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Topic Overview 

• One-to-All Broadcast and All-to-One Reduction 
• All-to-All Broadcast and Reduction 
• All-Reduce and Prefix-Sum Operations 
• Scatter and Gather 

• All-to-All Personalized Communication 

• Circular Shift 
• Improving the Speed of Some Communication 

Operations 



  

Basic Communication Operations: 
Introduction

• Many interactions in practical parallel programs occur in 
well-defined patterns involving groups of processors. 

• Efficient implementations of these operations can 
improve performance, reduce development effort and 
cost, and improve software quality. 

• Efficient implementations must leverage underlying 
architecture. For this reason, we refer to specific 
architectures here. 

• We select a descriptive set of architectures to illustrate 
the process of algorithm design. 



  

Basic Communication Operations: 
Introduction 

• Group communication operations are built using point-to-
point messaging primitives. 

• Recall from our discussion of architectures that 
communicating a message of size m over an 
uncongested network takes time ts +tmw. 

• We use this as the basis for our analyses. Where 
necessary, we take congestion into account explicitly by 
scaling the tw term. 

• We assume that the network is bidirectional and that 
communication is single-ported. 



  

One-to-All Broadcast and All-to-One 
Reduction 

• One processor has a piece of data (of size m) it needs to 
send to everyone. 

• The dual of one-to-all broadcast is all-to-one reduction. 
• In all-to-one reduction, each processor has m units of 

data. These data items must be combined piece-wise 
(using some associative operator, such as addition or 
min), and the result made available at a target processor. 



  

One-to-All Broadcast and All-to-One 
Reduction 

One-to-all broadcast and all-to-one reduction among   processors. 



  

One-to-All Broadcast and All-to-One 
Reduction on Rings 

• Simplest way is to send p-1 messages from the source 
to the other p-1 processors - this is not very efficient. 

• Use recursive doubling: source sends a message to a 
selected processor. We now have two independent 
problems derined over halves of machines. 

• Reduction can be performed in an identical fashion by 
inverting the process. 



  

One-to-All Broadcast 

One-to-all broadcast on an eight-node ring. Node 0 is the source of the 
broadcast. Each message transfer step is shown by a numbered, 

dotted arrow from the source of the message to its destination. The 
number on an arrow indicates the time step during which the 

message is transferred. 



  

All-to-One Reduction 

Reduction on an eight-node ring with node 0 as the 
destination of the reduction.



  

Broadcast and Reduction: Example 

Consider the problem of multiplying a matrix with a vector.
• The n x n matrix is assigned to an n x n (virtual) processor grid. The 

vector is assumed to be on the first row of processors. 

• The first step of the product requires a one-to-all broadcast of the 
vector element along the corresponding column of processors. This 
can be done concurrently for all n columns. 

• The processors compute local product of the vector element and the 
local matrix entry. 

• In the final step, the results of these products are accumulated to 
the first row using n concurrent all-to-one reduction operations along 
the columns (using the sum operation).



  

Broadcast and Reduction: Matrix-
Vector Multiplication Example 

One-to-all broadcast and all-to-one reduction in the multiplication of a 4 
x 4 matrix with a 4 x 1 vector.



  

Broadcast and Reduction on a Mesh 

• We can view each row and column of a square mesh of 
p nodes as a linear array of √p nodes. 

• Broadcast and reduction operations can be performed in 
two steps - the first step does the operation along a row 
and the second step along each column concurrently. 

• This process generalizes to higher dimensions as well. 



  

Broadcast and Reduction on a Mesh: 
Example 

One-to-all broadcast on a 16-node mesh. 



  

Broadcast and Reduction on a 
Hypercube 

• A hypercube with 2d nodes can be regarded as a   d-
dimensional mesh with two nodes in each dimension. 

• The mesh algorithm can be generalized to a hypercube 
and the operation is carried out in  d (= log p) steps. 



  

Broadcast and Reduction on a 
Hypercube: Example 

One-to-all broadcast on a three-dimensional hypercube. 
The binary representations of node labels are shown in 

parentheses. 



  

Broadcast and Reduction on a 
Balanced Binary Tree 

• Consider a binary tree in which processors are (logically) 
at the leaves and internal nodes are routing nodes. 

• Assume that source processor is the root of this tree. In 
the first step, the source sends the data to the right child 
(assuming the source is also the left child). The problem 
has now been decomposed into two problems with half 
the number of processors. 



  

Broadcast and Reduction on a 
Balanced Binary Tree 

One-to-all broadcast on an eight-node tree. 



  

Broadcast and Reduction Algorithms 

• All of the algorithms described above are adaptations of 
the same algorithmic template. 

• We illustrate the algorithm for a hypercube, but the 
algorithm, as has been seen, can be adapted to other 
architectures. 

• The hypercube has 2d nodes and my_id is the label for a 
node. 

• X is the message to be broadcast, which initially resides 
at the source node 0. 



  

Broadcast and Reduction Algorithms 

One-to-all broadcast of a message X from source on a hypercube.



  

Broadcast and Reduction Algorithms 

Single-node accumulation on a  d-dimensional hypercube. Each node contributes a message X containing m words, and 
node 0 is the destination. 



  

Cost Analysis 

• The broadcast or reduction procedure involves log p 
point-to-point simple message transfers, each at a time 
cost of ts + twm. 

• The total time is therefore given by:



  

All-to-All Broadcast and Reduction 

• Generalization of broadcast in which each processor is 
the source as well as destination. 

• A process sends the same m-word message to every 
other process, but different processes may broadcast 
different messages. 



  

All-to-All Broadcast and Reduction 

All-to-all broadcast and all-to-all reduction.



  

All-to-All Broadcast and Reduction on a 
Ring 

• Simplest approach: perform p one-to-all broadcasts. This 
is not the most efficient way, though. 

• Each node first sends to one of its neighbors the data it 
needs to broadcast. 

• In subsequent steps, it forwards the data received from 
one of its neighbors to its other neighbor. 

• The algorithm terminates in p-1 steps. 



  

All-to-All Broadcast and Reduction on a 
Ring 

All-to-all broadcast on an eight-node ring. 



  

All-to-All Broadcast and Reduction on a 
Ring 

All-to-all broadcast on a p-node ring.



  

All-to-all Broadcast on a Mesh 

• Performed in two phases - in the first phase, each row of 
the mesh performs an all-to-all broadcast using the 
procedure for the linear array. 

• In this phase, all nodes collect √p messages 
corresponding to the √p nodes of their respective rows. 
Each node consolidates this information into a single 
message of size m√p. 

• The second communication phase is a columnwise all-
to-all broadcast of the consolidated messages. 



  

All-to-all Broadcast on a Mesh 

All-to-all broadcast on a 3 x 3 mesh. The groups of nodes 
communicating with each other in each phase are enclosed by 

dotted boundaries. By the end of the second phase, all nodes get 
(0,1,2,3,4,5,6,7) (that is, a message from each node).



  

All-to-all Broadcast on a Mesh 

All-to-all broadcast on a square mesh of p nodes. 



  

All-to-all broadcast on a Hypercube 

• Generalization of the mesh algorithm to log p 
dimensions.

• Message size doubles at each of the log p steps. 



  

All-to-all broadcast on a Hypercube 

All-to-all broadcast on an eight-node hypercube. 



  

All-to-all broadcast on a Hypercube 

All-to-all broadcast on a d-dimensional hypercube. 



  

All-to-all Reduction 

• Similar communication pattern to all-to-all broadcast, 
except in the reverse order. 

• On receiving a message, a node must combine it with 
the local copy of the message that has the same 
destination as the received message before forwarding 
the combined message to the next neighbor. 



  

Cost Analysis 

• On a ring, the time is given by: (ts + twm)(p-1). 

• On a mesh, the time is given by: 2ts(√p – 1) + twm(p-1).

• On a hypercube, we have: 



  

All-to-all broadcast: Notes

• All of the algorithms presented above are asymptotically 
optimal in message size. 

• It is not possible to port algorithms for higher 
dimensional networks (such as a hypercube) into a ring 
because this would cause contention. 



  

All-to-all broadcast: Notes 

Contention for a channel when the hypercube is mapped onto a ring. 



  

All-Reduce and Prefix-Sum Operations 

• In all-reduce, each node starts with a buffer of size m 
and the final results of the operation are identical buffers 
of size m on each node that are formed by combining the 
original p buffers using an associative operator. 

• Identical to all-to-one reduction followed by a one-to-all 
broadcast. This formulation is not the most efficient. 
Uses the pattern of all-to-all broadcast, instead. The only 
difference is that message size does not increase here. 
Time for this operation is (ts + twm) log p. 

• Different from all-to-all reduction, in which p 
simultaneous all-to-one reductions take place, each with 
a different destination for the result. 



  

The Prefix-Sum Operation 

• Given p numbers n0,n1,…,np-1 (one on each node), the 
problem is to compute the sums sk = ∑ik= 0 ni for all k 
between 0 and p-1 . 

• Initially, nk resides on the node labeled k, and at the end 
of the procedure, the same node holds Sk. 



  

The Prefix-Sum Operation 

Computing prefix sums on an eight-node hypercube. At each node, square 
brackets show the local prefix sum accumulated in the result buffer and 

parentheses enclose the contents of the outgoing message buffer for the next 
step.



  

The Prefix-Sum Operation 

• The operation can be implemented using the all-to-all 
broadcast kernel. 

• We must account for the fact that in prefix sums the 
node with label k uses information from only the k-node 
subset whose labels are less than or equal to k. 

• This is implemented using an additional result buffer. The 
content of an incoming message is added to the result 
buffer only if the message comes from a node with a 
smaller label than the recipient node. 

• The contents of the outgoing message (denoted by 
parentheses in the figure) are updated with every 
incoming message. 



  

The Prefix-Sum Operation 

Prefix sums on a d-dimensional hypercube.



  

Scatter and Gather 

• In the scatter operation, a single node sends a unique 
message of size m to every other node (also called a 
one-to-all personalized communication). 

• In the gather operation, a single node collects a unique 
message from each node. 

• While the scatter operation is fundamentally different 
from broadcast, the algorithmic structure is similar, 
except for differences in message sizes (messages get 
smaller in scatter and stay constant in broadcast). 

• The gather operation is exactly the inverse of the scatter 
operation and can be executed as such. 



  

Gather and Scatter Operations 

Scatter and gather operations.



  

Example of the Scatter Operation 

The scatter operation on an eight-node hypercube.



  

Cost of Scatter and Gather 

• There are log p steps, in each step, the machine size 
halves and the data size halves. 

• We have the time for this operation to be: 

• This time holds for a linear array as well as a 2-D mesh. 
• These times are asymptotically optimal in message size. 



  

All-to-All Personalized Communication 

• Each node has a distinct message of size m for every 
other node. 

• This is unlike all-to-all broadcast, in which each node 
sends the same message to all other nodes. 

• All-to-all personalized communication is also known as 
total exchange. 



  

All-to-All Personalized Communication 

All-to-all personalized communication. 



  

All-to-All Personalized Communication: 
Example 

• Consider the problem of transposing a matrix. 
• Each processor contains one full row of the matrix. 
• The transpose operation in this case is identical to an all-

to-all personalized communication operation. 



  

All-to-All Personalized Communication: 
Example 

All-to-all personalized communication in transposing a 4 x 4 matrix 
using four processes. 



  

All-to-All Personalized Communication 
on a Ring 

• Each node sends all pieces of data as one consolidated 
message of size m(p – 1) to one of its neighbors. 

• Each node extracts the information meant for it from the 
data received, and forwards the remaining (p – 2) pieces 
of size m each to the next node. 

• The algorithm terminates in p – 1 steps. 
• The size of the message reduces by m at each step. 



  

All-to-All Personalized Communication 
on a Ring 

All-to-all personalized communication on a six-node ring. The label of each 
message is of the form {x,y}, where x is the label of the node that originally 

owned the message, and y is the label of the node that is the final 
destination of the message. The label ({x1,y1}, {x2,y2},…, {xn,yn}, indicates a 

message that is formed by concatenating n individual messages. 



  

All-to-All Personalized Communication 
on a Ring: Cost 

• We have p – 1 steps in all. 
• In step i, the message size is m(p – i). 

• The total time is given by:

• The tw term in this equation can be reduced by a factor of 
2 by communicating messages in both directions. 



  

All-to-All Personalized Communication 
on a Mesh 

• Each node first groups its p messages according to the 
columns of their destination nodes. 

• All-to-all personalized communication is performed 
independently in each row with clustered messages of 
size m√p. 

• Messages in each node are sorted again, this time 
according to the rows of their destination nodes. 

• All-to-all personalized communication is performed 
independently in each column with clustered messages 
of size m√p. 



  

All-to-All Personalized Communication 
on a Mesh 

The distribution of messages at the beginning of each phase of all-to-all personalized 
communication on a 3 x 3 mesh. At the end of the second phase, node i has messages 

({0,i},…,{8,i}), where 0 ≤ i ≤ 8. The groups of nodes communicating together in each 
phase are enclosed in dotted boundaries. 



  

All-to-All Personalized Communication 
on a Mesh: Cost 

• Time for the first phase is identical to that in a ring with 
√p processors, i.e., (ts + twmp/2)(√p – 1). 

• Time in the second phase is identical to the first phase. 
Therefore, total time is twice of this time, i.e., 

• It can be shown that the time for rearrangement is less 
much less than this communication time. 



  

All-to-All Personalized Communication 
on a Hypercube 

• Generalize the mesh algorithm to log p steps. 
• At any stage in all-to-all personalized communication, 

every node holds p packets of size m each. 
• While communicating in a particular dimension, every 

node sends p/2 of these packets (consolidated as one 
message). 

• A node must rearrange its messages locally before each 
of the log p communication steps. 



  

All-to-All Personalized Communication 
on a Hypercube 

An all-to-all personalized communication algorithm on a three-dimensional hypercube. 



  

All-to-All Personalized Communication 
on a Hypercube: Cost 

• We have log p iterations and mp/2 words are 
communicated in each iteration. Therefore, the cost is: 

• This is not optimal! 



  

All-to-All Personalized Communication 
on a Hypercube: Optimal Algorithm 

• Each node simply performs p – 1 communication steps, 
exchanging m words of data with a different node in 
every step. 

• A node must choose its communication partner in each 
step so that the hypercube links do not suffer congestion. 

• In the jth communication step, node i exchanges data 
with node (i XOR j). 

• In this schedule, all paths in every communication step 
are congestion-free, and none of the bidirectional links 
carry more than one message in the same direction. 



  

All-to-All Personalized Communication 
on a Hypercube: Optimal Algorithm 

Seven steps in all-to-all personalized communication on an eight-node hypercube. 



  

All-to-All Personalized Communication 
on a Hypercube: Optimal Algorithm 

A procedure to perform all-to-all personalized communication on a d-
dimensional hypercube. The message Mi,j initially resides on node i 

and is destined for node j. 



  

All-to-All Personalized Communication on a 
Hypercube: Cost Analysis of Optimal 

Algorithm 

• There are p – 1 steps and each step involves non-
congesting message transfer of m words. 

• We have: 

• This is asymptotically optimal in message size. 



  

Circular Shift 

• A special permutation in which node i sends a data 
packet to node (i + q) mod p in a p-node ensemble 

(0 ≤ q ≤ p). 



  

Circular Shift on a Mesh 

• The implementation on a ring is rather intuitive. It can be 
performed in min{q,p – q} neighbor communications. 

• Mesh algorithms follow from this as well. We shift in one 
direction (all processors) followed by the next direction. 

• The associated time has an upper bound of:

 



  

Circular Shift on a Mesh 

The communication steps in a circular 5-shift on a 4 x 4 mesh.



  

Circular Shift on a Hypercube 

• Map a linear array with 2d nodes onto a d-dimensional 
hypercube. 

• To perform a q-shift, we expand q as a sum of distinct 
powers of 2. 

• If q is the sum of s distinct powers of 2, then the circular 
q-shift on a hypercube is performed in s phases. 

• The time for this is upper bounded by: 

• If E-cube routing is used, this time can be reduced to 



  

Circular Shift on a Hypercube 

The mapping of an eight-node linear array onto a three-dimensional hypercube 
to perform a circular 5-shift as a combination of a 4-shift and a 1-shift. 



  

Circular Shift on a Hypercube 

Circular q-shifts on an 8-node hypercube for 1 ≤ q < 8. 



  

Improving Performance of Operations 

• Splitting and routing messages into parts: If the message 
can be split into p parts, a one-to-all broadcast can be 
implemented as a scatter operation followed by an all-to-
all broadcast operation. The time for this is: 

• All-to-one reduction can be performed by performing all-
to-all reduction (dual of all-to-all broadcast) followed by a 
gather operation (dual of scatter). 



  

Improving Performance of Operations 

• Since an all-reduce operation is semantically equivalent 
to an all-to-one reduction followed by a one-to-all 
broadcast, the asymptotically optimal algorithms for 
these two operations can be used to construct a similar 
algorithm for the all-reduce operation. 

• The intervening gather and scatter operations cancel 
each other. Therefore, an all-reduce operation requires 
an all-to-all reduction and an all-to-all broadcast. 
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