formed by concatenating n individual messages.

All-to-All Personalized Communication
on a Ring: Cost

• We have p – 1 steps in all.
• In step i, the message size is m(p – i).

• The total time is given by:

• The tw term in this equation can be reduced by a factor of
2 by communicating messages in both directions.

All-to-All Personalized Communication
on a Mesh

• Each node first groups its p messages according to the
columns of their destination nodes.

• All-to-all personalized communication is performed
independently in each row with clustered messages of
size m√p.

• Messages in each node are sorted again, this time
according to the rows of their destination nodes.

• All-to-all personalized communication is performed
independently in each column with clustered messages
of size m√p.

All-to-All Personalized Communication
on a Mesh

The distribution of messages at the beginning of each phase of all-to-all personalized
communication on a 3 x 3 mesh. At the end of the second phase, node i has messages

({0,i},…,{8,i}), where 0 ≤ i ≤ 8. The groups of nodes communicating together in each
phase are enclosed in dotted boundaries.

All-to-All Personalized Communication
on a Mesh: Cost

• Time for the first phase is identical to that in a ring with
√p processors, i.e., (ts + twmp/2)(√p – 1).

• Time in the second phase is identical to the first phase.
Therefore, total time is twice of this time, i.e.,

• It can be shown that the time for rearrangement is less
much less than this communication time.

All-to-All Personalized Communication
on a Hypercube

• Generalize the mesh algorithm to log p steps.
• At any stage in all-to-all personalized communication,

every node holds p packets of size m each.
• While communicating in a particular dimension, every

node sends p/2 of these packets (consolidated as one
message).

• A node must rearrange its messages locally before each
of the log p communication steps.

All-to-All Personalized Communication
on a Hypercube

An all-to-all personalized communication algorithm on a three-dimensional hypercube.

All-to-All Personalized Communication
on a Hypercube: Cost

• We have log p iterations and mp/2 words are
communicated in each iteration. Therefore, the cost is:

• This is not optimal!

All-to-All Personalized Communication
on a Hypercube: Optimal Algorithm

• Each node simply performs p – 1 communication steps,
exchanging m words of data with a different node in
every step.

• A node must choose its communication partner in each
step so that the hypercube links do not suffer congestion.

• In the jth communication step, node i exchanges data
with node (i XOR j).

• In this schedule, all paths in every communication step
are congestion-free, and none of the bidirectional links
carry more than one message in the same direction.

All-to-All Personalized Communication
on a Hypercube: Optimal Algorithm

Seven steps in all-to-all personalized communication on an eight-node hypercube.

All-to-All Personalized Communication
on a Hypercube: Optimal Algorithm

A procedure to perform all-to-all personalized communication on a d-
dimensional hypercube. The message Mi,j initially resides on node i

and is destined for node j.

All-to-All Personalized Communication on a
Hypercube: Cost Analysis of Optimal

Algorithm

• There are p – 1 steps and each step involves non-
congesting message transfer of m words.

• We have:

• This is asymptotically optimal in message size.

Circular Shift

• A special permutation in which node i sends a data
packet to node (i + q) mod p in a p-node ensemble

(0 ≤ q ≤ p).

Circular Shift on a Mesh

• The implementation on a ring is rather intuitive. It can be
performed in min{q,p – q} neighbor communications.

• Mesh algorithms follow from this as well. We shift in one
direction (all processors) followed by the next direction.

• The associated time has an upper bound of:

Circular Shift on a Mesh

The communication steps in a circular 5-shift on a 4 x 4 mesh.

Circular Shift on a Hypercube

• Map a linear array with 2d nodes onto a d-dimensional
hypercube.

• To perform a q-shift, we expand q as a sum of distinct
powers of 2.

• If q is the sum of s distinct powers of 2, then the circular
q-shift on a hypercube is performed in s phases.

• The time for this is upper bounded by:

• If E-cube routing is used, this time can be reduced to

Circular Shift on a Hypercube

The mapping of an eight-node linear array onto a three-dimensional hypercube
to perform a circular 5-shift as a combination of a 4-shift and a 1-shift.

Circular Shift on a Hypercube

Circular q-shifts on an 8-node hypercube for 1 ≤ q < 8.

Improving Performance of Operations

• Splitting and routing messages into parts: If the message
can be split into p parts, a one-to-all broadcast can be
implemented as a scatter operation followed by an all-to-
all broadcast operation. The time for this is:

• All-to-one reduction can be performed by performing all-
to-all reduction (dual of all-to-all broadcast) followed by a
gather operation (dual of scatter).

Improving Performance of Operations

• Since an all-reduce operation is semantically equivalent
to an all-to-one reduction followed by a one-to-all
broadcast, the asymptotically optimal algorithms for
these two operations can be used to construct a similar
algorithm for the all-reduce operation.

• The intervening gather and scatter operations cancel
each other. Therefore, an all-reduce operation requires
an all-to-all reduction and an all-to-all broadcast.

	Basic Communication Operations
	Topic Overview
	Basic Communication Operations: Introduction
	Basic Communication Operations: Introduction
	One-to-All Broadcast and All-to-One Reduction
	Slide 6
	One-to-All Broadcast and All-to-One Reduction on Rings
	One-to-All Broadcast
	All-to-One Reduction
	Broadcast and Reduction: Example
	Broadcast and Reduction: Matrix-Vector Multiplication Example
	Broadcast and Reduction on a Mesh
	Broadcast and Reduction on a Mesh: Example
	Broadcast and Reduction on a Hypercube
	Broadcast and Reduction on a Hypercube: Example
	Broadcast and Reduction on a Balanced Binary Tree
	Slide 17
	Broadcast and Reduction Algorithms
	Slide 19
	Slide 20
	Cost Analysis
	All-to-All Broadcast and Reduction
	Slide 23
	All-to-All Broadcast and Reduction on a Ring
	Slide 25
	Slide 26
	All-to-all Broadcast on a Mesh
	Slide 28
	Slide 29
	All-to-all broadcast on a Hypercube
	Slide 31
	Slide 32
	All-to-all Reduction
	Slide 34
	All-to-all broadcast: Notes
	All-to-all broadcast: Notes
	All-Reduce and Prefix-Sum Operations
	The Prefix-Sum Operation
	Slide 39
	Slide 40
	Slide 41
	Scatter and Gather
	Gather and Scatter Operations
	Example of the Scatter Operation
	Cost of Scatter and Gather
	All-to-All Personalized Communication
	Slide 47
	All-to-All Personalized Communication: Example
	Slide 49
	All-to-All Personalized Communication on a Ring
	Slide 51
	All-to-All Personalized Communication on a Ring: Cost
	All-to-All Personalized Communication on a Mesh
	Slide 54
	All-to-All Personalized Communication on a Mesh: Cost
	All-to-All Personalized Communication on a Hypercube
	Slide 57
	All-to-All Personalized Communication on a Hypercube: Cost
	All-to-All Personalized Communication on a Hypercube: Optimal Algorithm
	Slide 60
	Slide 61
	All-to-All Personalized Communication on a Hypercube: Cost Analysis of Optimal Algorithm
	Circular Shift
	Circular Shift on a Mesh
	Slide 65
	Circular Shift on a Hypercube
	Slide 67
	Slide 68
	Improving Performance of Operations
	Slide 70

