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1. Abstract  

This article explores the changing relationships between geometric and arithmetic ideas in medieval 

Europe mathematics, as reflected via the propositions of Book II of Euclid’s Elements. Of particular 

interest is the way in which some of medieval treatises organically incorporated into the body of 

arithmetic some of the main results of Book II, and how, subsequently, and particularly in the 

Campanus version of the Elements, these arithmetic versions of results, which were originally 

conceived in the context of geometry, were reincorporated into the arithmetic books of the Euclidean 

treatise. Thus, while most of the Latin versions of the Elements had duly preserved the purely geometric 

spirit of Euclid’s original, the specific text that played the most prominent role in the initial passage of 

the Elements from manuscript to print – i.e., Campanus’ version – followed a different approach . On 

the one hand, Book II itself continued to appear there as a purely geometric text. On the other hand, the 

first ten results of Book II could now be seen also as possibly translatable into arithmetic, and in many 

cases even as inseparably associated with their arithmetic representation. 
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2. Introduction 

Book II of Euclid’s Elements raises interesting historical questions concerning its 

intended aims and significance. The book has been accorded a rather singular role in 

the recent historiography of Greek mathematics, particularly in the context of the so-

called “geometric algebra” interpretation. According to this interpretation, Greek 

geometry as epitomized in the works of Euclid and Apollonius is – at least in its 

fundamental aspects –nothing but algebra in disguise.
1
  

 In 1975 Sabetai Unguru published an article in which he emphatically criticized the 

geometric algebra interpretation. He claimed that Greek geometry is just that, 

geometry, and that any algebraic rendering thereof is anachronistic and historically 

misguided (Unguru 1975). Unguru, to be sure, was elaborating on a thesis previously 

put forward by Jacob Klein in his classic Greek Mathematical Thought and the Origin 

of Algebra (Klein 1968 [1934-36]), about a great divide between ancient and modern 

mathematics around the basic conceptions of number and of geometry. Unguru’s 

article ignited a harsh controversy with several well-known mathematicians with an 

interest in history, such as Bartel L. van der Waerden (1903-1996), Hans Freudenthal 

(1905-1990) and André Weil (1906-1998) (van der Waerden 1976, Freudenthal 1977, 

Weil 1978). In spite of the bitter debate, however, the controversy quickly receded 

and Unguru’s view became essentially a mainstream interpretation accepted by most 

historians. Unguru’s criticism has since stood (at least tacitly) in the background of 

most of the serious historical research in the field. 

Still, once we have acknowledged the misleading way in which the geometric algebra 

                                                 
1
 Beginning in the late nineteenth century, this view was promoted by prominent scholars such as Paul 

Tannery (1843–1904), Hieronymus Georg Zeuthen (1839-1930), Sir Thomas Little Heath (1861–

1940), and Otto Neugebauer (1899 –1990). Book II became a pivotal focus in the elaboration of the 

details of this historiographical perspective. 
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interpretation explains the mathematics of the past by using ideas that were not 

present in Euclid’s or in Apollonius’s time, some additional, interesting questions 

arise that call for further historical research. Thus for instance, as an alternative to 

geometric algebra, one may ask for a coherent, purely geometric explanation of the 

aims and scope of the ideas originally developed in the Greek mathematical texts. 

This question has been illuminatingly addressed, for instance, by Ken Saito 

concerning Book II and its impact on Apollonius’s Conics (Saito 2004 [1985]), and I 

will return to it below.  

A different kind of question that arises when one rejects the geometric algebra 

interpretation of Greek geometry concerns the origins and historical development of this 

very historiographical view. Thus, it is well known that beginning in late antiquity and 

then throughout history, in editions or commentaries of the Elements, as well as in other 

books dealing with related topics, classic geometrical results were variously presented 

in partial or full arithmetic-algebraic renderings. It is evident that this mathematical 

transformation later affected some of the retrospective historical interpretations of what 

Euclid had in mind when originally writing his own text. But what was the precise 

interplay between the changes at these two levels, mathematical and historiographical, 

in the different historical periods? A full exploration of this longue durée question, 

starting from Euclid and all the way down to the historians who vigorously pursued the 

geometric algebra interpretation in the late nineteenth-century, is a heavy scholarly task. 

In the present article I intend to address a partial aspect of it, by focusing on the ways in 

which mathematicians in Medieval Europe presented the propositions of Book II in the 

most widely circulated Euclidean versions, as well as in other texts that incorporated 

some of the propositions of that book. I suggest exploring the extent to which arithmetic 

and proto-algebraic ideas were absorbed in those texts and hence modified the original 
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Euclidean formulation, and (to a lesser degree) whether and how these changes affected 

the historical conception of Euclid. 

Before entering the discussion, however, it is important to stress from the outset that I 

deliberately ignore the debate about the adequacy of using the term “algebra” in this 

or that historical context, and consider it a matter of taste. As I have explained 

elsewhere, the question about the “essence of algebra” as an ahistorical category 

seems to me an ill-posed and uninteresting one (Corry 2004, 397). Thus, I am not 

interested in adjudicating the question whether or not certain specific ideas found in 

Heron or in al-Khwārizmī count as “algebra” according to some predetermined, 

clearly agreed criteria. Rather, I want to identify those mathematical ideas not 

originally found in Euclid’s text and that were gradually incorporated into 

interpretations of it or even into the edited versions of the text itself. In this article, 

just for convenience, I refer to some of those ideas using the general umbrella terms 

of “arithmetic” or “algebra”, in their more or less agreed sense, and without thereby 

aiming at an essentialist perspective on these concepts. This in itself should not give 

rise to any debate or confusion. 

The core of the article is preceded by two relatively lengthy introductory sections. In 

§3, I discuss some of the propositions of Book II and their proofs as they appear in the 

original Euclidean text known to us nowadays.
2
 I devote particular attention to II.5 

which in most of the examples analyzed here serves well as a focal point that 

                                                 
2
 The issue of the adequate use of direct and indirect sources in order to establish an authoritative 

version of the Euclidean text is a significant historiographical question still under debate nowadays. 

See (Rommevaux, Djebbar and Vitrac 2001). I do not deal at all with this issue here and I simply 

follow the widely accepted English version, (Heath 1956 [1908]). 
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illustrates the issues considered.
3
 I thus present the typical (anachronistic) algebraic 

interpretation of this result and I discuss its shortcomings. In §4, I present some 

versions of the same propositions, as were introduced in texts of late antiquity and of 

Islam mathematics. This section is not intended as an exhaustive survey of such texts, 

but rather as a presentation of versions that were available to the medieval translators 

and interpreters of Euclid and that in many cases provided the source for 

contemporary renderings of propositions of Book II. These two sections, §§3-4, are 

intended as a consistent synthesis which, while strongly relying on the existing 

scholarship, stresses some less noticed aspects and thus hopefully helps making a 

fresh reading of the history of Book II in its early phases.    

After these introductory sections I move to the core part of the article, where I analyze 

propositions from Book II as they appear in medieval versions of the Elements (in §5) 

and in other contemporary books that incorporated such ideas (in §6). The period 

discussed comprises the first Latin translations of the Euclidean text in the 12
th

 

century, and it also includes additional texts that circulated in Europe in manuscript 

versions before the first printed version of the Elements in 1482. Thus, I discuss the 

Liber Mahameleth, as well as additional texts by Abraham Bar-Ḥiyya, Fibonacci, 

Jordanus Nemorarius, Gersonides, and Barlaam. These works present us with a rather 

heterogeneous variety of approaches, within which propositions from Book II were 

handled with the help of both geometric and arithmetic ideas. Some of these treatises 

organically incorporated into the body of arithmetic the main results of Book II. 

Subsequently, and particularly in the Campanus version of the Elements, existing 

arithmetic versions of results from Book II were reincorporated into the arithmetic 

                                                 
3
 Proposition II.5 has also been used as focal point in other accounts about Greek mathematics or about 

changing views on geometry through history see e.g., Neal 2002, 123 ff.; Netz 1999, 9-11; Vitrac 

and Caveing 1990, 370-372. 
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books the Euclidean treatise, Books VII-IX. As a consequence, while most of the 

Latin versions of the Elements had duly preserved the purely geometric spirit of 

Euclid’s original, the specific text that played the most prominent role in the initial 

passage of the Elements from manuscript to print – i.e., Campanus’ version – 

followed a different approach . On the one hand, Book II itself continued to appear as 

a purely geometric text. On the other hand, the first ten results of Book II could now 

be seen also as possibly translatable into arithmetic, and in many cases even as 

inseparably associated with their arithmetic representation. Hence, when symbolic 

techniques of algebra started to take center stage in renaissance mathematics in 

Europe, the algebraic interpretation of results in Book II could became a natural, 

additional step to be followed.  

In the discussion below, as already indicated, proposition II.5 provides a significant 

focal point for the analysis pursued. Nevertheless, this focus allows only a limited 

view on the broader issue at stake. On closer analysis, one realizes that another issue 

of crucial importance in this story is the way in which distributivity of the product 

over addition was handled in the various medieval texts that I study here. In 

consideration with the already substantial length of this article, I have pursued that 

issue in a separate essay, soon to be published, and to which I refer in the relevant 

places as [LC2]. 

Another remark related to the length of my article is the following: since, of necessity, 

the text below includes many detailed proofs that differ from each other in specific 

important points, yet in subtle and perhaps non-dramatic manners, I have followed the 

convention of writing some paragraphs using a different font.  This is meant as an 

indication to the reader that these paragraphs comprise purely technical descriptions 

of proofs, and that they are intended as evidence in support of the general claims 
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made in the corresponding sections. The paragraphs may be read with due technical 

attention, or they may be skipped at least temporarily without thereby missing the 

general line of argumentation.  

   

3. Euclid’s Elements - Book II and Geometric Algebra 

Book II of the Elements is a brief collection of only fourteen propositions. The first 

ten can be seen as providing relatively simple tools to be used as auxiliary lemmas in 

specific, more complex constructions later on. Euclid applied the results in the proofs 

of the last four propositions of Book II (II.11, for instance, teaches how to obtain the 

mean and extreme section of any given segment), as well as in other books of the 

Elements. Later on, they can be found in important places such as Apollonius Conica. 

Each of the first ten propositions was proved by Euclid directly with the help of 

results taken from Book I, and without relying on any other result from Book II. It is 

easy to see, however, that once II.1 is proved on the basis of I.34, the other nine 

propositions could be proved with its help. This is not what Euclid did in his text, but 

as we shall see, the possibility was acknowledged from very early on.  

 

3.1. Elements Book II – An Overview 

Since I will be referring throughout the article to some propositions in Book II and to 

their proofs, I present now propositions II.1-II.6 and II.9-II.10, with varying degrees 

of detail (according to what is needed in the discussion below). I also add some 

general comments at the end of the presentation (all the quotations are taken from 
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(Heath 1956 [1908])):
4
 

II.1: If there are two straight lines, and one of them is cut into any number of 

segments whatever, then the rectangle contained by the two straight lines equals 

the sum of the rectangles contained by the uncut straight line and each of the 

segments. 

 

Figure 1 

Here A is the first given straight line, and BC is the second one. BC is divided 

into three parts: BD, DE, EC (this is meant to indicate that BC is cut into “any 

number of segments whatever”). The construction is straightforward, setting BG 

equal to A, and perpendicular to BC, and then drawing DK, EL, and CH parallel to 

BG. All that is necessary to complete the proof is that DK be equal A, and this 

follows from the fact that BK is by construction a rectangle, and hence (by I.34) 

DK, being opposite to BG, equals BG. For the same reason also EL and CH are 

equal to BG, and all the three parallelograms can be taken together to form the 

parallelogram BH.  

II.2: If a straight line is cut at random, then the sum of the rectangles 

                                                 
4
 Recent scholarship has devoted increased attention to the ways in which diagrams appearing in 

critical editions of the Elements differ from those in extant manuscripts. See, e.g. (Saito & Sidoli 2012). 

Although considerations of this kind may be relevant to our analysis here, in this article I will refer 

only to diagrams as they appear in the available critical editions.   
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contained by the whole and each of the segments equals the square on the 

whole. 

 

Figure 2 

II.3: If a straight line is cut at random, then the rectangle contained by the 

whole and one of the segments equals the sum of the rectangle contained by 

the segments and the square on the aforesaid segment. 

 

Figure 3 

II.4: If a line is cut at random, then the square on the whole is equal to the 

squares on the segments and twice the rectangle contained by the segments.  
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Figure 4 

II.5: If a straight line be cut into equal and unequal segments, the rectangle 

contained by the unequal segments of the whole together with the square on 

the straight line between the points of section is equal to the square on the half.  

The straight line AB is cut into equal segments at C and into unequal segments at D. 

The proposition says that the rectangle on AD, DB together with the square on CD is 

equal to the square on CB. The diagram is built by taking AK = AD, BF = CB.  

 

Figure 5 

In the proof Euclid makes use of a gnomon, NOP, which is the figure obtained when 

joining the rectangles HF, CH, together with the square DM. Euclid’s proof can be 

visualized as follows: 



Corry  Geometry/Arithmetic in Euclid, Book II 

- 11   -  

 

 

 

 

Figure 6 

 

Schematically, Euclid’s argument can be summarized as follows [Sq(CD) means 

“the square of CD” and R(CD,DH) means the rectangle built on CD, DH]:  

(a.1) By I.43: R(CD,DH) = R(HM,MF), and hence R(CB,BM) = R(DB,BF) 

(a.2) But R(CB,BM) = R(AC,AK) and hence R(AC,AK) = R(DB,BF) 

(a.3) Hence R(AC,AK) + R(CD,DH) = R(DB,DF) + R(CD,DH), or, 

(a.4) R(AD,AK) = Gnomon NOP    or     R(AD,DB) = Gnomon NOP 

(a.5) Hence R(AD,DB) + Sq(LH) = Gnomon NOP+ Sq(LH) or, 

(a.6) R(AD,DB) + Sq(CD) = Sq(CB)     Q.E.D. 
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II.6: If a straight line is bisected and a straight line is added to it in a straight 

line, then the rectangle contained by the whole with the added straight line and 

the added straight line together with the square on the half equals the square 

on the straight line made up of the half and the added straight line. 

The segment AB is bisected at C, and a segment BD is added to it in a straight line. 

The proposition says that the rectangle AD, DB together with the square on CB equals 

the square on CD. The diagram is built by taking AK = BD, DF = CD. 

 

Figure 7 

Like in II.5, also in this case, a key step in Euclid’s proof is based on the use of a 

gnomon, NOP, and of II.43 in order to assert that CH = HF.  

 

II.9:  If a straight line be cut into equal and unequal segments, the squares on 

the unequal segments of the whole are double of the square on the half and of 

the square on the straight line between the points of the section.  

The straight line AB is cut into equal segments at C and into unequal segments at D. 

the proposition says that the squares on AD, DB are double of the squares on AC,CD. 
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Figure 8 

The proof refers to the diagram above where GF = CD,  EC = AC = CB, and 

wherein the angles AEB, ECA, ECB are easily shown to be right angles. The 

Pythagorean theorem (I.47) is thus applied several times, as follows:  

(b.1) By construction and by I.47: Sq(AE)  = 2·SQ (AC)  

(b.2) By construction and by I.47: Sq(EF)  = 2·SQ (GF) = 2·SQ (CD) 

(b.3) Hence: Sq(AE) + Sq(EF)  = 2·SQ (AC) + 2·SQ (CD) 

(b.4) But by I.47:  Sq(AF) = Sq(AE) + Sq(EF)   

(b.5) Hence [from (b.3) and (b.4)]:   Sq(AF) = 2·SQ (AC) + 2·SQ (CD) 

(b.6) But by I.47:  Sq(AF) = Sq(AD) + Sq(DF) = Sq(AD) + Sq(DB) 

(b.7) From (b.5) and (b.6):  Sq(AD)+Sq(DB) = 2·Sq(AC) + 2·Sq(CD)   Q.E.D. 

 

II.10: If a straight line is bisected, and a straight line is added to it in a straight 

line, then the square on the whole with the added straight line and the square on 

the added straight line both together are double the sum of the square on the half 

and the square described on the straight line made up of the half and the added 

straight line as on one straight line. 

The segment AB is bisected at C, and a segment BD is added to it in a straight line. 

The proposition says that the squares on AD, DB are double of the squares on AC,CD. 
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Figure 9 

 

3.2. Geometric Algebra – An Overview 

Even a superficial glance at II.1 immediately indicates why the algebraic 

interpretation readily suggests itself to a modern reader, who would identify here a 

particular case of the distributive property of multiplication over addition seen as an 

algebraic rule. Of course, this identification requires that we add some ideas that do 

not appear in the text as cited, such as equating area formation with multiplication of 

abstract quantities. But a reader that is willing to ignore the historical context will 

have no difficulty in doing so, even though what the texts displays is a purely 

geometric formulation and proof of a property of area formation. 

The situation becomes somewhat more complex and interesting if we look at II.5 and 

II.6. In his well-known comments to these propositions, Heath gave the typical 

geometric algebra interpretation, by assigning algebraic symbols to segments in the 

diagram of II.5, as follows: AD = a, BD = b, hence CB = (a+b)/2 and CD = (a-b)/2 

(Heath 1956 [1908], Vol. 1, 383). In these terms, the proposition can be interpreted as 

an algebraic identity, namely,  
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
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

 








 
22

22
. 

One interesting feature of his interpretation is that the relevant expression for the 

proposition changes if we call the segments differently. In particular, the two 

propositions, II.5-II.6, can be made to represent one and the same expression, namely, 

“the difference of the squares of two straight lines is equal to the rectangle contained 

by their sum and difference”, or (a + b)·(a – b) = a
2
 – b

2
. This equivalent formulation 

obtains if the two lines in Figure 10 below represent the two propositions, with a and b 

being CB and CD, respectively, whereas AD and BD are taken as their sum and their 

difference respectively. Thus:  

 

Figure 10 

Moreover, the two same lines could be taken to represent a putative algebraic 

interpretation common to II.9-II.10: “The sum of the squares on the sum and 

difference of two given straight lines is equal to twice the sum of the squares on the 

lines” or (a + b)
2
 + (a – b)

2
 = 2·(a

2
 + b

2
) (Heath 1956 [1908], Vol. 1, 394). This 

interpretive flexibility may be seen as either an advantage or a disadvantage, 

depending on what viewpoint we adopt, but it certainly raises some concerns that 

require being clearly addressed.   

Thus, if we remain close to the Euclidean text we have to admit that, particularly in 

the case of II.5 and II.6, both the proposition and its proof are formulated in purely 

geometric terms. There are no arithmetic operations involved, and surely there is no 
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algebraic manipulation of symbols representing the magnitudes involved. The entire 

deduction relies on the basic properties of the figures that arise in the initial 

construction or that were proved in previous theorems (which in turn were proved in 

purely geometric terms).  Thus, for instance, the claim that “the complement CH is 

equal to the complement HF” corresponds to proposition I.43 of the Elements. The 

gnomon NOP is a geometric figure built out of other figures, and similar gnomons 

appear in many other proofs in Greek geometry. It is clear that, while one might easily 

claim (albeit with little historical justification, but at least with some mathematical 

justification) that rectangle formation is a geometric equivalent of arithmetic 

multiplication, no such natural, arithmetic equivalent can be suggested for “gnomon 

formation”. Unguru’s criticism of the geometric algebra interpretation laid stress on 

this kind of interpretive difficulties concerning the meaning of the operations. It also 

indicated the inherent difficulty to define a clear, general arithmetic of abstract 

magnitudes in Greek mathematics, of which the putative algebra would be a 

generalization (Unguru & Rowe 1981-82; see also Mueller 1981, 50-52).  

Whether or not one accepts this kind of criticism, it is pertinent to notice that when it 

comes to the arithmetical books of the Elements, Books VII-IX, the discussion may 

require some specific adaptations, since the arguments against the algebraic 

interpretation of geometric situations cannot simply be extended without further 

comments. I discuss this issue more at length in [LC2]. Nevertheless I want to stress 

here one point concerning the way in which numbers and operations upon them are 

represented in the arithmetical books of Euclid, while contrasting it with the case of 

the geometric books. This is a very important point for our discussion below on the 

medieval texts. The accompanying diagram for VII.5 is useful for our purposes here: 
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Figure 11 

As in all diagrams associated with the arithmetical propositions in the Elements, lines 

represent here numbers while the operations of addition and subtraction can be 

represented by concatenation of lines. In this diagram, for instance, EF is the sum of 

EH,HF. This is not different from addition of two lines in the geometric context. 

When it comes to multiplication, however, we need to be more attentive to the 

differences between the two contexts. The number A, for instance, is “a part” of BC, 

which means that A, if added repeatedly to itself, yields BC. In the proof, Euclid 

simply counts and compares the “multitude” of times that one number is part of the 

other in the cases considered. I will be referring below to this kind of argument as 

“counting units”. In the Euclidean texts, such arguments appear in the context of 

“arithmetic proofs”, where lines appearing in diagrams are used just to represent and 

to label arbitrary numbers and actual constructions are never performed on them. 

These lines are not multiplied with each other, but they can be multiplied in the sense 

of repeated addition. In contrast, in “geometric proofs” two lines may be “multiplied” 

in the sense of rectangle formation. Whereas in the framework of the Elements, the 

separation is clearly kept between the geometric and the arithmetic books, and the 

kinds of proofs used in each, in the framework of Islam mathematics, and certainly 

later on in medieval European mathematics, we find proofs of both types mixed 
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together in various contexts.
5
 Among the interesting changes that we shall notice 

below is that arithmetic proofs started to be increasingly used also for propositions 

originally appearing in Book II. 

 

3.3. Visible and Invisible Figures  

A possible reaction to any criticism against the geometric algebra interpretation of 

Book II is to ask for a coherent, purely geometric interpretation of the meaning and 

usage of this collection of propositions seen as a whole. One illuminating such 

interpretation has been suggested by Ken Saito (Saito 2004 [1985]), and it is also 

relevant for our discussion below. Saito’s interpretation is related to the twin-like 

relation already mentioned above between pairs of propositions such as II.5-II.6 or 

II.9-II.10. Similar relations can be shown to hold, respectively, for the pairs II.2-II.3, 

II.4-II.7 and II.1-II.8. We saw that in the algebraic interpretation these pairs of twin 

propositions may be understood as representing one and the same algebraic 

expression. But this immediately raises the question why would the same expression 

require two different propositions to express it. This would seems to go against the 

gist of the algebraic perspective as known to us nowadays, in which precisely such 

repetitions become unnecessary. One of Saito’s interesting insights is that the 

geometric context alone provides a very coherent and sufficient explanation for the 

existence of these twin propositions that obviates the need for an algebraic addition 

(Saito 2004 [1985], 157-160). Indeed, Saito points to several places in the Elements, 

in other books of Euclid, and in Apollonius’ Conica, where two different, but strongly 

related, geometric situations are proved with the help of twin propositions from Book 

                                                 
5
 The distinction between the two kinds of proofs has efficiently been used in (Oaks 2011) for the case 

of Islam mathematics. 
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II. An example of this appears in propositions III.35-III.36 of the Elements, which 

deal with areas of rectangles built on segments of lines that intersect with each other 

and with a circle. In III.35 the lines intersect within the circle, whereas in III.36 they 

intersect outside it. Two diagrams appearing in the proofs of the propositions and 

related to this point are the following: 

 

Figure 12 

In III.35 the line AC is cut into equal parts at G and into unequal ones on E, and thus 

II.5 can be applied. In III.36, the line AC is bisected at F and DC is added to it, and 

thus II.6 can be applied. Notice then, that not only the relations between the lengths 

here is important, but above all their geometric arrangement. Thus, Saito concludes 

that Euclid considered lines and areas not as representations of abstract quantities that 

can be freely manipulated according to general rules, but specifically as geometric 

entities, the mutual arrangement of which is significant for the propositions 

considered. 

Saito’s analysis shows that a purely geometric interpretation of Book II does full 

justice to Euclid as a conscious planner of the mathematical edifice of the Elements. 
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In later books of the collection we encounter geometric situations that require the 

support of lemmata such as those put forward in advance in Book II in order to 

complete the proof or the construction at stake. The very singling out of these results 

as worthy of separate consideration in advance appears in retrospect as an under-

acknowledged token of Euclid’s great insight. I say this, because these lemmata came 

to be used significantly not only where originally intended, but also (as Saito shows) 

in Euclid’s Data and, somewhat later, in Apollonius’s Conica. And as the 

mathematician Doron Zeilberger emphasized recently, “A Good Lemma is Worth a 

Thousand Theorems”, precisely because, while trivial in appearance or easy to prove, 

once stated, the insight encapsulated in a good lemma allows for its application in a 

wide variety of unexpected contexts, and this was indeed the case with Book II.
6
 

Another aspect of Saito’s analysis concerns the distinction between visible and 

invisible figures in the diagrams of the Elements. This important point is also 

connected with the issue of distributivity which I discuss in further details in [LC2]. 

Here I mention it only briefly. Recall that the geometric fact to be proved in II.1 can 

be schematically stated as follows (referring to Figure 1 above):  

  R(A,BC) = R(A,BD) + R(A,DE) + R(A,EC). (eq. 1) 

The proof itself, on the other hand, is based on (i) taking a segment BG = A, (ii) 

constructing the parallelograms and proving on purely geometric grounds (using I.34) 

that DK=A=EL, and (iii) then realizing that, according to the diagram: 

                                                 
6
 See Doron Zeilberger, Opinion 82: “A Good Lemma is Worth a Thousand Theorems”. Written: Aug. 

14, 2007; Downloaded May, 02, 2012: http://www.math.rutgers.edu/~zeilberg/Opinion82.html): 

“Theorems are nice, but they are usually dead-ends. A lemma may be ‘trivial’, or easy to prove 

once stated, but if it is good, its value far surpasses even the deepest theorems.”  

http://www.math.rutgers.edu/~zeilberg/Opinion82.html
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  R(BG,BC) = R(BG,BD) + R(DK,DE) + R(EL,EC). (eq. 2) 

So, what is the big difference between (eq. 1) and (eq. 2)  and in what sense does the 

latter proves the former? Notice, in the first place, that proving DK=A=EL is 

fundamental since otherwise the three rectangles in the figure cannot be concatenated 

into a single one in (eq. 2). But what Saito draws our attention to, in particular, is the 

fact that the rectangles used in (eq. 2) are all “visible” in the diagram, whereas those 

of (eq. 1) are “invisible”. Situations like that of (eq. 2) appear frequently in the 

Elements and the distributivity of the construction of parallelograms is used there 

without any further comment. A most prominent example appears in the proof I.47, 

whose well-known diagram is the following: 

 

Figure 13 

A crucial step in the proof is that  

  Sq(BC) = R(BD,DL) + R(CE,LE), (eq. 3) 

and this step is taken in Euclid’s text without any special comment. In other words, 

situations embodied in (eq. 2) and (eq. 3) involve visible figures and hence do not 

require further justification other than what the figure itself shows. The situation 
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embodied in (eq. 1), in contrast, does require a proof precisely because the rectangles 

involved are, as indicated by Saito, invisible. In Book II, then, Euclid shows how the 

properties of invisible figures can be derived from those of visible ones “for one can 

apply to the latter the geometric intuition which is fundamental of Greek geometric 

arguments” (Saito 2004 [1985], 167). In the texts discussed below the awareness to 

this clear distinction is not strictly kept, and the blurring of borders between the two 

kinds of figures runs parallel to the processes of blurring of borders between 

geometric, arithmetic and proto-algebraic ideas.   

  

4. Book II in Late Antiquity and in Islamic Mathematics 

Medieval readers, translators and editors of the Elements were acquainted with 

various kinds of commentaries and additions, and not just with the original Euclidean 

text such as described above for the particular case of Book II. In this section I 

present some versions of results related to Book II, written in late antiquity and in the 

mathematical culture of Islam, and that circulated in Europe since the 12
th

 century. 

The texts discussed here had a direct impact on the way that the results of Book II 

came to be interpreted, reproduced, and disseminated in mathematical texts in the 

middle ages.  

 

4.1. Heron’s Commentary of the Elements 

Alternatives to Euclid’s proofs started to appear already within Greek mathematical 

culture itself. It has been speculated that arithmetical versions of some propositions in 

Book II circulated at the time of Diophantus and perhaps even earlier (Vitrac 2004, 

22). Also, a number of scholia to the Elements include an arithmetic rendering of II.5, 

with values AB=10, AC=CB=5, AD=8 and DB=2 (Heiberg & Menge 1883-93, Vol. 5, 
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234-236), but their exact dating and authorship is a debatable matter (Vitrac 2003). 

What can be asserted with relative certainty is that Heron of Alexandria, who at the 

end of the first century A.D. wrote a Commentary of the Elements, presented original, 

alternative proofs to many propositions in Book II. These proofs provide a good 

illustration of how Euclid’s arguments started to be transformed from quite early on. 

Since Heron’s text was known, either directly or indirectly, to some of the medieval 

authors about whom we shall speak below his proofs are worthy of examination here.  

Reconstructing the exact contents of Heron’s text is not a straightforward task, since 

only very meager fragments have survived in Greek (Vitrac 2011). The main 

available substantial source for the existing reconstructions is found in a commentary 

to the Elements written by Abu'l Abbas al-Fadl ibn Hatim al-Nayrīzī (c. 875-c. 940). 

This commentary (which we discuss below) was one of the earliest to be written in 

Arabic and it preserved a considerable number of extracts from Heron’s book (Heath 

1981 [1921], 309-310). The medieval authors discussed in this article became 

acquainted with Heron’s ideas via al-Nayrīzī’s commentary, and hence it seems 

reasonable to rely on it for our discussion here. That being said, it is nonetheless 

important to keep in mind that more recent historical research has stressed the 

difficulties in asserting the ways in which the extant Latin and Arab manuscripts 

reflect the original text of Heron (Busard 1996b, Brentjes 2001a).  

As already mentioned, Euclid had proved each proposition in Book II separately on 

the basis of results of Book I alone. Heron followed a different approach. He asserted 

that II.1 is the only one among the fourteen propositions that “cannot be proved 

without drawing a total of two lines”. As for the remaining propositions, however, he 

stated that “it is possible that they be demonstrated with the drawing of one sole line”, 

and he suggested alternative proofs that do not rely anymore on Book I. Rather, he 
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relied in each case on propositions from the same Book II that he gradually proved as 

he went along (Curtze 1989, 88-89). Thus, II.1 appears here as the basic statement of 

a general law of distributivity of area-formation over addition, a law whose proof is 

purely geometric, and from which all other propositions in Book II can be derived. 

Propositions II.2-II.3 appear as particular cases of II.1, and II.4 as directly derivable 

from it (see [LC2]). Hence, implicitly, also these propositions derive their validity 

from geometry, but at the same time they embody situations which Heron saw as 

arithmetic and illustrated with numerical examples. Along the proof he also referred 

to rectangles and squares constructed on the various segments (or, as he phrased it 

“the surface that the two lines CD, DB enclose”), but such figures are truly invisible, 

in the sense of Saito, i.e., they are never actually drawn and it is left to the reader to 

imagine them. In addition, Heron stressed that each proposition can be proved in two 

different ways, namely by analysis and by synthesis. I will present now the details of 

Heron’s proof of II.5, while focusing only on the second of these two components, 

namely synthesis. 

Heron’s proof for II.5 relies directly on II.2-II.3, rather than on propositions in 

Book I, as in Euclid’s original. Heron draws a line AB, with two additional points D 

and C indicated on it, and with C bisecting the line, as follows (Curtze 1989, 96)
7
:  

 

 Figure 14 

The core of the proof can be visualized in terms of two simple steps: (1) 

decomposing the square on BC into smaller pieces; (2) reassembling the pieces 

                                                 
7
 And for an English translation see (Lo Bello 2009, 32).  
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into the rectangle on DA,DB and the smaller square on DC. Graphically this amount 

to the following (I am using figures that do not appear in the text): 

            

Figure 15 

Schematically, Heron’s argument can be summarized as follows: 

(c.1) By II.2:         Sq(CB) = R(CB,DB) + R(CB, CD) 

(c.2) But, by II.3   R(CB,CD) = R(CD,DB) + Sq(CD)   (since BC = DB + CD) 

(c.3) Hence           Sq(CB) = R(CB,DB) + (R(CD,DB) + Sq(CD)) 

(c.4) But               AC = CB 

(c.5) Hence           Sq(CB) = R(AC,BD) + (R(CD,DB) + Sq(CD)) 

(c.6) But by II.1     R(AC,DB) + R(DB,CD) = R(AD,DB) 

(c.7) Hence            Sq(CB) = R(AD,DB) + Sq(CD),                 Q.E.D. 

 

Historians have identified Heron’s proofs as early instances of using algebraic 

techniques in geometry, and this assessment remained unchallenged even in critical 

analyses of “geometric algebra” (see, e.g., Fried and Unguru 2001, 20-21). This way 

to interpret Heron’s work, however, seems to me misleading, as I find it hard to see 

this approach as “algebraic” in any possible sense of this word. In the proof just 

presented, as well as in others in Book II, Heron added areas to areas or decomposed a 

square into geometric components, and then manipulated the parts in order to 

reconstruct a different one. On the one hand, these are just legitimate geometric 

operations also found in other parts of the original Euclidean text. On the other hand, 
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there is here an interesting twist of ideas whereby Heron extended the scope of 

Euclid’s norms, in the sense that he applied to invisible figures manipulations that 

Euclid had legitimately applied only to visible ones. Indeed, as we saw above, the 

whole idea of Book II was to provide tools that created a sound basis for doing these 

kinds of geometric manipulations wherever needed, and now we find here the 

manipulation of invisible figures being done already within Book II. Moreover, one 

cannot overlook the important difference embodied in the fact that Euclid’s proof is in 

essence constructive, while Heron’s is operational: what I mean by this is that Euclid 

starts with an elaborate construction that needs to be completed before starting the 

apodictic part of the proof, whereas Heron proceeds straightforwardly from the 

divided line to the conclusion, simply by operating (i.e., adding and comparing areas) 

with squares and rectangles built on the segments appearing in the proposition (and 

using some previous propositions as well). In fact, it is quite clear that Heron’s 

diagram alludes to those appearing in the arithmetical books of the Elements, which 

typically comprise just collections of segments which are referred to in the proof but 

are not used for any kind of construction. Thus, Heron’s proof are different from 

Euclid’s in important senses, but not in the sense of being algebraic rather geometric. 

Indeed, they are not even “arithmetic proofs” in the sense explained above, since two 

lines multiplied give raise to a rectangle and not to a third line. Heron’s proofs are not 

less geometric than Euclid’s, but rather differently geometric, and in a meaningful 

manner at that.
8
  

Given this different geometric approach, some have speculated about the possibility 

                                                 
8
 (Vitrac 2005, 6 ff.) speaks about two contrasting styles of geometrical proof in Greek mathematics: 

“demonstrative” vs. “algorithmic”. Without wanting to make too much of word-choice, and without 

the benefit of the much broader scope of Vitrac’s analysis, I think that for the case of Book II, at 

least, the contraposition of “constructive” vs. “operational” is more adequate to encapsulate the 

difference between Euclid’s and Heron’s proofs.  
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that Heron’s proof had its sources in Pythagorean ideas from a time in which 

arithmetic and geometric practices were less clearly separated than what they came to 

be later on, as in the Euclidean text (Vitrac and Caveing 1990, 369). At any rate, it 

seems evident that the operational character of Heron’s proof, even though it is 

geometrically operational, more conveniently prepares the road for a possible 

arithmetic, and later algebraic, readings of the propositions in Book II. As we shall 

see below, this road was indeed taken by later readers of Euclid’s text and of Heron’s 

commentary. But it is important to stress these kinds of differences between two 

geometric approaches (Euclid’s and Heron’s) since it is precisely through this kind of 

nuances that we come to understand the slow process through which algebraic-like 

thinking entered geometry and in particular the kind of geometry developed in Book 

II. 

 

4.2. Al-Khwārizmī and Abū-Kāmil 

The development of procedures for solving problems involving unknowns and their 

powers was a central contribution of the mathematicians in the culture of Islam. The 

terms “Islamic algebra” or “Arabic algebra” can be associated with this tradition. 

Their most well-known contributions are dated not before the beginnings in the 9
th

 

century, but it is likely that some of the earlier ideas began as practical traditions that 

were cultivated and transmitted orally over many centuries (Høyrup 1986). It is 

obvious, at any rate, that the Islamic context must be explored in any attempt to 

follow the incorporation of arithmetic, algebraic or proto-algebraic ideas into later 

versions of Book II. One must keep in mind, of course, that the transmission of the 

Arabic Elements involved a highly complex network of translations, editions, 

commentaries and reception, about which knowledge continues to be somewhat 
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limited and contested (Brentjes 1994, 1996, 2001a). The current scholarship typically 

refers to two basic Arabic translations of Books I–XIII, that gave rise to separate 

textual traditions. One, composed before 805, is attributed to Al-Ḥajjāj ibn Yūsuf ibn 

Maṭar (fl. between 786–833). A second one, composed by Isḥāq ibn Ḥunayn (ca. 830- 

910/11), during the last third of the ninth century, was later edited by Thābit ibn 

Qurra (ca. 830-901). I will discuss here ideas of Book II that appear in the works of 

al-Khwārizmī, Abū Kāmil, Thābit ibn Qurra, and al-Nayrīzī. In all these cases, these 

ideas appear in contexts that sensibly differ from the original Euclidean one. 

Moreover, in each case we find different approaches to the way in which the result 

can be used and interpreted from an algebraic or arithmetic perspective. These four 

mathematicians do not exhaust the variety of relevant texts from the Islamic tradition, 

but they were among the most commonly read in medieval Europe and this is the 

reason for focusing here on their works.   

The famous Al-kitāb al-muẖtaṣar fī ḥisāb al-jabr wa-l-muqābala (“The Compendious 

Book on Calculation by Restoration and Confrontation”) was written by Muḥammad 

ibn Mūsā al-Khwārizmī (c. 780-850) in the early ninth-century on the exhortation of 

the caliph al-Mamun. As it is well known, al-Khwārizmī presented here rules for 

solving problems that involve squares of an unknown quantity, and he then added 

geometric proofs to justify some of the rules. Although it seems unlikely that he was 

not aware of some of the existing translations of Euclid’s text, the fact is that he did 

never directly refer to or otherwise mention the Elements (Djebbar 2005, 34-36). 

Neither did he explicitly state or prove results of Book II in any of his works. Many 

of the geometric proofs found in his texts bear similarities with the Euclidean 

propositions, but they are used in a less rigorous and more intuitive or “visual” 

manner that in the original. A well known example is the use of a result similar to II.5 
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in relation to the problem known as “the square and twenty-one numbers equal ten 

roots of the same square”. Here we find an early, interesting case of embedding the 

core of II.5 in a typical Arabic “algebraic” context.   

Al-Khwārizmī’s procedure to solve this problem is described as follows (Rosen 

1831, 11):   

Halve the number of the roots; the moiety is five. Multiply this by itself; the 

product is twenty-five. Subtract from this the twenty-one which are 

connected with the square; the remainder is four. Extract its root; it is two. 

Subtract this from the moiety of the roots, which is five; the remainder is 

three. This is the root of the square which you required, and the square is 

nine. Or you may add the root to the moiety of the roots; the sum is seven; 

this is the root of the square which you sought for, and the square itself is 

forty-nine. 

The diagram used to endorse the validity of this procedure is reminiscent but not 

identical to the Euclidean one for II.5. It involves a square AD, whose side AC 

represents the unknown magnitude. In the diagram there is also a rectangle HT, 

one of whose sides, HN, equals AC.  

 

Figure 16 

The diagram accounts for the problem in the sense that rectangle HB and square 

AD together build a larger rectangle, HD, that represents 10 times the unknown 
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magnitude AC, while HB alone is assigned the value 21. Al-Khwārizmī’s 

argument, from here on, can be schematically rendered as follows: 

(d.1) Bisect HC at G, and construct square MT with side equal to HG. Since 

HG is of length 5, then the area of MT is 25.  

(d.2) Construct KMHG with KG = GA. Here KR = Sq(GA). 

(d.3) Now, we have cut HC into equal segments at G and into unequal 

segments at A. Euclid’s II.5 can be applied here, so that: Sq(HG) = 

R(HA,AC) + Sq(GA). Hence, MT = HB + KR.  

(d.4) Thus, the value of KR is 4, and its side is 2. And since GK = GA, it 

follows that AC is 3, and this is the side we were looking for. 

  

Al-Khwārizmī is thus using here the main idea behind II.5 in the framework of a 

specifically arithmetic case. He freely associates numerical values to what for Euclid 

are continuous magnitudes (line segments), and then he can obtain, with the help of 

II.5, another value that is associated to a certain square. Of course, this association 

crucially depends on the conceptions of number typical of Islam mathematics, and 

which differ from the classical Greek ones. For al-Khwārizmī, as for most of his 

successors, any kind of positive quantities arising from calculations, including 

fractions or irrational roots, would count as legitimate numbers. In the last step of the 

argument, the side is used to find the value of the unknown magnitude. This approach 

clearly deviates from Euclid’s consistent separation between geometric and arithmetic 

contexts, and it will have significant consequences over later developments. At the 

same time, however, II.5 itself has not lost here its purely geometric character in any 

way. On the contrary, al-Khwārizmī is clearly implying that by reducing his problem 

to a geometrical context he is bestowing theoretical legitimacy to his solving 

algorithm. He may have wanted to appeal to certain readers with a more theoretical 
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orientation, though perhaps not all of his readers would think of this as a necessary 

requirement. It should be noticed that, as in any algebraic solution of a quadratic 

equation, the crucial step in al-Khwārizmī’s procedure is that of “completing 

squares”, only that in this case, this completion is a purely geometric procedure, rather 

than a symbolic, algebraic one as it will be much later in the algebraic tradition of the 

17
th

 century. 

 

An interesting question that has been a matter of lively debate among historians 

concerns the sources of the ideas appearing in al-Khwārizmī’s al-jabr wa-l-muqābala 

and the degree of originality of his own contribution. This is true for both the 

algorithms and the kind of geometric justifications illustrated above.  

In the past it was common to assume Greek roots and a direct connection to the 

Elements, but more recently, historians also started to indicate more prominently 

Indian and Central Asian influences. Following a different direction, Jens Høyrup has 

also suggested a possible connection with Babylonian traditions of problem-solving 

that were alive and influential up until the European Renaissance (Høyrup 1986, 

2001). One way or another, ideas from Book II continued to appear repeatedly in later 

books of the Arabic algebraic tradition, typically as part of a geometric justification 

similar to what we have just seen with al-Khwārizmī. Of the highest relevance to our 

discussion here is the example of Abū Kāmil (c. 850-930) in his Kitāb fī al-jabr wa 

al-muqābala
9
, a treatise written around 900. Abū Kāmil presented in a systematic way 

                                                 
9
 A Latin version is extant which dates from the 14

th
 century (Sesiano 1993). I will be referring to this 

Latin text, which most likely reflects what was available to the European mathematicians we shall 

be discussing below. There is also a Hebrew version with comments by Mordechai Finzi (died 

1475) which seems to have been a translation from a Spanish version, but no such Spanish version 

has been preserved. See (Levey 1966; Weinberg 1935).  
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methods and results found in al-Khwārizmī, while at the same time incorporating a 

visible influence of the arithmetic books of the Elements (Moyon 2007; Oaks 2011). 

His treatise was widely read by European medieval mathematicians, and its influence 

is clearly visible, particularly concerning the questions that we are discussing in this 

article.  

Abū Kāmil started by discussing the six cases of problems with squares as introduced 

by al-Khwārizmī. In providing geometric arguments to justify the validity of his 

methods of solution, however, he followed the Euclidean source and its standards 

much more closely than his predecessor. As a matter fact, in the text we find for most 

problems two geometric justifications for each case, one closer in style to al-

Khwārizmī and one relying directly on a result from Book II. This may reflect a desire 

to meet the requirements of two different kinds of readerships: one of “practitioners” 

and another one of “theoreticians”. Still, in both cases Abū Kāmil assigned numerical 

values to lines and areas without any limitation, very much like al-Khwārizmī had 

done before him. Let us see the two proofs for the example of “the square and ten 

roots of the same square equal thirty nine numbers”, where Abū Kāmil relied on II.6. 

This example, also taken directly from al-Khwārizmī, is historically important since it 

was repeated, with slight variations, by many mathematicians both in the Islam and 

early European algebraic tradition (Dold-Samplonius 1987).  

The accompanying diagram is the following (Sesiano 1993, 327-328):
10

 

                                                 
10

 See also Oaks 2011, 255-256. 
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Figure 17 

In the first proof, the square ABGD represents the square of the unknown and to this 

the rectangle ABEU is attached and it is taken to represent ten roots. This means 

that the line BH represents the number ten since the rectangle share with square 

ABGD the line AB. Now, in the argument rectangles and squares, as well as line 

segments are taken to represent numbers, satisfying the conditions stipulated in the 

problem, namely the square of the unknown, ABGD, together with ten roots, ABEU, 

is thirty nine. Abū Kāmil’s argument can be schematically rendered as follows: 

(e.1) R(AB,BE) + Sq(GB) = 39 = R(EG,DG).  

(e.2) But GD = GB, so that R(EG,GB) = 39.  

(e.3) Bisect BE at H. Accordingly, HB = 5, and Sq(CB) = 25. 

(e.4) But BG is appended to HB in a straight line. Hence, [according to II.6]
11

: 

R(EG,GB) + Sq(HB) = Sq(HG).  

(e.5) Since R(EG,GB) = 39 and Sq(HB) = 25, then Sq(HG) = 64.  

(e.6) Thus, HG = 8, and line HB = 5. Finally, GB = 3, and Sq(GB) = 9.        Q.E.D. 

The second argument relies on the equality of the rectangles RA and ME, which by 

construction are both equal to rectangle AH. Hence, since DE is 39, then the three 

surfaces, MB, BD, DY taken together are 39. In addition, AC is 25, since HB is 5, 

from whence it follows that GC is 64, and GH is 8, and, finally, GB is 3.  

                                                 
11

 “… sicut dixit Euclides in secundo tractatu libri sui”. 
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In the first proof just described, the square HGCR and the segment YB are not even 

mentioned. Indeed, they are not needed. These are, as in Euclid’s proofs, “invisible 

figures” that are only implicitly referenced (i.e., HGCR is the square on SG). Thanks 

to the use of II.6, one does not actually need to draw the entire diagram in order to 

follow the proof. The diagram is drawn in full, however, because in the second proof 

it is needed in order to follow the argument. Abū Kāmil describes this second proof as 

one that is meant to explain the problem “so that it becomes apparent to your eyes”. 

Indeed, the fact that the three surfaces MB, BD, DY taken together are 39 can be seen 

directly on the diagram, based on the way in which it was constructed. The first proof, 

in contrast, is based on a proposition in Euclid which gives a rule that is applied 

“blindly”, as it were. The first perhaps is perhaps stronger in logical rigor, but it lacks 

the visual transparency that characterizes the second proof.
12

 

There is a basic tension clearly reflected in these proofs, one which actually underlies 

the entire treatise. This is the tension arising from the combination, within one and the 

same text, of results and methodological approaches taken from the arithmetic parts of 

the Elements (as well as from other, earlier arithmetic traditions) with results and 

proofs originally meant to deal with continuous magnitudes, such as those of Book II. 

Arabic numbers were of a more general kind than those handled in Euclid’s arithmetic 

books, so that the latter could not fully account for the rules of calculation for which 

Abū Kāmil was attempting to provide a theoretical account. The results of Book II 

helped Abū Kāmil complete the picture, but in doing so, he subsequently affected the 

                                                 
12

 Besides this method of solution for finding the thing, whose validity is proved in two different ways, 

Abū Kāmil also introduced a second method of solution directly yielding the value of the square. 

Although highly interesting in itself, it is beyond the scope of the present article. See (Sesiano 1993, 

329-330; Moyon 2007, 310). 
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way in which this collection of results was conceived, while broadening the scope of 

its intended applications (Oaks 2011). (And see also [LC2].)  

 

We have seen how in these two mainstream texts of early Islam mathematics, al-

Khwārizmī’s and Abū Kāmil’s, an intrinsic connection between the emerging 

techniques of Islam algebra and the theorems of Book II was made explicit. As part of 

this fundamental connection, a clear conceptual hierarchy was implicitly reflected 

whereby geometry appears as a main source of mathematical certainty, whereas the 

newly developing proto-algebraic ideas receive full legitimation from geometry. 

Within this entire picture, and in spite of the broader scope of ideas within which it 

came to be applied, Book II was applied as an important source of mathematical 

reliability which did not thereby lose its essentially geometric character. It is also in 

this way that it would be eventually perceived by the many readers of these treatises 

in Europe medieval mathematical culture.   

 

4.3. Thābit ibn Qurra  

Like al-Khwārizmī, also Thābit ibn Qurra worked in Baghdad under the patronage of 

the caliph. He was active in the second half of the ninth century, at a time when many 

Greek texts started to be translated and incorporated into the available body of 

mathematics known in the Arabic culture. Ibn Qurra, who as already indicated had 

edited one of the early translations of the Elements, also discussed the solution of 

problems with squares of unknowns quantities in a treatise entitled Qawl  fī taṣḥīḥ 

masā' il al-jabr bi'l-barāhīn al-handasīya (“ Account of the Correctness of Problems 

of Algebra by Geometric Proofs”), which is of particular interest for our survey here. 

This treatise presented general solutions for three of the six standard cases previously 
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treated by al-Khwārizmī (though without mentioning al-Khwārizmī), and, like al-

Khwārizmī’s text, it also provided geometric justifications for each of the procedures 

presented. Like Abū Kāmil somewhat later, Ibn Qurra referred explicitly to the 

propositions of Book II of the Elements as his basis for legitimation. But, unlike these 

two mathematicians, Ibn Qurra discussed various cases in an abstract manner that did 

not involve specific numerical instances (either in the formulation or in the solution). 

All the while, he translated each step of the procedures he discussed into a 

corresponding component of the geometric diagrams of II.5 and II.6. In this way he 

remained at the abstract level that involved reference to general squares, roots and 

numbers, rather than to specifically measured ones. This can be better understood by 

looking at the case he “verified” with the help of II.5, which is the already mentioned 

case: “square and numbers equal roots of the same square”. 

In his presentation Thābit referred to the following diagram (Luckey 1941, 106-

107):  

 

Figure 18 

The square of the unknown quantity is represented here by the square ABDG, 

while the line AH “is measured by as many units as there are roots” in the given 

problem. By completing the rectangle GH we obtain a figure that represents the 

number of roots, and if we subtract the square BG, then DH represents the 

“numbers” in the problem. From here the argument proceeds as follows: 
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(f.1) DH equals AB times BH, whereas AH is also known. In other words, 

what we have is a given line AH, which is cut at B, in such a way that 

R(AB,BH) is known.   

(f.2) Bisect now AH at W. By II.5, R(AB,BH) + Sq(BW) = Sq(AW).  

(f.3) But AW is known (since AH is known) and hence Sq(AW) is known, and 

also R(AB,BH).  

(f.4) Thus, we also know now Sq(BW), and hence we know BW.  

(f.5) If BW is subtracted from AW (as in the figure on the right) or added to 

AW (as in the left), then we obtain AB as a known quantity, which 

represents indeed the root we are looking for.  

Thābit’s algebraic procedure for solving this case is based, as we see, on completing a 

square and then adding or subtracting from the value of the number of roots in the 

problem. This is quite similar to what we saw in the two previous examples. When 

explaining the rationale behind the procedure in terms of geometrically completing 

the square on BW, the main trick comes from II.5. But Thābit did not just use 

geometric methods in order to solve a specific problem, or to legitimate known 

procedures. Rather, he essentially identified the two methods with one another by 

stressing that his arguments “are in accordance” with those developed by the 

“algebraists” (Luckey 1941, 95). This is a subtle step beyond the views implicit in al-

Khwārizmī’s and later in Abū Kāmil’s approach, and Thābit’s highly influential 

status within Islamic mathematics no doubt helped disseminate it. It thus seems 

reasonable to assume that it may have contributed to strengthening views of Book II 

as a collection of techniques directly related to the gradually developing algebraic 

procedures, rather than just supporting it from outside.  
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4.4. Al-Nayrīzī 

Another version of II.5 in the mathematical culture of Islam that is worthy of attention 

here is the one appearing in al-Nayrīzī’s commentary to the Elements, dating from the 

early tenth century, which was one of the earliest such commentaries to be written in 

Arabic.
13

 In his text, al-Nayrīzī incorporated idiosyncratic additions and changes to 

the original text. Some of these comprised either a commentary on the Euclidean 

proof or an alternative proof. Al-Nayrīzī’s attributed them to Heron’s Commentary. 

The most noticeable kind of additions to Book II were numerical examples that 

illustrated each proposition. In the case of II.5, for instance, the numerical example is 

of a line AB representing the number 10, which is then divided into two equal parts, 5 

and 5, and also into two unequal parts, 7 and 3. Thus, 5×5 = 25 equals 7×3 + 2×2.
14

  

A second important kind of addition that al-Nayrīzī incorporated into the Euclidean 

text appears in Book IX, where, as a series of comments to IX.16, he included 

arithmetic versions of I.1-II.4 (Curtze 1899, 204-207). It is evident that merely by 

placing these propositions in the context of one of the arithmetical books of the 

Elements, and by reformulating these four propositions in terms of numbers rather 

than in terms of lines, al-Nayrīzī was making a strong statement about the way in 

which the knowledge presented in Book II, particularly concerning distributivity, 

                                                 
13

 This text in its various extant manuscripts and translations has had a somewhat convoluted history 

(Brentjes 2001b), which I will not delve into here. I will refer to the text as rediscovered and 

published in Latin translation in (Curtze 1899). For details see also (Lo Bello 2003a; 2009); 

(Tummers 1994). 

14
 In Curtze’s late 19

th
-century edition of this text, Al-Nayrīzī’s commentary was accompanied by a 

footnote in which he formulated the original Euclidean text together an algebraic rendering of the 

proposition (Curtze 1899, 94). Even here this algebraic rendering is anachronistic. Reinterpreting a 

geometric result in arithmetic terms (as Al-Nayrīzī did) is not yet the same as reinterpreting it 

algebraically. 
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should (or at least could) be seen.
15

 But al-Nayrīzī went much further than that and he 

gave fully arithmetic proofs of these four propositions, all of which embody 

properties of distributivity. He proved them simply by counting and comparing the 

numbers of units in each of the products involved (see [LC2] for details).   

One may speculate, of course, about the possibility that all or some of these additions 

and modifications were suggested to al-Nayrīzī directly by his own reading of 

Heron’s operational rendering of the Euclidean proofs in Book II. Heron’s approach 

was, as already stressed, operational and yet fully geometric. But it lent itself quite 

easily to a direct translation into arithmetic, in a way that Euclid’s proof did not. Al-

Nayrīzī may have as well been influenced by some other, unmentioned texts that 

circulated in late antiquity or in the Islam context. Thus, for instance, in an 

encyclopedic Arabic text published around 960 by the Ikhwān al-Ṣafā’ fraternity, the 

Rasā’il (or epistles), we find the same kinds of numerical examples  (Goldstein 1965, 

154-157). The text in this work betrays the clear influence of Nicomachus’ 

Introduction to Arithmetic, written in the first century AD, and it also formulates the 

propositions of Book II directly as propositions about numbers, rather than lines. 

However, since there are no proofs at all in this text, we cannot say in more precise 

terms what the writer of the text had in mind concerning the nature of numbers and 

their relation to geometry. This text, moreover, was probably unknown to the 

medieval mathematicians discussed below.  

The important point, however, which can be asserted with certainty, is that al-Nayrīzī 

                                                 
15

 Neither Curtze nor – to the best of my knowledge – any other later commentator has called attention 

to the remarkable fact that al-Nayrīzī’s IX.16 is an addition to, and indeed a generalization of, Euclid’s 

IX.15, and that, incidentally, an interesting feature of Euclid’s proof of IX.15 is its reliance on what 

seem to be arithmetic versions of II.3 and II.4 (Heath 1956 [1908]), Vol. 2, 404-405). Campanus, 

following al-Nayrīzī, included arithmetic versions of propositions of Book II as additions to the same 

IX.16. I discuss this point in greater detail in [LC2].  
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reached few, but influential medieval readers, and in important cases his examples 

and additions were cited in texts written by those readers. Indeed, al-Nayrīzī’s text 

was translated into Latin by Gerard of Cremona (c. 1114 – 1187), who used the 

Latinized version of the name, Anaritius (Lo Bello 2003a).
16

 This Latin version does 

not seem to have been widely read in medieval Latin Europe, but we know that it was 

seriously studied by at least two important scholars: Roger Bacon (c. 1214–1294) and 

Albertus Magnus (c. 1206-1280) (Hogendijk 2005). Influenced by the text, Albertus 

wrote his own commentary of the Elements, comprising a paraphrase of Books I-IV as 

well as philosophical discussions (Lo Bello 2003b; Tummers 1980). These two 

authors, who played an important role in the spread of Greek and Arabic science in 

Western Europe, were certainly enthusiastic about mathematics, and Gerard’s 

translation of al-Nayrīzī was an important source for their knowledge of geometry. 

But this knowledge of geometry was somewhat limited and it can be said that both of 

them failed to appreciate the importance of al-Nayrīzī’s text. And yet, al-Nayrīzī’s 

original text became indeed influential, at least via Jordanus Nemorarius and 

Campanus de Novara, as we shall see below.  

 

These are a very few examples from among a much broader mathematical literature 

of the culture of Islam. They make it clear, however, that the ways in which the ideas 

of Book II were handled at the time created and helped disseminate an image of Book 

II in which the original, purely geometric character intended by Euclid had already 

been already broadened. This is not to say that the propositions of Book II lost their 

clearly geometric anchoring. Yet as they began to be incorporated in texts that 

                                                 
16

 One interesting point of his Latin version is that in Al-Nayrīzī’s additions to IX.16, products of 

numbers are called “areas” (superficiales). 
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suggested, either implicitly or implicitly, that they are about properties of numbers, at 

least to the same extent that they are of lines, the way was opened to additional, far-

reaching changes, including possible “algebraic” interpretations. One may imagine 

that mathematicians of later times, say in the Renaissance, who learnt their Euclid 

from texts influenced by Islamic mathematics while being also trained in algebraic 

methods, might naturally tend to read the propositions of Book II as embodying 

essentially algebraic ideas. In the mathematical culture of the Latin Middle Ages we 

still find a more fluid and less consolidated mixture of ideas of various kinds around 

Book II. An analysis of the ways in which its propositions were understood is very 

challenging and rewarding. The remainder of this article is devoted to such an 

analysis.   

 

5. Book II in the Early Latin Medieval Translations of the 
Elements 

Euclid’s Elements enjoyed a prominent position in the intellectual world of the Latin 

West. Within the history of the transmission of the Greek corpus, “no work –  be it 

mathematical, astronomical, philosophical, or medical, no matter – had anywhere near 

the [same] number of Medieval versions” (Murdoch 2003, 370). “Versions”, to be 

sure, is the right term to be used in this context, since a large number of variants of the 

Elements circulated in Europe that deviated in various degrees from what was 

considered the “faithful” translation. Moreover, many other contemporary 

mathematical treatises incorporated portions, sometimes even relatively lengthy 

portions, or results, of the Euclidean text. Thus, the story of the reception of the 

Elements in the Latin West is a very complex one, which has been thoroughly studied 

by scholars and which continues to offer a fruitful field of historical research to this 

day. 
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It is generally accepted that prior to the 12
th

 century, only fragments of Euclid’s text 

circulated in Latin Europe. The best-known of these were attributed to a translation 

from the Greek by the late Roman philosopher Boethius (ca. 480–524). They 

circulated in relatively wide European circles, beginning in the 9
th

 century, as part of a 

compilation usually known in the scholarship as Geometria I, and then in the 11
th

 as 

part of a second compilation known as Geometria II. Only fragments of the original 

Boethian translation have been preserved, but it is known beyond doubt that it 

contained at least parts of Books I to V. The translations, at any rate, were far from 

problematic and the texts did not contain proofs. Most likely, the significance of 

Euclid’s contribution was not really appreciated at this time (Folkerts 1981).  

During the incipient intellectual revival associated with the Carolingian empire and in 

the centuries that followed, Boethius’ treatises and his idea of the Latin quadrivium 

played a prominent role. The mediation of figures such as Cassiodorus (ca. 485–ca. 

585) and Isidore de Seville (ca. 560–636) was of crucial importance as well. What is 

of special interest for us here is that within the quadrivial image of the mathematical 

sciences, it was arithmetic, rather than geometry, that had absolute primacy in terms 

of disciplinary importance (Guillaumin 2012). In “Geometry II”, for instance, 

Boethius described the knowledge of numbers as “the high point of all philosophy” 

(Folkerts 1970, 138). Cassiodorus, in turn, saw arithmetic as the “origin and source” 

of the other mathematical sciences, which “depend for their being and existence” on 

arithmetic (Eastwood 2007, 192). This theoretical primacy, moreover, was further 

enhanced by the contemporary incipient interest in the practical aspects of arithmetic 

in day-to-day life. 

In the early 12
th

 century, an unprecedented amount of Greek treatises gradually 

became available in Latin, many of them via Arabic translations. Their impact 
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brought about significant changes in the world of learning at large, in its contents and 

in its institutions. This is the time when existing cathedral schools developed into 

universities at Bologna, Paris and Oxford, and when new universities were created at 

Cambridge and Padua. While perhaps their overall centrality receded, the quadrivial 

arts continued to be taught at these new universities, side by side with the new 

subjects and texts introduced into the curriculum (Kibre 1981). The disciplinary 

primacy accorded to arithmetic over geometry within the mathematical sciences, to be 

sure, remained unchanged.  

Translations to Latin from Arabic or Hebrew original works aroused no less 

enthusiasm than those of Greek texts. But whenever their texts were available, Greek 

authors were invariably seen as the main authorities, and were considered to be more 

reliable than their Islamic counterparts. The latter were more often than not used as 

support or commentary with respect to questions of correct or false attribution to 

works of the ancient Greeks. In the words of Jens Høyrup (1998, 320): “Arabic texts, 

even when translations from the Greek, were treated as objects to be used, and not 

always very formally. Greek texts, on the other hand, were sacred objects and handled 

as such; they were normally translated de verbo ad verbum  (so closely indeed that 

both the number of words and their order were often preserved …).”  

Among the earliest translations of the Elements from Arabic, historians usually count 

those of Hermann of Carinthia (c. 1100 – c. 1160) and of Gerard of Cremona (already 

mentioned above in relation to al-Nayrīzī). These translations, however, were not 

frequently read and copied. According to the currently accepted scholarship,
17

 the 

                                                 
17

 The introduction to (Busard 2005) contains a clear and well-organized summary of the rich and 

scholarly impressive literature that has dealt over the last thirty years with the issue of the Latin 

versions of the Elements. The reader may also consult the following: (Brentjes 1997/8, 2001a); 
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texts that provided the basis for the main corpus of manuscripts that spread 

throughout Western Europe over the 12
th

 and 13
th

 century were produced by Adelard 

of Bath (fl. 1116-1142), by Robert of Chester (fl. c. 1150), and, somewhat later, by 

Campanus de Novara (1220-1296). Robert’s text is not a direct translation from the 

Arabic but rather a compilation of different texts, among them the translations of 

Hermann and Adelard. Campanus’s text was the one that in 1482 appeared as the first 

printed version of the Elements and which became the standard source of reference 

for the Latin world until the 16
th

 century when new versions were printed, based on 

direct translations from the Greek.
18

  

The issues that have attracted the attention of historians investigating the Euclidean 

tradition in the Latin Middle Ages must be understood against this background. A 

main such issue concerns the ways in which the Adelard-Robert versions and the 

Campanus version of the Elements (and their derivatives) differ from Euclid’s 

original. Thus, unlike in Euclid’s original, one often finds in these texts a careful 

labeling of the various sections of the proof (exemplum, dispositio, ratiocinatio, 

conclusio, exempli gratia, rationis causa, etc.), direct references to earlier 

propositions on which a proof is based, and hints about other propositions which are 

directly related to the one considered. On the other hand, rather than explicit proofs 

many texts provide only hints to the main ideas on which the arguments are based. 

Differences in wording and in the level of detail created the impression, shared by 

many at the time, that Euclid was author only of the definitions, postulates, axioms 

                                                                                                                                            
(Busard 1983, 1984, 1996a); (Busard & Folkerts 1992); (Folkerts 2006 –Section III); (Murdoch 

1968, 1971).  

18
 John Murdoch (1966) called attention to a very accurate twelfth-century translation of the Elements 

by an anonymous translator who also translated Ptolemy’s Almagest from the Greek. However, 

there is no evidence of any substantial use of this translation. See also (Busard 1987). 
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and enunciations, whereas the proofs were considered to be just commentaries 

provided by translators or compilers (Busard & Folkerts 1992, 16). 

John Murdoch (1971; 2003, pp. 372 ff.) has stressed three main concerns that were 

prevalent in the medieval versions of the Elements: didactic considerations, 

clarification of the logical structure of the entire treatise, and the relation of the 

mathematical contents to more general philosophical questions and conceptions. Two 

topics that received special attention in this regard were incommensurable magnitudes 

and the nature of the continuum (Murdoch 1968, 90-93). Accordingly, the existing 

scholarship has dealt mainly with the ways in which the Latin medieval tradition 

handled the theory of ratios and proportions, and particularly in relation with Book X 

(see, e.g., Rommevaux 2008). The relevance of these topics to Book II and to the 

questions discussed in this article, in turn, has typically received much less attention. 

Of particular importance for our discussion here is the fact that the rigid separation 

between the realms of number and of continuous magnitudes consistently preserved in 

the Greek original was highly unsatisfactory for medieval mathematicians. This is 

interestingly manifest throughout the texts of the various Euclidean versions. Thus, 

for instance, while in his arithmetical books, VII – IX, Euclid strictly refrained from 

using the Eudoxian theory of proportions of Book V, we find instances of its use in 

the Latin versions, together with interesting comments related to them. We also find 

proofs of propositions about continuous magnitudes based on the use of particular 

numerical examples, for instance in Books V and X. We have already seen a similar 

use of numerical examples in the text of al-Nayrīzī, but in the medieval versions we 

also find arithmetic ideas used in the proof. Moreover, in some Latin versions of the 

Elements, the only argument given was that of a numerical example. Likewise, we can 
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also find examples of geometric arguments and concepts being used when discussing 

some propositions in the arithmetical books (for details, see Murdoch 1968, 86-90).    

And yet, in spite of the importance accorded to arithmetic in the medieval 

mathematical landscape, and the other kinds of differences with the Greek original 

mentioned above, most proofs of Book II found in the Latin versions remained very 

close to the original Euclidean ones, or at least to their Heronian variants. It is fair to 

say that in general, no arithmetic or algebraic ideas were introduced at the core of the 

proofs of Book II and that the purely geometric character of the propositions was 

essentially preserved (the Campanus version presents a very interesting turn in this 

regard, but I discuss his case separately).  

We can illustrate the situation by looking at how II.5 appears in the various texts in 

the Adelard-Robert tradition. First we can look at the so-called Adelard I version, 

which is most likely the first complete translation from an Arabic version of the 

Elements. We find there exactly the same geometric proof as in Euclid, based on the 

use of the gnomon (Busard 1983, 75-76). Also the proof of II.5 appearing in the so-

called Adelard II version – nowadays considered to be a compilation attributed to 

Robert of Chester – remains close to the purely geometric spirit of the Greek original, 

albeit without repeating all the details found in Euclid. Many extant manuscripts of 

this version exist, and its enunciations were used by many other Latin commentators 

or editors, including Campanus. Many of the proofs are typical examples of providing 

no more than general indications about the argument, and in some of the manuscripts 

there are only diagrams. For II.5, the guidelines refer to the following figure and 

stipulate the following steps (Busard & Folkerts 1992, 132)
19

: 

                                                 
19

 Unless otherwise stated, translations from Latin, Hebrew, or German are mine. 
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Figure 19 

A square is constructed on the middle of the whole line. Through the point of 

the unequal section draw a line segment parallel to the side of the square, and 

then a diagonal in the square. Where these two lines intersect draw another 

parallel line [and use it to complete a rectangle].  Two equal complements are 

obtained, and [the rectangle] contained by the two unequal portions equals the 

whole gnomon. Hence, the residue between the two figures is manifestly the 

square [built on the segment between the two cuts]. 

The general indications for proofs appearing in the Robert version were subsequently 

elaborated in various ways. Thus, for instance, in a thirteenth-century adaptation of 

the text, the proofs of Book II preserved their essentially geometric spirit, but were 

elaborated along the cut-and-paste approach introduced in Heron’s proofs (see the 

proof of II.5 in (Busard 1966a, 102-103)). The geometric proof based on the gnomon 

also appears in the translations of Hermann of Carinthia (Busard 1968, 44-45), Gerard 

of Cremona (Busard 1984  43-44), and in the translation made directly from the Greek 

(Busard 1987, 58-59).  

And yet, in spite of this, some alternative to the proofs of Book II, and specifically, 

some arithmetically-oriented proofs did circulate in the Medieval Latin world. We 

find them in books other than the Elements, or, interestingly, in the case of Campanus, 

as part of additions and comments to the three arithmetic books of the Elements. The 
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next (and last) section of the article is devoted to these ideas, as they appear in the 

works of medieval scholars such as Abraham Bar Ḥiyya, Leonardo Fibonacci, 

Jordanus Nemorarius, Campanus, Gersonides and Barlaam. 

 

 

6. Book II in Other Medieval Texts 

6.1. Abraham Bar-Ḥiyya 

I start this survey with Abraham bar Ḥiyya ha-Nasi (ca. 1065-1145), also known as 

Savasorda. He was a Jewish sage born in Barcelona, and probably educated in 

Zaragoza. Little is known of his life, but the importance of his work for the 

transmission of Arabic science to the Jews in Spain and to the Christian Latin West in 

general is widely acknowledged. He wrote Hebrew treatises in various fields of 

knowledge, such as philosophy, astronomy and astrology. His treatise, Ḥibbūr ha-

meshīḥah we-ha-tishboret ( והתשבורת המשיחה חיבור ), a title often translated as “Treatise 

on Measurement and Calculation”, was a book on practical geometry (Lévy 2001, 37-

42; Sarfatti 1968, 64-128). A Latin version by Plato of Tivoli appeared in 1145 under 

the title of Liber Embadorum. This Latin text introduced for the first time in Europe 

the techniques of Islamic algebra for solving quadratic equations, thus antedating 

Gerard de Cremona’s Latin translation of al-Khwārizmī’s Algebra. The Liber 

Embadorum was widely read and it is known to have directly influenced Leonardo 

Fibonacci (Clagett 1978, 1265; Curtze 1902, 5-7; Millas-Villacrosa 1931). 

Bar Ḥiyya is the earliest representative of a tradition involving Jewish sages who 

assimilated important parts of the Greco-Islamic scientific culture and published their 

own works in Hebrew, mainly between the 12
th

 and 14
th

 century. Such works were 

intended as a vehicle for transmitting Arabic science to Jewish audiences not 
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conversant with the Arabic language. They often comprised compilations and 

systematic presentations of previous work, but in many cases they also presented 

original ideas (Levy 1997a; 1997b; 1997c). Characteristic of many of these texts is 

the noticeable effort made by the authors to stress their nature as practical treatises 

that draw their contents from the “wisdom of the nations” ( הגויים חכמת ) but which, at 

the same time, provide useful tools in the service of the teachings of the Jewish law. 

In the introduction to Bar Ḥiyya’s Ḥibbūr, for one, he explicitly stressed as a main 

motivation, what he saw as the existing incompetence typical of many sages of his 

generation when it came to implementing the Jewish laws of inheritance that involved 

calculations of areas and division of patrimonies (Guttmann 1912-13, 3-4). One 

should keep in mind, however, that in many Hebrew texts of the time we find this 

kind of formulation used as a rhetorical device to justify the fact that a learned Jew is 

devoting his precious time and efforts away from the study of the Bible.  

As Tony Lévy has stressed, we do not currently posses an accepted critical version of 

the Hebrew text of the Ḥibbūr. Nor has the issue of Bar-Ḥiyya’s sources been duly 

clarified. Still, it is remarkable that neither the term “algebra” nor the standard 

technical vocabulary normally used in the Islamic algebraic tradition appears in his 

text. On the other hand, the text does include much of the techniques for solving 

problems involving squares of the unknown and the kind of geometric justification 

that was standard since the time of al-Khwārizmī. Thus, it seems reasonable to 

assume that Bar-Ḥiyya knew well the relevant literature, but that he wanted to keep 

the technical vocabulary to a minimum so as to make his text easier for his intended 

readership to comprehend (Lévy 2001, 51-52). For the purposes of the present article 

it seems sufficient to put aside the textual difficulties that future scholarly work will 

have to further elucidate (Lévy 2001, 45-47), and to refer, without further comments, 
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to the Hebrew text published in 1912-13 in Berlin by Michael Guttmann (1872-

1942).
20

       

Bar-Ḥiyya’s book has four main parts. In the first one we find a collection of 

geometric definitions and some elementary propositions relating to them. These are 

intended as providing the tools for what will be done in the following parts of the 

book. Most of the results presented in this section paraphrase results drawn from the 

Elements, including Book II, as we shall see right below. In the second part of the 

Ḥibbūr, Bar Ḥiyya discussed questions related to measurements of lands, buildings, 

and fields having all kinds of shapes: quadrilaterals, triangles, circles, and some more 

complicate others. This is, indeed, the most important part of the book.  The third part 

deals with the division, into elementary figures, of those considered in the previous 

section. Finally, in the fourth part, Bar Ḥiyya extended some of the previously 

obtained results into volumes: prisms, cylinders, spheres, etc. 

Given the main focus of interest of the book as developed in its second part, it is not 

at all surprising that Bar Ḥiyya mixed in a very conscious and purposeful way ideas 

taken from both geometry ( השיעור חכמת ) and arithmetic ( המניין חכמת ). Thus, while the 

first twenty definitions introduce basic geometric concepts, going from the point to 

the line (both of them following the Euclidean definition), and to the areas of various 

types of polygons, the following ones define the basic arithmetic concepts. The latter 

essentially repeat those of Euclid in the introduction to Book VII. This is the case, for 

                                                 
20

 The Hebrew printed version of Bar Ḥiyya’s text is accompanied by an introduction in Hebrew 

written by Guttmann and it contains further comments, also in Hebrew, written by Zvi Hirsch Yaffe 

(1853-1927). The Guttmann edition also served as the basis for a translation of the text to Catalán 

(Millás Vallicrosa 1931).    
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instance, with BH-21
21

, where unit and number are defined: “The unit is that thing 

whereby each thing in the world is called – one. And number is a collection of a 

multitude of units”. But in some other cases, we also find minor, thought interesting 

differences that stress Bar Ḥiyya’s basic intention to apply these concepts in a 

framework that mixes the geometric with the arithmetic. Thus, while Euclid had used 

term such as “plane numbers”, “square numbers”, or “cube numbers”, in a rather 

metaphorical sense and while he never represented such numbers in his propositions 

other than as straight lines, Bar Ḥiyya, to the contrary, added to the corresponding 

definitions, a small diagram in the spirit of the Pythagorean figurate numbers. In this 

way, he prepared the ground for organically incorporating arithmetic into geometry. 

Thus, for instance, in the following two examples: 

BH-22: And the number that is multiplied by another number is the number 

that is added to itself as many times as there are units in the second number in 

which it is multiplied, like two times three or two times ten and it is called a 

plane number and this is its shape  ׃ ׃ ׃  and the number obtained by this 

addition is called a plane number.  

BH-23: And a square number is a number obtained by adding a number to 

itself as many times as there are units in it, and the first number is called the 

root of the square ( המרובע גדר ). For example the number nine is called a square 

number because it is obtained from adding three to itself three times, and the 

number three is called the root of the square and this is its shape       .22
  

                                                 
21

 The paragraphs are numerated in the edition I am using here. I add the initials BH, for ease of 

reference.  

22
 Read from the point of view of current Hebrew usage, Bar Ḥiyya’s terminology may give rise to 

some confusion, as was pointed out in (Sarfatti 1968, 82). I am following here Sarfatti’s 

interpretation (e.g., multiplication for “מנה”, addition for “כפל”, root for “גדר”). For a brief account 
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Bar Ḥiyya also defined a cubic number ( מעוקב מספר ), but not merely in a figurative 

manner, as one whose units can be arranged as a cube. Rather he defined it as “a 

body” (גוף) of equal length, breadth and height.  

After this arithmetic preliminaries, Bar Ḥiyya moved without any clear separation, to 

work out several propositions which provide the main tools underlying the solutions 

for the problems discussed in the second section and in which arithmetic and 

geometric statements and arguments are freely mixed together. The connecting link is 

provided by a general comment, to the effect that the square of a segment is that 

figure built when another segment of the same length is set perpendicular to the given 

one and a square is thus built with four equal sides, while a rectangle is similarly built 

on two different segments. From here on, it is no problem to speak about geometric 

construction while associating numbers to the lengths of the segments. And this is 

indeed what Bar Ḥiyya did when presenting propositions II.4 to II.10 (but not 

including II.7), all of which deal with ways of dividing a segment into two parts and 

constructing squares or rectangles on the parts obtained (BH.27-BH.32). It is worth 

examining in some detail how he formulated and proved these propositions, while 

paying special attention to the unique combination of arithmetic and geometric ideas 

that he adopted. 

Consider, for instance, BH-27, which corresponds to Euclid’s II.4. Bar Ḥiyya speaks 

here about a line that is divided at an arbitrary point and about the squares that are 

built on the resulting segments. But to this purely geometric formulation he added: 

“and I give you an example with numbers” ( המניין מן דמיון בזה לך נותן ואני ), which in this 

                                                                                                                                            
of the differences between ancient and modern Hebrew mathematical terminology see (Corry & 

Schappacher 2010, 449-457).  
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case is a line of length 12 divided into two segments of length 7 and 5. We can look 

more closely at the specific roles that Bar Ḥiyya assigned to geometry and to 

arithmetic in his presentation, by examining in closer detail what he does in the 

proposition corresponding to II.9 (BH-31). Let us first look at the proof as it appears 

in the text and then I will comment on it. 

The proposition is formulated in the standard Euclidean way and it is also 

exemplified by a line of length 12 which is divided at its mid-point and at another 

point into segments of lengths 7 and 5.
23

 Two squares taken together, one of side 

7 and one of side 5, make 74. And on the other hand duplicating the square with 

side 6 and the square with side 1 (1 being the difference between the half, 6, and 

the long segment, 7) also makes 74. Having introduced this numerical example, Bar 

Ḥiyya moved to the proof, which interestingly differs from Euclid’s, which – as 

seen above – relies in a non-trivial way on the Pythagorean theorem. Bar Ḥiyya’s 

own wording is quite contrived but it is worth being presented here (with some 

simplification). Below I will streamline his argument with the help of diagrams, 

which will make it easier for the reader to capture the main idea.  

Take the line AB, of length 12, and divide it in its half at E, and also into two 

different segments, of length 7 and 5, at I.  

 

                                                 
23

 Actually the text in Gutmann 1912-13, p. 15, says: “על ד ועל ה” (on 4 and on 5).  But this seems to be 

a typo. 
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Figure 20 

Construct AICD being 7 on 7, and BIGF being 5 on 5. Taken together, says Bar 

Ḥiyya, these two squares equal the sum of AEMK and EMJB (which is the same as 

taking twice the square on the half, that is twice 6 on 6), together with HNLC 

(which is twice the square of the difference, that is 1 on 2). And why this is so? 

Because – tells us Bar Ḥiyya – FGHJ is placed under BIGF and on the same line 

with the square of half the segment, AEMK.
24

 And we count it in this way together 

with square AICD. Thus, both FGHJ and NKDL are like 5 on 1. And the reason for 

this is that AKD equals AEI and both are 7 and on the other hand AK equals AE 

which is 6, and hence what is left is KD which equals IE which is 1. But also DLC 

equals AEI and if one subtracts CL which is 2, then one is left with LD which is 5. 

Hence NKDL is 1 on 5 and the same is true for FGHJ because MJ equals EIB which 

is 6, and the line BF equals BI and we are left with FJ and IE which are 1, and the 

length of JH equals that of BI. Here ends Bar Ḥiyya’s proof.  

Now, just from this more or less literal transcription of the proof, we can already learn 

much about Bar Ḥiyya’s overall approach. In the first place, in spite of his insistence 

in repeating the numerical values of the segments at various places along the proof, 

these values play no role whatsoever in the argument and they are never 

arithmetically manipulated in order to get any result. Rather, they only accompany the 

steps of an argument that fully relies on completing a geometric construction and on 

learning from looking at this construction. Indeed, the geometric construction is quite 

simple and what is said about it does not go beyond basic “cut and paste” 

considerations. But in addition, since Bar Ḥiyya’s wording for this particular 

                                                 
24

 (Guttmann 1912-13, 15) [In the quotation I have replaced the Hebrew letters appearing in the 

original diagram with the letters I am using here in my diagram]: 

 והוא AEMK האחד הקו מחצית מרובע עם נמצא והוא BIGF הקטן חלק רובעמ על העודףFGHJ  רובעמש מפני“

  .”בצורה הזו AICD והואהגדול  חלק מרובע עם נמנה
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proposition is so contrived (this is much less the case for other propositions in this 

section), one may even speculate that without introducing here the numerical values 

of the lengths Bar Ḥiyya may have had some difficulty in working out the argument 

even for himself. More certainly, he may have thought that his readers would find the 

argument easier to follow in this way, and in any case, in the later sections of the 

treatise, he would be using the result only in its arithmetic version.   

But it is also important to notice that, perhaps because of the didactical character of 

this treatise, Bar Ḥiyya often relied on the diagrams in a stronger sense. That is: in 

constructing the figures that appear in the diagrams of many of his proofs, he left 

implicit several facts that he nevertheless used as part of the argument. The facts have 

to be inferred from the diagram while following the steps of the proof. Thus, in the 

case we are examining here, the diagram shows – but Bar Ḥiyya does not say so – that 

AK = BJ = AE, and hence HC equals IE. Also, part of the construction, as we learn 

only from the proof itself, is that HN equals twice IE.  

Keeping these general remarks in mind, we can now reformulate the core of the proof 

by looking at the diagrams and reasoning with them.  

With reference to the diagram, what we are asked to prove is just:  

AICD + BIGF = 2·Sq(AE) + 2·Sq(IE). 

Bar Ḥiyya tells us that in his construction “CL is 2”, and this means that HMN = 

2·IE, and hence HNLC = 2·Sq(IE). Thus, all what remains to be shown is that NKDL 

= FGHJ. And this is true, he says, because the long side of both rectangles equals 

BI, while their shorter sides equal IE. Let us see why this is so, starting with the 

short sides, KD and FJ, and stating the idea in purely geometric terms:  

(g.1) By construction AKD = AEI and AK = AE, hence AKD – AK = AEI – AE, 
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hence KD = IE 

(g.2) Again by construction JHM = EIB and BF = BI. But BI = FG =JH, hence 

JHM – JH = EIB – BI,  hence FJ = IE.  

(g.3) Hence [from  (i.1) and (i.2)]: KD = FJ.  

And now I give the argument for the long sides, HJ and LD, using numerical values 

as Bar Ḥiyya’s did, because in the last step one sees that, although there is nothing 

here but a simple geometric situation that holds true independently of the values, 

explaining it with the numerical values really makes it easier to follow: 

(g.4) By construction HD = BI (and both are 5 – this is left implicit using the 

fact that “FGHJ is placed under BIGF”).  

(g.5) DLC = AEI and if one subtracts “CL which is 2”, then “one is left with LD 

which is 5”.  

“CL is 2” means, of course, that CL was built as twice the difference between the 

longer segment and the half of the given segment, even though this was not 

explicitly stated. But explaining the situation in these more abstract terms would 

make the argument longer, and apparently Bar Ḥiyya was happy with being able to 

make it shorter and easier to follow with the help of the numerical values.  

Notice that the main tool on which the proof rely (and this is true for various other 

proofs as well) is the distributivity of the product (or, more precisely, of rectangle 

formation), which as we know are embodied in II.1-II.3. Bar Ḥiyya applied freely this 

property without in any way discussing it or even mentioning in the text.  

 

Bar Ḥiyya completed the first part of his book by discussing (in BH-33 to BH-41) 
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various propositions taken mostly from the Elements,
25

 and which deal with 

properties of circles, triangles and other figures. And as already stated, part one is 

actually intended as providing tools for solving numerical problems involving an 

unknown quantity. Hence, I complete now this overview of Bar Ḥiyya’s text by 

showing an example of solving a quadratic equation (in BH-49) while using II.5 for 

justifying the procedure used. The problem is the following: “if the square is 

subtracted from four times the side the result is three” (  מנין מן תשברתו השלכת מרובע

שלשה בידך ונשאר צלעותיו ארבע ). 

The solution is found by following a simple procedure: half the number of sides is 

2 whose square is 4. Subtract from this the remainder three and you obtain one, 

whose square is one. Subtract this result from half the sides and you are left with 

one, and this is the side of the square, or add the result to half the sides and you 

get 3 which is also the side of the square. The side may be one or it may be 3, 

“because there are two different calculations for this question”.
26

  

As in the Islamic tradition, Bar Ḥiyya also presented geometric “proofs” for justifying 

the procedure used in solving the problem. It is worth seeing here some of the details 

of this proof, that are highly reminiscent of Thābit ibn Qurra.   

The proof is better understood by reference to the two figures that accompany the 

text, of which the following is the first one ( הראשונה הצורה ): 

                                                 
25

 These include, in the order in which they appear, versions of: III.35, I.33, VI.4, I.37, I.38, I.41, I.35, 

I.36 and VI.1. 

26
 In §49: “כי שני חשבונות לשאלה הזאת”. In the text Bar Ḥiyya sometimes calls the number by its name 

and sometimes uses the alphabetic characters  ג , ב, א… , to indicate them. For the side of the square 

or for the unknown Bar Ḥiyya uses alternatively גדר and צלע, even within the same sentence.  The 

text has many interesting linguistic aspects that I do not discuss here, starting with the very use of 

the word “thisboreth” (תשבורת). 
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Figure 21 

In this figure, AB is taken to be four “amoth” (אמות), the “coefficient” of “sides” in 

the problem, whereas AC is the “side” of the square referred to in the problem. 

The argument then goes as follows:  

(h.1) Subtract from the parallelogram ACDB a square ACFE; the remaining 

parallelogram EFDB is three amoth, [this is actually the statement of the 

problem] 

(h.2) Cut now AB into two equal parts at G; since E divides AB into two unequal 

parts, it follows that the parallelogram on AE, EB together with the square 

on EG equals the square on AG, [this is II.5] 

(h.3) But we know that the square on AG is 4 [since G cuts AB in its middle 

point], and if we subtract from it the parallelogram on AE, EB (namely, 

EFDB) which is 3, then we are left with 1, and this is the value of the 

square on EG, 

(h.4) Hence EG is one, and, since AG is two, EA is one, and this is the side that 

we are looking for.  

As part of the same proof, Bar Ḥiyya also indicated how the second solution is 

justified by reference to a second diagram ( שנית הצורה ): 
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Figure 22 

The argument is similar to that of the first part, and we need not go here into all 

the details.  

This problem is similar to Abū Kāmil’s treatment of “square and numbers equal roots 

of the same square”. Also Abū Kāmil justified the procedure for solving this case 

with the help of II.5 and he accompanied his explanations with two diagrams similar 

to those of Bar Ḥiyya here. Curiously, however, Bar Ḥiyya presented his problem by 

subtracting the square, thus departing from the practice followed in Islamic texts (to 

state it in modern algebraic terms: Abū Kāmil used the typical formulation, x
2
+b=ax, 

whereas Bar Ḥiyya formulated the problem as: ax-x
2
=b). And, as did Abū Kāmil, Bar 

Ḥiyya indicated two solutions for the problem.  

 

Bar Ḥiyya’s explicit and implicit references to results originating in Book II provide 

us with an illuminating, direct insight into one specific (and perhaps rather 

idiosyncratic) way in which a reader with a significant knowledge of Islamic 

techniques of problem solving could read Euclid from an arithmetic and proto-

algebraic perspective. Bar Ḥiyya understood the propositions of Book II as both an 

expression of properties of numbers and as the proper way to provide legitimation for 

algebraic techniques of problem solving. But he continued to read these propositions 
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as ultimately based on geometric reasoning, even when he thought it convenient, 

possible on didactical considerations, to accompany with numbers the text where he 

described this pure geometrical reasoning. Products were seen here as square- or 

rectangle-formation, and the proofs were based on geometric properties of these 

figures.   

The readership of Bar Ḥiyya’s Hebrew text, of course, was rather limited, and it thus 

had little direct impact on the wider Latin medieval mathematical culture in Europe. 

Nevertheless, as already indicated, the text also appeared in 1145 in a Latin version 

commonly attributed to Plato of Tivoli which did have an important impact, mainly 

through the work of Fibonacci. As Tony Lévy has indicated, one may conjecture that 

in preparing the text, Plato worked with some Jewish collaborator, possibly (but by 

no means certainly) Bar-Ḥiyya himself (Lévy 2001, 53-55). The Latin version, at any 

rate, is not just a mere transcription, and it differs from the Hebrew text in various 

senses (omissions, additions, reformulations, etc.). Of interest here are some 

differences pertaining to the interplay between geometry and arithmetic.
27

  

Such differences appear, for instance, in the first part of the text. The Latin version 

contains no diagrams at all in this part, contrary to what is the case in the Hebrew 

one, but on the other hand, it follows much more closely the structure and wording of 

Euclid’s Book I. Indeed, here as in other parts of the text, results from the Books I-IV 

which are introduced without proof and which are necessary for proving other results, 

are clearly not directly translated from Bar Ḥiyya. Tony Lévy (2001, 54; note 3) has 

suggested that they were taken from an Arabic version of the Elements, possibly of 

the more ancient ones associated with Hajjaj. 

                                                 
27

 Like with the Hebrew text, also here there are some open issues concerning the manuscripts. See 

(Curtze 1902, 4). 
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As an example of the difference between Plato and the original text of Bar Ḥiyya, we 

can notice that the latter introduced parallel lines ( הנכוחיים הקוים ) quite early in the 

section, and that he gave in the same paragraph two different definitions, namely, as 

equidistant lines (i.e., as such lines that “the distance between them is constant also 

when they are extended”) and as lines that do not intersect if extended infinitely (  לאין

 In the Latin version, in contrast, the definition appears at the end of the .(סוף

preliminary section (Curtze 1902, 15, BH-28), and exactly as in Euclid: these are 

lines that, while laying on the same plane, do not meet which each other when 

produced infinitely (ad infinitum).  

After the preliminary definitions, we find in the Latin version the five Euclidean 

postulates and a list of common notions. None of this appears in the Hebrew text. The 

common notions are not just the five Euclidean ones, but also some additional ones, 

such as “two things which are the double of the same thing are equal to each other”, 

and the same for the half, or “a thing is the sum of its parts” and “two lines contain no 

area” (Curtze 1902, 15-17). Another important difference concerns the basic 

definitions of numbers and their properties, which in the Latin version basically 

repeat those appearing at the beginning of Book VII. At the same time, definitions 

such as BH-21,22 of the Hebrew version (see above) are absent from the Latin text.  

In the Latin version, the propositions of Book II are only formulated and not proved, 

“since they were already proved by Euclid” (p. 19). Still, the geometric formulation 

of each proposition is followed by a numerical example. On the other hand, it is 

interesting to notice that in the second part of the treatise, the problems solved with 

the help of the propositions of Book II, are essentially a verbatim translation of the 

Hebrew original.  
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One can only speculate about the reasons for differences between these two versions, 

and to attribute them to the different audiences and different purposes against the 

background of which they were conceived. One may also hope for new, critical 

edition of Bar Ḥiyya’s text on the question of the complex relationships between the 

Hebrew and the Latin texts.   

 

6.2. Liber Mahameleth 

Liber Mahameleth is a text on commercial arithmetic, presumably written in or near 

Toledo around 1143-1153. Anne-Marie Vlasschaert, who recently published a critical 

edition (Vlasschaert 2012), has suggested that Dominicus Gundisalvi (c. 1110-1181), 

or someone in his school of translators, may have been the author. The text bears 

some relation to an earlier Arabic text likely called Kitab al-mu’amalat (“Book of 

Transactions”). Most likely, however, Liber Mahameleth is not a direct translation 

from the Arabic but rather a new work written in Latin in the context of the scholarly 

culture of Al-Andalus.  

The author evidently had a good command of Euclid’s Elements and of Abū Kāmil’s 

Algebra, and he constantly relied on their results within his own proofs. Liber 

Mahameleth can be seen as an attempt to provide a comprehensive synthesis of 

important contributions of these authors, as well as of Nicomachus, al-Khwārizmī, 

and some other classical Greek and Arabic authors. This synthesis, moreover, was 

specifically oriented towards providing a practical compendium of arithmetical tools, 

grounded on a systematically discussed theoretical basis for the basic operations, 

particularly those involving fractions and fractions of fractions. The core of the text 

deals with applications of these operations to problems related to commercial 
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transactions, such as prices, profit sharing, consumption of oil by lamps, of feed by 

animals or of bread by humans, etc., as well as of problems of a more theoretical kind.    

The first ten propositions of Book II of the Elements appear prominently in the 

preliminary, theoretical section of Liber Mahameleth. Clearly influenced by Abū 

Kāmil, the author certainly went much further than him in positioning these 

propositions in a foundational role for arithmetic, and in explicitly stressing their 

indispensability for any prospective reader of the book. Indeed, the author stated that 

he was reformulating what in Euclid, are propositions on “segments”, and that he was 

rephrasing them now for “numbers” (p. 25). Still, on closer examination and in spite 

of this stated intention, most of the proofs provided for propositions taken from Book 

II retain a distinct geometric flavor. This can be seen, for instance, in relation with the 

proof for II.5 (p.28), which essentially repeats Heron’s cut-and-paste argument. As we 

saw, Heron operated upon areas of rectangles and squares (i.e., first separating them 

into components and then reassembling), and also here, in Liber Mahameleth, the 

argument explicitly relies on applying distributivity of rectangle-formation over 

addition, such as embodied in the corresponding versions for II.2-II.3 (pp. 26-27). 

Also the accompanying diagram is similar to Heron’s:  

 

Figure 23 

Again as with Heron, we do not find here actual geometric constructions made on the 

segments, but squares and rectangles are indeed implicitly constructed as part of the 

reasoning. In all respects, the proof qualifies as “geometric” in the sense that I have 

been using here, and in none of the steps there is anything like counting units 

comprised by any of the numbers involved.  
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What is of special interest in Liber Mahameleth in relation with Book II is that in 

laying down the foundational aspects of arithmetic, the author combined this kind of 

propositions and proofs with others that are purely arithmetic, thus giving rise to an 

original blend of approaches, in which distributivity of the product was assigned a 

pivotal role. Proposition 9 of the preliminary section (pp. 25-26), which is parallel to 

Euclid’s II.1, plays an important role in the presentation. Its proof is worthy of special 

attention, because it is based neither on geometric nor on arithmetic considerations, 

but rather on properties of proportions drawn from Books V and VII. I discuss this in 

greater detail in [LC2].  

It is also pertinent to see how the propositions appearing in the preliminary section of 

Liber Mahameleth are then used to justify procedures for problem solving in the main 

body of the book. Thus, for instance in the following example which uses a version of 

II.6 (pp. 410-411):  

A ladder of unknown length is leaning on a wall, and it is withdrawn from its 

bottom by a distance that, when the descent from the top is subtracted from it, 

the remainder is 4, and if we multiply those two lengths the result is 12. What 

is the length of the ladder?
28

 

The situation is represented in the following diagram: 

 

                                                 
28

 A detailed analysis of this problem and its roots in Babylonian mathematics appears in (Sesiano 

1987). 
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Figure 24 

The proof starts with the data of the problem, namely, ad·bg = 12 and bg - ad = 4. 

Now, the length hg is cut from bg, so that hg=ad.  Hence, bh = 4. But also bg·hg = 

12 (since hg=ad). Finally, the point z bisects bh (i.e., hz =2). Here we can apply II.6 

(“sicut euclides dixit”) and we obtain: bg·hg + hz2
 = zg2

. Thus, clearly, zg=4, and 

consequently also bg = 6. Finally, ad=2. 

This is certainly not an example of an application of the propositions of Book II to a 

“real-life problem”, but what really concerns our discussion here is how the author of 

Liber Mahameleth, also in this more applied part of the text, combined the arithmetic 

and geometric ideas discussed in the preliminary section. Very much like the 

“didactical” approaches followed in the contemporary versions of the Elements we 

find here continual cross-references between the two realms without the author 

emphasizing the possible differences. This creates a somewhat ambiguous but very 

interesting situation. Indeed, notice that in my rendering of the proof above I wrote 

the products as arithmetic, not geometric operations. Thus, for instance, I used II.6 as 

bg·hg + hz
2
 = zg

2
, rather than as I did with all previous authors, R(bg,hg) + Sq(hz) = 

Sq(zg). There were actually good reasons to choose the geometric rendering. For one 

thing, the entire situation is embodied in a diagram. For another thing, the wording for 

the product here is exactly the same as that used for rectangle-formation in the first 

part of the treatise (“Quod igitur fit ex ductu bg in hg et hz in se equum est ei quod fit 

ex ductu zg in se”). Indeed, it is precisely this same wording which allows the use of 

the theoretical results proved in the first part for handling specific problems appearing 

in the second. Nevertheless, the choice of arithmetic rendering, was guided by what 

seems to have been the author’s own view, namely that he was dealing in this part 

with numbers. But the choice could have been in either direction, precisely in view of 
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the very elusive and ambiguous attitude of the author towards what is geometric and 

what is arithmetic in his treatment. Thus, while the propositions of Book II are 

incorporated in Liber Mahameleth into an arithmetic framework, the essentially 

geometric conception of the meaning of these propositions is still very pervasive both 

in the first, theoretical part of the treatise, and in the second, more practical one. In 

particular, it is clear that the arithmetic ideas developed here do not in any way 

embody any kind of algebraic implications.  

 

6.3. Fibonacci 

Leonardo Pisano Fibonacci (c. 1170 – c. 1250) is widely considered to be the most 

prominent and emblematic figure in medieval European mathematics. He was well 

acquainted with Greek, Byzantine, and Arabic sources, and played a key role in 

compiling and helping disseminate in Western Europe innovative mathematical 

techniques and concepts, particularly the use of the Hindu–Arabic system of 

numeration and methods for solving equations. Fibonacci produced several works 

that reached relatively broad audiences and in which he combined theoretical aspects 

with very practical tools for land measurement and commercial calculations 

(Archibald 1913; Folkerts 2004). In fact, he promoted a new kind of scientific genre, 

the “practicae.” These were brief works, written in a popular style intended for lay 

readers, and with a clear emphasis on applications (Hughes 2008, xvii-xxxv; Simi 

2004). 

It is not completely certain what version of the Elements was available to Fibonacci. 

He may have simultaneously relied on several of the existing translations, including 

the one made directly from Greek (Folkerts 2004, 109–110; Hughes 2008, xix). At 
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any rate, there is no doubt that Fibonacci was well-acquainted with Euclid’s text and 

that he mastered all the techniques taught there. This is certainly the case for Book II, 

whose propositions he cited and used explicitly as the geometric justification for the 

problem-solving techniques that he borrowed from Islamic sources. But it seems that 

it was the Liber Embadorum, Plato of Tivoli’s Latin version of Bar Ḥiyya, which 

exerted the most influence on Fibonacci, particularly as manifest in De Practica 

Geometrie, discussed below. Curiously, Fibonacci did not explicitly mention Bar 

Ḥiyya as Plato’s source, perhaps because he considered the name Savasorda as a title, 

rather than as a patronymic that might help identify the author (Hughes 2008, xxiii-

xxiv). Influential for him was also the work on algebra of Abū Kāmil, which he may 

have known either directly or indirectly.   

Fibonacci’s specific use of the propositions of Book II appears in Liber Abaci and in 

De Practica Geometrie. Liber Abaci appeared first in 1202 and then in a second 

edition in 1228. This is perhaps the best known of Fibonacci’s books and the main 

one through which his influence was felt over the next centuries in Europe, 

particularly in what concerns the development of techniques for calculating and 

operating with square and cubic roots, and for solving numerical problems. In 

Chapter 14, Fibonacci presented some formulas or “keys” (claves), of fundamental 

importance for the techniques taught in the book, comprising results “which are 

clearly demonstrated in Euclid’s second book.” As the author of Liber Embadorum, 

Fibonacci did not provide geometric formulations for these results, but just numerical 

examples. Of special importance were those propositions corresponding to II.5 and 

II.6, since to them, Fibonacci explicitly wrote, “are reduced all the problems in 

algebra almuchabala” (Sigler 2002, 490). It is surely relevant for us, then, to take 

examine how Fibonacci used these results within a book of arithmetical content. But 
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in order to grasp the context properly, it is helpful to first add some general comments 

about the book.   

Geometric considerations appear in the book only after thirteen chapters of detailed 

explanations about the decimal system and its uses for calculating and for solving all 

kinds of numerical problems (but with nothing like symbolic notation or 

manipulation). Still, it is clear that for Fibonacci such considerations were crucial 

from a theoretical point of view because only the geometric interpretation could 

provide the correct setting for handling surds. Thus, “according to geometry, and not 

arithmetic, the measure of any root of any number is found” (Sigler 2002, 491). 

Fibonacci explicitly presented a procedure for finding such root: if you want to find 

the root of 10, for example, you need to find two numbers that multiplied together 

make 10, say 2 and 5. You add them together and obtain 7, and “you will order this to 

be the measure of the line”. This is done by arranging measured segments as in the 

following diagram: 

 

Figure 25 

Here ab represents 2, and bc represents 5, and the circle is traced around the midpoint 

d, and eb is the perpendicular drawn on b. This segment is the root of 10, “as is 

clearly shown in geometry”.  

Fibonacci’s attitude towards the results of Book II was along these lines. He did not 
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derive these results geometrically, and he continued to use, in the last chapters of the 

book, a purely arithmetic language wherever the problems or the calculations 

involved allowed for it. But he made it clear, in places where he relied on results of 

Book II, that it is their origin in geometry that makes them useful as a source of 

legitimacy for the arithmetic knowledge presented. The main place where this is done 

is in a section devoted to the “Solution of Certain Problems According to the Method 

of Algebra and Almuchabala, Namely Proportion and Restoration”. The cases treated 

by Fibonacci are parallel to the six cases of al-Khwārizmī. He presented them by 

combining numerical examples, a formulation of the general rule (in purely rhetorical 

manner), and a geometric justification of the procedure. Where necessary, Fibonacci 

used the Euclidean results that he had already introduced, but without explicitly 

invoking them each time. I illustrate this with the example of the case “census plus a 

number will equal a number of roots”. 

This case can be solved only if the number is equal or less than the square of half 

of the roots, and if this is so, then the solution is obtained as follows (Stigler 2002, 

557):  

[If] it is equal, then half of the number of roots is had for the roots of the 

census, and if the number which with the census is equal to the number of 

roots is less than the square of half of the number of roots then you subtract 

the number from the square, and that which will remain you subtract from half 

the number of roots; and if that which will remain will not be the root of the 

sought census, then you add that which you subtracted to the number from 

which you subtracted, and you will have the sought census.  

In the numerical example Fibonacci considered the question “the census plus 40 be 

equal to 14 roots”. This is of course, the same case we met in Bar Ḥiyya’s book, 
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but formulated without using subtraction and of course using different numerical 

values. This case leads, as we know, to two possible solutions (by subtracting or 

adding the said square root), namely, either 4 or 10. Fibonacci implied that for a 

given problem only one of these values will be the solution sought (the problems 

come later). What interests us here is, of course, how this procedure is justified 

with the help of II.5, and this is seen by referring to the figure that accompanies 

the text, which is the following: 

 

Figure 26 

Schematically, the steps of the argument are the following: 

(i.1) Take ab to be 14, and bisect ab at g. Also the point d cuts ab, and we 

build a square dz, which is the census referred to in the problem.  

(i.2) The segment zi is traced equal in length to ab. Since zb is “the root of the 

census dz”’ and since ab is 14, hence az, the entire area, is 14 roots of 

the census, and hence the area ae is 40, as stipulated in the problem.  

(i.3) Now ae is ad times de, or, ad times db [remember, dz is a square]. It is 

here that II.5 can be applied: ae = R(ad,db) + Sq(gd) = Sq(gb).  

(i.4) But gb is 7, as it is half of ab, and its square is 49. Hence, as ae is 40, it 

follows that the square on gd is 9, gd is 3, and db is 4, and this is the root 

of the sought census.  

A slight variation in the argument and the figure leads to the second solution, 10. 
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This proof is essentially the one already seen in Bar Ḥiyya’s text.  

Notice that I used here the notation R( , ) and Sq( ), only in step (i.3). This seems to 

me to reflect the way Fibonacci conceived the argument, namely, an argument 

basically on numbers, which at a certain points invokes a geometric result taken from 

Book II, in order to reach the correct solution.  

Again, to put things in the right context, it must be stressed that the section that 

presents the six cases of solving quadratic equations (and where the above discussion 

appears) is a relatively brief one. But the techniques introduced in this section are 

subsequently used in the remaining chapters of the book, where Fibonacci discussed a 

long series of specific arithmetic problems and showed how to solve them using the 

techniques previously taught. Thus, we see how in Liber Abaci, a book which is 

devoted to presenting a broad panorama of arithmetic and its applications, Book II is 

used as a source of certain, geometric knowledge that is still needed for providing a 

sound justification of the methods presented.  

 

The second book of Fibonacci that interests us here is De Practica Geometriae, 

composed in 1220 or 1221, between the two editions of the Liber Abaci. In many 

respects the treatment of square and cubic roots, the references to Book II, and the 

possible use of its propositions for solving problems involving squares of unknowns 

are all quite similar to those of the Liber Abaci. But one important difference between 

the two books is found in an entire section of the Practica where Fibonacci cited 

twelve propositions from Euclid’s Elements, the first nine of them being versions of 

propositions in Book II (II.8 is absent). He also provided proofs for some of these 

propositions which differ interestingly from Euclid’s or Heron’s. It is of interest for 
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us here to see the details of at least one of these proofs, and I will focus on II.9.
29

  

Proposition PG-38 corresponds to II.9 and the accompanying diagram is the 

following (Hughes 2008, 30): 

 

Figure 27 

The line gd is divided into equal parts at point a and into unequal parts at point b, 

and the proposition states that the squares on gb and on bd are twice the two 

squares on da and on ab.  The proof goes as follows:  

Since line ag was bisected at point b, the two squares on lines bg and ba with 

twice the product of ab by bg equal the square on line ga, that is, the square on 

line ad. Now the square on line ba with just one product of ba by bg equals ba 

by ag. Whence the square bg with the product of ba by ag and with that of ba by 

bg equals the square on line ad. Let the square on line ba be commonly 

adjoined. Then the two squares gb and ba with the products of ba by ga and ba 

by bg are equal to the squares on lines ad and ab. But the square on line ba with 

the product of ab by bg is as the product of ba by ag. Therefore the square gb 

with twice the product of ba by ga is equal to the two squared lines da and ab. 

When the square on line da with the square on line ab exceeds the square on 

line gb by twice the product of line ba by ga; that is, ba by ad. Likewise, 

because line bd was bisected at point a, the squares on lines da and ab with 

twice the product of ba by ad equal the tetragon or square on line bd. Therefore 

tetragon bd exceeds tetragons da and ab by twice the product of ba by ad. 

Therefore, by as much as tetragons da and ab exceed the tetragon bg, by so 

much are they exceeded by tetragon bd. Whence tetragons gb and bd are twice 

the squares da and ab. 

 

Interpreting the steps of the proof (particularly the last one) directly from the text 

is far from evident, so I render it schematically. What we get is the following: 

                                                 
29

 It would also be of particular interest to compare Fibonacci’s proof of II.5 with all the others 

discussed here, but in consideration with the length of this article I will focus on II.9 alone.  
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(j.1) Since ga = gb+ba and ga = ad: Sq(ad) = Sq(ga) = Sq(gb)+SQ (ba)+2×R(gb,ba) 

(j.2) But, by construction, R(ga,ba) = Sq(ba) + R(gb,ba) 

(j.3) Hence   Sq(ad) = Sq(gb) + R(ga,ba)  + R(gb,ba) 

(j.4) Now, Sq(ad) + Sq(ba) = Sq(gb) + R(ga,ba)  + R(gb,ba) + Sq(ba) 

(j.5) Hence [by (j.2)],  Sq(ad) + Sq(ba) = Sq(gb) + 2·R(ga,ba)  

(j.6) Or, equivalently:  Sq(ad) + Sq(ba) = Sq(gb) + 2·R(ad,ba) 

(j.7) Now, since bd = ba+ad:  Sq(bd) = Sq(ad)+SQ (ba)+2·R(ad,ba) 

(j.8)  Hence [from (j.6) and (j.7)]:      Sq(bd)+Sq(gb) = 2·[Sq(ad)+Sq(ba)]                                           

Q.E.D. 

 

The conclusion in (j.8) is not transparent, and interpreting it with the help of 

diagrams makes it easier. This can be done as follows: 

Steps (j.1) - (j.3): 

  

 

Step (j.4): 

 

 

Steps (j.5)-(j.6): 
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Step (j.7): 

 

 

Finally, step (j.8), combining (j.6) and (j.7): 

 

 

Figure 28 
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If these diagrams do not really clarify how (j.8) actually follows from (j.6) and (j.7), 

we can further try to explain this argument by operating, in a proto-algebraic 

manner, with the various figures involved. Indeed, what Fibonacci says is that: “by 

as much as tetragons da and ab exceed the tetragon bg, by so much are they 

exceeded by tetragon bd. Whence tetragons gb and bd are twice the squares da 

and ab”. Schematically, this is: 

Sq(ad) + Sq(ba) = Sq(gb) + 2·R(ad,ba)        Sq(bd) = Sq(ad)+SQ (ba)+2·R(ad,ba) 

And if we now subtract term by term the second identity from the first, we obtain  

[Sq(ad) + Sq(ba)] - Sq(bd) = Sq(gb) - [Sq(ad) + Sq(ba)]. 

Hence: 

2·[Sq(ad) + Sq(ba)] = Sq(gb) + Sq(bd) 

as requested.  

What has actually Fibonacci done here? As in the Liber Abaci, Fibonacci is building 

the legitimacy of his arithmetical techniques by reliance upon geometric results, and 

by stressing the geometric character of the underlying arguments. But rather than 

presenting the standard Euclidean proofs for those results taken from Book II, he has 

preferred to introduce his own, new kinds of arguments. The latter lack the 

transparency and simplicity characteristic of the Euclidean original, and they are also 

less straightforward than Heron’s, whose operational approach Fibonacci essentially 

follows. But the underlying line of thought is a rather innovative and original one. 

Indeed, Fibonacci has tried to incorporate into his geometric proofs techniques, or at 

least patterns of thought, derived from the “algebra almuchabala” that he had come to 

master so well. This is most clearly evident in step (j.8) above, and the way it was 

derived from (j.6)-(j.7), as just explained. The kind of “balancing of an equation” that 

helps understand the derivation is indeed the kind of “balance and compensation” 
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technique introduced in Islamic mathematics to reduce any given problem to the 

standard, known ones. In this case Fibonacci did not have an equation in the sense of 

an expression with abstract symbols that could be operated upon, but he did have the a 

situation similar to that found in the texts of Islam algebra, which rhetorically 

expressed relations between numbers, unknown quantities and their squares, and he 

used the techniques of “algebra almuchabala” to simplify these expressions. Notice, 

moreover, that also some other steps followed in the two proofs described above seem 

more easily understood from this perspective. Thus for instance, (j.4)-(j.5) find a more 

natural place in the arguments once we have conceded that Fibonacci followed 

techniques of “algebra almuchabala” as part of his derivations.  

It should be noticed that also the distributivity afforded by II.1 (or its direct 

derivatives, such as II.2-II.3) is crucial for all the arguments presented in De Practica 

Geometriae. I discuss this point in some detail in [LC2].  

This survey of the ideas of Book II as they appear in the works of Fibonacci affords a 

further, interesting perspective on the rather original and divergent ways in which 

those ideas could be handled in medieval mathematical treatises. Basically, Fibonacci 

continued to see in geometry a source of certainty which could account for situations 

where arithmetic appeared as insufficiently clear. At the same time, however, his way 

of using geometric results on behalf of arithmetic was far from uniform. He either 

took some of the results for granted, or just illustrated them with numerical examples, 

or introduced new proofs for the Euclidean results in which he tried an innovative, 

proto-algebraic reasoning as part of the argument. This many-sided and rather flexible 

view of the relationship between geometry, arithmetic and algebra certainly was 

conveyed, at least at the implicit level, together with the more concrete results and 
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techniques explicitly taught in the treatises to the numerous readers of Fibonacci over 

the next centuries. 

 

6.4. Jordanus Nemorarius 

Jordanus
 
Nemorarius is another highly interesting figure in Europe medieval 

mathematics and mechanics. Little is known of his life with certainty, but most likely 

he lived in the early 13
th

 century. Since Campanus mentions him in his version of the 

Elements, Nemorarius surely lived before 1260. At the same time, from the contents 

of his treatises, it is clear that these were written after the various 12
th

 century 

translations of the Elements. From a variety of scientific topics on which he wrote 

original treatises, his two most important arithmetical texts are De elementis 

arismetice artis and De numeris datis. Some of the results in De elementis are applied 

in De numeris datis, which indicates that the former work was composed before the 

latter one (Busard 1992, 123). It is also of interest to mention that there were failed 

attempts to produce printed versions of these two works by both Regiomontanus 

(1436-1476) and Francesco Maurolico (1494-1575). Finally, only the Arithmetica (as 

De elementis came to be known) appeared in two printed editions of 1496 and 1514 

by the French humanist Jacques Lefèvre d'Étaples (1455-1536), also known as 

Stapulensis (Lefèvre d'Étaples 1496). In the early 16
th

 century this book continued to 

be used as a textbook in many European universities (Busard 1991, 7-11). Likewise, 

even though De numeris Datis was never printed, a large amount of extant copies, 

dating from the 13
th

 and up to the 16
th

 centuries and found all around Europe, testify 

to a continued interest among mathematical audiences (Hughes 1981, 20-21). Still, it 

seems that the influence of Jordanus on his contemporaries was relatively limited, 

possibly because the mathematical content of this work was deeper than, and deviated 
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in style from, the more didactical and metamathematically-oriented texts associated 

with the Adelard-Robert tradition (Høyrup 1988, 341-343). Campanus de Novara, 

however, did read Jordanus and he incorporated many of his ideas into his version of 

the Elements, as we shall see right below, and in this way Jordanus’ ideas could 

indirectly be of great influence for the processes discussed here.     

Our focus here is Jordanus’ Arithmetica, a treatise that embodies an attempt to 

provide a comprehensive, and indeed pioneering, theoretical foundation for 

arithmetic. Many details of the presentation seem to derive from a conscious striving 

to develop arithmetic without relying on geometrical concepts or results of any kind, 

while at the same time retaining the model and the standards of rigor set for geometry 

in Euclid’s Elements. In doing so, it comprised a rather exhaustive overview of the 

body of theoretical Euclidean and Boethian arithmetic as was known at the time 

(though, curiously, the Elements are never explicitly referred to in the text). The 

treatise also betrays the influence of al-Khwārizmī, Abū Kāmil and Leonardo (Høyrup 

1988, 310), and it is quite evident that al-Nayrīzī’s text may have been among 

Nemorarius’ main sources. In addition, in matters of overall style, if not of detail, the 

influence of Liber Mahameleth seems to surface at various places in the text. Yet, the 

Arithmetica was more than just a straightforward compilation of known results, and 

not only because it included many new propositions and new proofs of known 

propositions, but also because the style was highly original and because the synthesis 

thus produced presented a new overall image of a discipline that might have been 

systematically studied and further developed.
30

 

                                                 
30

 (Høyrup 2010, 16) has argued that the potential impact of the Arithmetica materialized only to a very 

limited extent. Here I want to focus on the way in which, via its reading by Campanus, it did have 

an important influence in the specific issue of the increasingly arithmetic-algebraic conceptions of 

Book II.   
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Nemorarius’ presentation starts from fourteen definitions, which somewhat overlap, 

but are not identical with, those appearing in Book VII of the Elements. He also 

included three original postulates (petitiones) and eight axioms (communes animi 

conceptiones), from which he derived more than four hundred propositions organized 

in ten books (the total number of propositions varying across the different extant 

manuscripts. See Busard 1991, 12). As in the Adelard II version of the Elements, in 

Nemorarius’ text we often find a sketch of the argument that the reader is supposed to 

complete. Unlike Boethius, Jordanus did not illustrate his arithmetic arguments with 

numerical examples.
31

 And unlike Euclid, only some of the propositions are 

accompanied by diagrams where lines represent the numbers. This is a rather 

noteworthy point. In simpler proofs, where few different numbers are referred to and 

little confusion is likely to arise, Jordanus always preferred to refer to the various 

numbers involved in the argument using expressions such as “the first number”, “the 

largest of the two”, “the product of the whole by each part”, etc., and where possible 

he avoided calling them by letters. It is only when the argument became somewhat 

more involved that he introduced letters that served as names for the numbers referred 

to in the proofs. Only in such cases did he add letters to the diagram to indicate the 

additional, named numbers (as we shall see in an example below). And of course, 

whatever letters appeared in the proofs, Jordanus never operated on them as on 

abstract symbols. In this sense, Arithmetica displays noteworthy similarities to Liber 

Mahameleth. And, as in that book, propositions from Book II (namely II.1 to II.5), or 

variants thereof, play an important role here in creating the theoretical foundation on 

which Jordanus purported to build the entire edifice of arithmetical knowledge. This 

                                                 
31

 The Stapulensis printed version of 1496 does include numerical examples. In this as well as in other 

respects it is interesting to compare the printed with the original Jordanus’ version. We shall leave 

this comparison for a future opportunity.  
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is particularly the case concerning distributivity, for which Jordanus presented a 

detailed and original treatment in the preliminary section of the book, while drawing, 

wherever possible, only on the definitions, the postulates, and the axioms presented at 

the beginning. I discuss this important issue in detail in [LC2].  

Here the focus is on Jordanus’ rendering of II.5 in the Arithmetica (which I call here 

A-I.19), which offers many interesting vistas to his overall approach. It is important, 

first of all to explain the context where it appears as part of the preliminary section. 

After treating basic properties such as commutativity and distributivity in its various 

cases, Jordanus discusses Euclid’s II.4 and several variants of it, namely, general rules 

for separating a given number into two arbitrary parts and then finding the relation 

between the square of the number and the partial products of its parts (this is 

discussed in detail in [LC2]). Then come two propositions that take this situation one 

step further, namely, separating a given number in two parts, but now in two different 

ways, and examining the relations between the possible partial products that arise 

thereby. The two propositions are formulated as follows (Busard 1991, 70): 

A.I-19: If a number is divided into two equal and into two unequal parts, then 

the product of one of the equals by itself equals the product of one of the 

unequals by the remaining one together with the product of the difference by 

the difference.  

A-I.20: If a number is divided into two parts in two ways whatsoever, the 

product of the greatest of the parts by the smallest together with the product of 

the difference of the [larger one] and one of the others by the difference of the 

same and the smaller equal the product of the two intermediate numbers. 

The accompanying diagrams of the propositions are, respectively, as follows: 
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Figure 29 

 

In the first case, we are told that a and b are the greater and lesser portions 

respectively, whereas c is “one of the two equal ones, both of which differ equally 

from b.” The difference is called d, and the proposition proves that “the product of a 

by b together with that of d by itself equals the product of c by itself”. In the second 

case, we are told that that a and b are the greater and lesser portions respectively, 

whereas c and d are, respectively, the greater intermediate and lesser intermediate 

ones. Here e is the difference between a and c, while f is the difference between a and 

d. The proposition thus proves that “the product of c by d equals the product of a by b 

together with that of e and f”. Clearly proposition A-I.20 is a generalization of A-I.19, 

for the case where also the second separation is into unequal parts.
32

 This becomes 

more clearly apparent if we render them symbolically as follows: 

A-I.19: If a + b = c + c, then                                  a·b + (a-c)·(a-c) = c·c 

A-I.20: If a + b = c + d, with a > c > d > b, then   a·b + (a-c)·(a-d) = c·d 

                                                 
32

 It must be stressed, however, that Jordanus included in his treatise another proposition, A-X.3, which 

is in fact equivalent to A-I.19 and that embodies the so-called Regula Nicomachi: given three 

numbers in arithmetic progression, a-b=b-c, then we have b
2
-a·c = (a-b)

2
. Boethius has stated in his 

Arithmetica that this rule was discovered by Nicomachus (Busard 1991, 14). Jordanus’ very short 

proof of A-X.3 simply invokes A-I.19. This apparent repetition reflects, so it seems to me, 

Jordanus’ conscious view of A-I.19 as naturally belonging to the context of this preliminary type of 

results, where a given number is separated in two parts and the relations between the partial 

products, even if an equivalent form of it could appear in the context of a later book as well.  
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A closer look at the proofs brings to the fore some additional points that are of the 

foremost importance for a clearer understanding of Jordanus, and the various kinds of 

ideas involved in his treatise. For convenience have I rendered here the proofs 

schematically, without directly quoting them. This may give rise to some 

misrepresentation which I will nevertheless strive to avoid, among other things by 

translating word-by-word Jordanus’ rhetoric, while even retaining his own symbols 

exactly the way they are used in the argument. 

The steps of the proof of A-I.19 are the following (Square brackets enclose 

comments that do not appear in the original): 

(k.1) a +b = c +c;  d = c – b   [or c = d +b] 

(k.2) By A-I.15 [i.e., Euclid II.4]: c2
 = (d +b)

2
 = d2

 + b2
 + 2·b·d 

(k.3) But  2·d  = a – b   [or b  + 2·d = a  (but this is not explicitly said!)]   

(k.4) Hence by A-I.14 [i.e., Euclid II.3]:  b2
 + 2·b·d = b·a 

(k.5) Finally [from (k.2) and (k.4)]:   b·a + d2
 = c2

                     Q.E.D. 

In the proof of A-I.20 Jordanus invokes some additional results such as A-I.3, A-

I.8 (commutativity of the product), and A-I.9 (distributivity). I do not comment here 

directly on these three propositions, as I say more about them in [LC2]. The steps 

of the proof of A-I.20 are the following: 

(k.6) By A-I.3: since a +b = c +d, then , a – c = d – b; and a - d = c – b 

(k.7) Hence, by A-I.9:  c·d = c·b + c·e   

(k.8) But by A-I.8: c·b + c·e = b·c + e·c 

(k.9) Again, by A-I.9: e·c = e·b + e·f 

(k.10) But e·b = b·e, and also, by A-I.9, b·c +b·e = b·a 

(k.11) Finally, c·d = b·a + e·f                           Q.E.D. 
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Let me now draw attention to the following, remarkable point: the crucial step in 

the proof of A-I.19 is (k. 3): “since twice d is the difference of a and b”. Curiously, 

however, Nemorarius simply states this relation and provides no explicit 

justification for it. How is then this step justifiable? On first sight, one may be 

tempted to see this identity as following from (k.1), via some kind of symbol 

manipulation. This would involve something like the following putative steps:  

(k'.1) a + b =  2·(d + b)      a = b  + 2·d      2·d  = a – b 

But notice that what is actually used in step (k.4) is the relation b  + 2·d = a, which 

is the mid-step in this putative derivation and which I indicated in square brackets 

in (k.3). This would make the relation 2·d  = a – b irrelevant for the derivation. 

Why would Jordanus then write “twice d is the difference between b and a” rather 

than “a equals b and twice d”, which is the rhetorical counterpart of the relation 

needed for step (k.4)? It seems, therefore, that we must look for the justification 

elsewhere, and as Jordanus remains silent, we can only speculate. My guess is that 

the sentence “twice d is the difference between b and a” refers to a situation that 

can be derived from a visual inspection of the diagram. This can be seen by 

imaginarily extending in the following way the situation described in the original 

diagram of A-I.19: 

 

Figure 30 

By directly inspecting a diagram like this one, it becomes clear that, indeed, “twice 

d is the difference between b and a”, as stated by Jordanus.  
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We can find a rather similar situation in relation with the proof of A-I.20. Let me 

first stress how the concluding step (k.11) is actually reached. From (k.7) and 

(k.8), one obtains c·d = b·c + e·c, and then, using (k.9) we get c·d = b·c + e·b + e·f . 

From here, using (k.10) we get the desired result c·d = b·a + e·f. But notice that 

Jordanus invokes A-I.9 in three of the steps, whereas in fact, in order to apply this 

result in each of the steps some additional relations are required that are not 

explicitly mentioned in the text. Thus, for instance, how do we know in (k.7) that d 

= b +e, in order to conclude that c·d = c·b + c·e? Or how do we know in (k.9) that c 

= b +f, in order to conclude that e·c = e·b + e·f? Like in the case of A-I.19, we 

might, on first sight, suggest putative symbolic derivations that would help explain 

how Jordanus obtained the said relations, this time starting from (k.6). Thus, for 

instance, we might think of the following two:  

(k'.2) a – c = e (by def.), but a – c = d – b; hence d – b = e and d = b + e  

(k'.3) a – d = f (by def.), but a – d = c – b; hence c – b = f and c = b + f 

But the problem with such an assumption is that not only does Jordanus remain 

silent about any derivation of this kind, but also that we do not find any other 

similar one, as far as I can see, in other parts in his treatise. Thus, I suggest that 

my conjecture for A-I.19 will also work in this case, if we imaginarily adapt, in the 

following way, the situation described in the original diagram of A-I.20 (and which 

is not much different from what I suggested above for A-I.19):  

 

Figure 31 
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As above, by directly inspecting these two diagrams, it becomes clear that, indeed, 

d = b +e and c = b +f, as implicitly used by Jordanus. Moreover, from the left-

hand side, it also becomes clear that a = c +e, a relation which is implicitly used in 

(k.10). 

     

These two proofs illustrate important characteristics of Jordanus’ approach. On the 

one hand he goes to great pains in order to set clear the foundations of arithmetic and 

to abide by the standards set by Euclid in the case of geometry. On the other hand, he 

seems to have implicitly adopted some results that are necessary for completing the 

argument, without even commenting on them. I think that my conjecture above, about 

his possible use of diagrams as the source for these implicit assumptions, sheds some 

light on the situation. We already saw above several instances of implicit reliance on 

diagrams embedded in proofs. Thus was the case with Euclid’s use of distributivity in 

the case of visible figures, or with some proofs of al-Khwārizmī and Abū Kāmil. But 

what is of special interest in the case of Jordanus is that, unlike those mentioned 

previously, he seems to have been relying on properties of diagrams of the arithmetic 

type, i.e., where the lines are not part of a geometric construction but rather, just 

indicative of the numbers involved.
33

 I have also stressed this point by schematically 

rendering the proofs without reference to geometric constructions using R( , ) and   

Sq( ) as with other authors above. But beyond the validity of my conjecture about 

Jordanus’ reliance on diagrams it can be said with certainty that his arguments do not 

involve any kind of techniques that merit the adjective “algebraic”. The proofs are not 

                                                 
33

 It is pertinent to refer the reader in this regard to (Puig 1994). This seldom-cited, but highly original 

article makes a remarkable connection between the arithmetic results presented in Jordanus’ De 

numeris Datis and the diagrammatic aspects underlying the arguments of the proofs. I discuss this 

in some detail in [LC2].  
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based on abstract manipulation of symbols. They do not even involve following rules 

of al-jabr and al-muqābala, as Fibonacci did in his proofs mentioned above. And yet 

at the same time, all the preliminary section of his treatise is devoted to developing 

general rules of arithmetic that can be applied in changing situations. This is indeed 

what makes the book interesting as part of our account here, since it shows the extent 

to which a foundation of arithmetic, and an examination of the properties of the basic 

rules of calculating with numbers could be pursued without thereby moving into the 

territory of algebra. Specifically for II.5, it is interesting how Jordanus has moved it 

into a completely different realm from where it was originally conceived, and it was 

placed, in a truly natural way, within the framework of a rather thorough exploration 

of general, foundational rules of arithmetic. It is no wonder, then, that anyone that was 

exposed to this kind of treatment of II.5 could read this proposition, as part of Book 

II, as being about arithmetic (and in later periods even as being about rules of 

algebra). Some of this is already apparent in Campanus de Novara as we shall now 

see.  

 

6.5. Campanus 

I want to consider now the thirteenth-century Latin version of Euclid’s Elements due 

to Campanus of Novara (c. 1220–1296), completed sometime between 1255 and 

1259. As already said, this is the text that dominated European mathematics until the 

sixteenth century, and more than one hundred manuscripts of it have survived 

(Folkerts 1989, 38-43). Like other earlier translators and commentators discussed 

above, in preparing his text Campanus was also guided by clearly defined didactic 

considerations. He made considerable efforts to present Euclid’s text as self-contained 

as possible, and free from obscure or debatable points such as found in Robert’s text 
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(Busard 2005, 32). Indeed, Campanus repeated many of Robert’s enunciations, but at 

the same time many of his proofs were original. More importantly, he also added 

significant amounts of material taken from sources such as al-Nayrīzī’s commentary 

and Jordanus’ Arithmetica. This is particularly remarkable in the case of Book IX, 

where Campanus incorporated into the original Euclidean text thirteen additions and 

comments comprising arithmetic versions of propositions from Book II. This is one of 

the main aspects that marks a clear difference between Campanus’ version of the 

Elements and those that preceded it. Clearly all of this is highly relevant for our 

discussion here. 

These additions are an interesting manifestation of the broader issue of Campanus’ 

attitude towards the relationship between arithmetic and geometry. This relationship, 

in turn, is related to a more general medieval concern with the existence of paralell 

concepts and propositions in the Elements for handling separatedly magnitudes and 

numbers. In earlier versions of the Adelard-Robert tradition this concern was 

suggested in several places (Murdoch  1968, 88-89). In Campanus it becomes more 

explicit and central, and  his additions and comments reflect an active interest in 

tyring to come to terms in original ways with this concern.  

Thus for instance, in his comment to VII.12 (which corresponds to Euclid’s VII.11), 

Campanus asked why Euclid proved the more particular case of proportions with 

numbers in Book VII, if the general case for magnitudes had already been proved in 

Book V. The reason he gave for this is that the “propria principia” of the two books 

are different and, hence, corresponding propositions should be proved separately, and 

based on those principles alone in each case. In particular, he stressed, as the 

principles of Book VII relate to numbers, they are closer to the intellect and hence are 

more easily comprehensible than those treated in Book V, affected as the latter are by 
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the wickedness of the incommensurable quantities (“propter malitiam quantitatum 

incommunicatum”) (Busard 2005, 240; Rommevaux 1999, 89-92).
34

  

Against this background, let us consider more specifically the way in which 

Campanus presented the ideas of Book II. In the first place, I note that in Book II 

itself Campanus generally followed Euclid’s original approach, and thus remained 

within a completely geometric context. For propositions II.2-II.4, moreover, 

Campanus aslo presented alternative proofs along the lines of Heron’s approach 

(which he probably learnt from al-Nayrīzī’s commentary). The most interesting 

sentence in the entire Book II, however, appears at the end of the proof of II.10. 

Clearly intended to mark a separation between the first ten and the last four 

propositions of the book, Campanus stated that “this and all the previous porpositions, 

are true for numbers as well as for lines” (Busard 2005, 103: “hec autem et omnes 

premise veritatem habent in numeris sicut in lineis”). This statement clearly allowed 

and justified using the first ten results of Book II in the context of the three arithmetic 

books of the Elements, as we shall see now.    

Campanus’s treatement of Euclid’s three arithmetic books contains many 

modifications, additions, and comments to the original propositions.
35

 In Book VII, 

for instance, he added numerical values to lines in the diagrams that accompany 

several of the propositions, apparently as a means to helping the reader figure out the 

situation more easily.
36

 In addition, in some propositions unity is explicitly indicated 

                                                 
34

 See also Campanus’ comments to VII.6 (p. 236), which is compared with V.13 (i.e., Euclid V.12).     

35
 All of these are very interesting in themselves, but discussing them would be beyond the scope of 

this article. See (Rommevaux 1999, 93-100). 

36
 The only other place where we find such additions to the diagram is in the very last arithmetic 

proposition, IX.39.  
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in the figure either with its value 1 or with the word “unitas”. None of the numerical 

values, however, is used or mentioned in any way in the proofs of those propostions.  

But as already stated, the most interesting additions appear as thirteen comments to a 

proposition in Book IX, namely IX.16, which Campanus took from Jordanus’ 

Arithmetica.
37

 Eight of these comments are arithmetic formulations of propositions of 

Book II,
38

 but they do not comprise numerical examples such as found in al-Nayrīzī’s 

text. Campanus provided proofs for all of them, and they are highly original and 

interesting. In those proofs that concern properties of distributivity (i.e., those related 

to II.2-II.4) we find further evidence of Campanus’ focus on the relationship between 

Books V and Books VII (I discuss this in some detail in [LC2]). Here I want to focus 

on the proof of II.5, whose argument substantially deviates from that of either Heron, 

or al-Nayrīzī or Jordanus.
39

 What is of particular intrest is that Campanus’ proof is 

fully arithmetic not only in the sense that it is evidently formulated as a property of 

numbers, but also in the sense that he uses an argument which is unlikely to have 

arised in the kind of geometric context that Euclid originally devised for II.5. Let us 

see the details.   

Campanus’ arithmetic version of II.5 appears as comment 7 of IX.16. The proof 

relies on comment 6, which is equivalent to Euclid’s II.4. The accompanying 

diagram is the following (p. 293):   

                                                 
37

 See (Busard 2005, 291), and also, proposition A-IV.19 of Jordanus in (Busard 1991, 103). 

Campanus’ proof is somewhat different from (and more detailed than) Jordanus’. 

38
 These are comments 4-12. Comments 1-3 correspond to Jordanus’ A-I.9 to A-I.11, whereas comment 

13 corresponds to Euclid’s V.11. See (Busard 2005, 33).  

39
 The difference is directly noticeable by comparing steps (q.1)-(q.5) here below with steps (c.1)-(c.7) for 

Heron, with (p.1)-(p.5) for Jordanus, or with the algebraic interpretation that (Curtze 1899, 96) 

provides in a footnote for Al-Nayrīzī.  
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Figure 32 

As usual, the segment ab is divided in equal parts at c and in unequal parts at d, 

and the argument of the proof reads as follows: 

By the previous statement [i.e., II.4], the square of cb equals the square of cd 

and the square of db and twice the product of bd in cd. The products of bd by 

itself and by cb equal that by cb by the first comment here, and hence it 

equals that by ac. Hence, the product of bd by itself and twice that by cd 

equals that of bd by ad. And for the same reason the square of cb exceeds by 

the square of cd the product of bd by ad.    

Schematically, the argument is the following:  

(l.1) By II.4: cb2
 = cd2

 + db2
 + 2·db·cd 

(l.2) By II.3: bd2
 + bd·cd = bd·cb 

(l.3) But  cb= ac; hence bd2
 + bd·cd = bd·ac 

(l.4) Hence:  bd2
 + 2·bd·cd = bd·ac + bd·cd = bd·ad  

(l.5) Hence, by (l.1) and (l.4):  cb2
 = cd2

 + bd·ad                       Q.E.D. 

The step that requires special attention here is (l.4). It is based on a tacit addition of 

bd·cd to both sides of an identity, followed by an application of II.3. This is the step 

that betrays the purely arithmetic context in which Campanus concevived the 

argument of his proof. Indeed, it would be highly unnatural, and certainly alien to 

Euclid’s practice, to imagine a diagram that could graphically represent the passage 

from (l.3) to (l.4), that is, from bd2
 + bd·cd = bd·ac  to  bd2

 + 2·bd·cd = bd·ac + bd·cd. 

Because of the squares it is even difficult imagine how this derivation could be 

represented in an arithmetic diagram of the kind that I conjectured above for 
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Jordanus’ argument (and of course I have not rendered here the products as rectangle 

formation). Nor is it natural, I think, to intepret this kind of reasoning as embodying 

ideas derived from “algebra almuchabala”, as we have seen above for the case of 

Fibonacci. Rather, the passage from (l.3) to (l.4) is more naturally seen, I think, as 

arising from a direct application of the kind of general arithmetic rules that Jordanus 

worked out in his Arithmetica, and the kind of possible manipulations of numbers 

arising from it.
40

  

At this point we have arrived at one of the most significant milestones of this 

historical journey, given the decisive influence of Campanus in the process of 

trasmission of the Elements to the printed world of the European renaissance and its 

subsequent dissemination. A typical reader of this version of the Elements would 

become acquainted with Campanus’ discussion about the double presentation of the 

theory of proportions once for numbers and one for general magnitudes, and about the 

different nature of these two kinds of entities. Then, he would confront the results of 

Book II presented as comments to a result of Book IX, and bearing a purely arithmetic 

character in both their enunciations and the various steps of the proofs. And at the 

same time, of course, he would also read the same results in their fully geometric 

presentation, in the framework of Book II. With these two versions in front of him 

and with the increasing attention devoted to algebraic methods from the sixteenth 

                                                 
40

 Though I would not like to lay excessive stress on names, I feel it is improper to claim, as in (Busard 

2005, 39), that “the algebraic method which Campanus used for proving Campanus IX.16 add. 4-12 

agrees with the method which Anairitius used for proving II.2-II.10”. For one thing, I already 

indicated that both the “method” and the line of argumentation actually differ from that of Al-

Nayrīzī. But also, using the term “algebra” in this context may be misleading since nothing here is 

manipulation of abstract symbols according to formal rules, not even in the manner intended in 

Islamic mathematics. Rather, Campanus simply operates on numbers (which are indicated with 

letters that serve as names) according to general, arithmetic rules.     
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century on, the reader might lay the stress on the essential differences between the 

two ways of presenting the same results as pertaining to two essential separate 

domains (one arithmetic and one geometric), but he might as well conflate both 

presentations as expressing two faces of one the same mathematical idea. Thus, for a 

historian trying to understand the ways in which the results of Book II were typically 

read and understood on the wake of the Campanus’ version, the assumption that these 

results were conceived in arithmetic or algebraic terms, rather than as purely 

geometric ones, will not involve anymore the kind of anachronistic interpretation that 

was involved in making a similar judgment about the way in which the same results 

were conceived at the time of Euclid, and even by most other later authors whose 

works we have been investigating thus far. After Campanus in a definite manner, and 

perhaps also somewhat earlier in less clear-cut ways, the possibility of interpreting the 

results of Book II in terms of general rules for operating with numbers did not require 

the reader to incorporate into the text any mathematical idea not itself contained in the 

very text of the Elements that was available to him. At the same time, as we shall see 

now, not every reader of the Elements, posterior to Campanus, would necessarily 

adopt an entirely arithmetic reading of these results, and geometry was not quickly 

discarded as the source of certainty and legitimacy to be relied upon.     

 

6.6. Gersonides 

Levy Ben Gerson (1288-1344), also known as Gersonides, was the most prominent 

figure in the tradition of Jewish medieval sages with a keen interest in mathematics. If 

Bar Ḥiyya was the initiator of this tradition, Gersonides was certainly the first to 

contribute truly original mathematical ideas. He wrote treatises in various fields of 

interest, scientific as well as of Biblical exegesis. The most mathematically 
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interesting of them, dating from 1321, is Sefer Maaseh Hoshev ( חושב מעשה ספר ), a title 

that can be translated as “The Work of the Calculator”. Gersonides also wrote a 

commentary on Books I-IV of the Elements and a separate treatise on geometry, from 

which one may perhaps infer the extent and sources of his knowledge. Thus, as Tony 

Lévy has carefully documented (Lévy 1992, 87-92), there are some similarities 

between Gersonides’ text and some of the ideas found in al-Nayrīzī’s commentary. 

Gersonides may have been acquainted with the latter either in its Arabic original or in 

Gerard of Cremona’s Latin translation, or perhaps also via the Campanus edition. 

Still, other extant manuscripts raise the possibility of alternative sources and ways of 

transmission of Euclid’s texts to Jewish mathematicians. In his commentary on the 

Elements, Gersonides dealt with purely geometric questions such as a possible proof 

of the fifth postulate. Of Book II, he only discussed Proposition II.13. However, 

arithmetic versions of propositions from Book II do appear in Maaseh Hoshev and 

they are of interest for us here.  

Maaseh Hoshev is a book on arithmetic and combinatorics in two parts.
41

 The 

Hebrew wording of the title embodies a thoughtful word play which opposes two 

terms, one stressing the “practical” aspect of the treatise (מעשה), the other stressing 

the “theoretical” one (חושב). Gersonides explained in the introduction that the purpose 

of his treatise was not just to teach the practical rules for solving arithmetic problems, 

but also the theory underlying those rules, since mastery of the former necessitates a 

full understanding of the latter. Gersonides also suggested that the prospective reader 

of his book should first master the contents of the three arithmetic books of the 

                                                 
41

 Here I refer to the text as is appears in (Lange 1909), which is where the Hebrew text first appeared 

in print in modern times, together with a German translation. See also (Simonson 2000) for a 

description of the contents, for some important remarks concerning the existing manuscripts and 

versions, and for additional parts not appearing in the Lange edition. 
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Elements, since proofs for propositions in those books would not be repeated the text. 

But the image of arithmetic that Gersonides presented was much broader than what 

the Elements contained and some of the proofs in the text go well beyond Euclid. 

Maaseh Hoshev, for instance, discussed many additive properties of the natural 

numbers as well as combinatoric results. He also followed ingenious arguments that 

came very close to mathematical induction (Rabinovitch 1970).  

Gersonides started by proving some elementary properties of addition and 

multiplication, in a manner that reminds us of the preliminary section of Jordanus’ 

Arithmetica discussed above. This preliminary section comprises results on 

distributivity and associativity of the product, as well as on identities involving the 

squares of a number separated into two parts. But Gersonides was much less 

systematic or exhaustive than Jordanus in his treatment. He included propositions that 

would be needed for proving more complex propositions later on in the text, as well 

as some others that are not even used, but it is not easy to discern a clear criterion for 

this choice.   

Arithmetic versions of the first six propositions of Euclid’s Book II appear among 

these preliminary results. Propositions II.1-II.4 are proved by straightforward 

arithmetic argument, namely, by counting units in each case. (I say more on this in 

[LC2].) But when we read Gersonides’ versions of II.5-II.6 (which are, respectively 

MH-I.8 and MH-I.5), we find a more interesting and complex picture. Let us start by 

looking at Gersonides’ text for MH-I.8, which reads as follows:
42

     

The area obtained by multiplying half of a given number by itself equals the area 

obtained by multiplying a part of that number by the remainder together with the 

                                                 
42

 This is the version appearing in (Lange 1909, 5). It is remarkable that the proposition was not 

included in the second edition. See (Simonson 2000, 297).  
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square of the difference between the part and half of the given number. Therefore 

let AB be the given number and let it be halved at point C, and divided at some 

other point D. I say that the square on the number AC equals the area obtained by 

multiplying the number AD by DB together with the square on CD. 

 

Figure 33 

Proof: the square on AC equals the area of AC on CD together with the area of 

AC on DB, but the area of AD on DB equals the area of AC on DB together with 

the area of CD on DB. If we subtract the area of AC on DB which is common to 

them, then what remains from square AC equals the area of AC on CD, which 

equals the area of CB on CD, whereas what remains from the area AD on DB is 

the area CD on DB. But the excess of the area CB on CD over the area CD on DB 

equals the square on CD. Therefore, the square on AC equals the area of AD on 

DB together with the square on CD, and this is what we wanted.  

Like Heron, also Gersonides bases the proof on using the elementary distributivity 

results of Book II in order to decompose, transform, and then compose again the basic 

figures obtained. He may have learnt this approach from al-Nayrīzī. But besides this 

basic similarity, his argument evidently takes a longer and rather less transparent 

path. This argument is more clearly understood when rendered symbolically, as 

follows:  

(m.1) Sq(AC) = R(AC,CD) + R(AC, DB)                        [by II.2] 

(m.2) On the other hand,  R(AD,DB) = R(AC,DB) + R(CD, DB)   

(m.3) Hence Sq(AC) - R(AC,CD) = R(AC,DB) = R(AD,DB) - R(CD,DB) 
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(m.4) But  AC = CB    [and hence R(AC,CD) = R(CB,CD)] 

(m.5) Hence Sq(AC) - R(CB,CD) = R(AC,DB) = R(AD,DB) - R(CD,DB) 

(m.6) But   R(CB,CD) = R(BD,CD) + Sq(CD)     [by II.1] 

[and therefore Sq(AC) - R(BD,CD) - Sq(CD) = R(AD,DB) - R(CD,DB)] 

(m.7) Hence            Sq(AC) = R(AD,DB) + Sq(CD),                             Q.E.D. 

 

If we wanted now to visualize the argument in terms of a diagram we could start 

with steps (m.1)-(m.2) as follows: 

 

Figure 34 

Step (m.3) introduces a kind of derivation that we had not seen so far, and in 

which the two above figures are compared by way of subtraction of areas, as 

follows: 

 

Figure 35 

In step (m.4) the equality CB=AC is invoked to obtain the identity in step (m.5): 
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Figure 36 

This step implies going even further than in step (m.3) since, unlike there, the areas 

that are subtracted here are not in the given figures to begin with. A further 

decomposition in (m.6) allows reaching in step (m.7) the identity to be established: 

 

 

 

Figure 37 

As with other cases above, also in this case one might raise the question whether this 
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geometric rendering of the text is the correct one, or if we should rather follow an 

arithmetic rendering. That is, we might ask if Gersonides conceived the argument 

while thinking about construction and manipulation of geometric figures as suggested 

in the diagrams above, or if, on the contrary, he thought in terms of general rules of 

multiplication and addition for numbers. The inclusions of steps such as (m.3) and 

(m.5) make this question of particular interest. I think that in this case there are good 

reasons to attribute Gersonides a more geometric kind of thinking, at least for this 

specific proposition. One reason for this is the language he used, in which a product is 

always dubbed “area” (שטח) or “square” (מרובע). This is of course inconclusive 

evidence, and we saw above some examples to the contrary, but it is at least 

indicative. Also, he did not choose here the arithmetic counting of units that he 

followed in other cases. But a more important consideration is that, while we have not 

seen other examples where areas are subtracted as part of a geometric argument, we 

have not seen either any example where this is done for numbers as part of an 

arithmetic one. And indeed, I find it unnatural to see how some of the crucial steps of 

the argument could have been conceived as part of a purely arithmetic derivation. 

Thus, for instance, it is not clear what could be the arithmetic idea behind a putative 

arithmetic rendering such as the following: 

(m'.3)     AC
2
 - AC·CD = AC·DB = AD·DB -  CD·DB  

Moreover, the geometric rendering also seems appropriate for the argument of MH-

I.5, whose proof is based on repeated applications of distributivity properties, and 

which is accompanied by the following diagram: 

 

Figure 38 
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Here the “number AB” (Gersonides’s term) is bisected at C and the “number BD” is 

added. The proposition then states, as in II.6, that the area of AD by DB together with 

the square on CB equals the square on CD.  

Gersonides’ proof is as follows: 

(n.1) R(AD,BD) = R(CD, DB) +  R(AC, DB) 

(n.2) But R(AC, DB) = R(BC, DB) 

(n.3) [Hence R(AD,BD) = R(CD, DB) +  R(BC, DB)] 

(n.4) Hence  by adding Sq(CB),     

            R(AD, DB) + Sq(CB) = R(CD, DB) + R(BC, DB) + Sq(CB) 

(n.5) But Sq(CD) = R(CD, BD) +  R(CD, CB) 

(n.6) But R(CD, CB) = R(CB, BD) +  Sq(CB)  

(n.7) Hence Sq(CD) = R(CB, BD) +  R(CB, BD) +  Sq(CB) 

(n.8) Hence Sq(CD) = R(AD,BD) + Sq(CB),                             Q.E.D. 

 

In this case we find no subtractions as in the previous example, but here the 

steps are more straightforward and one can simply imagine them as being similar 

to those followed by Heron in his “operational” geometric proof. 

Summarizing this section, then, one can say that Gersonides’ version of these two 

propositions is not easily classified as either geometric or arithmetic. On the one 

hand, it is clear that for him the two propositions are meant (like all other 

propositions in the book) to express properties of numbers, and not of geometric 

figures. On the other hand, while for other propositions in the book which were also 

arithmetic versions of propositions in Book II, he had provided arithmetic proofs, 

here he proceeded in ways that remind one of those of al-Khwārizmī and of his 

Islamic followers, namely, he provided a geometric justification for a result related to 
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numbers. It is evident that lacking a flexible language in which the various steps of 

the proof (as stated above) could be conceived and formulated in arithmetical, or 

proto-algebraic terms, an operational approach to geometric manipulation of areas, 

such as implicit in Heron’s proof, offered a blueprint of a proof that could be more 

easily adapted to the arithmetic spirit of the book. Euclid’s proof would have also 

worked here, of course, but it would have been much less akin to the arithmetic spirit 

of the proposition as conceived by Gersonides. In this sense, Gersonides’ proofs do 

reflect a well-developed ability to manipulate abstract relations between numbers, 

albeit without having at hand a fully-developed symbolic language. Of course, the 

proofs discussed here are not among the most complex ones that Gersonides handles 

in the treatise, and yet I think that this conclusion applies broadly beyond the specific 

cases considered. In terms of historical development, at any rate, since Maaseh 

Hoshev had little or no visible influence on later mathematical developments in 

Europe, this highly original version of II.5 soon fell into oblivion.  

 

6.7. Barlaam 

The last text that I want to consider here is a highly original collection of results 

embodying arithmetic versions (not a commentary) of Euclid’s propositions II.1-

II.10, and commonly attributed to the 14
th

-century Basilian monk and scholar 

Barlaam de Seminara (ca. 1290-1348).
43

 Barlaam is mentioned in passing in Heath’s 

edition of the Elements (Heath 1956 [1908], Vol. 1, 74), as well as in some other 

places in the secondary literature, but it seems that there exists no serious historical 

research on him and on his startling Euclidean text.  

                                                 
43

 The full original Greek text appears in (Heiberg & Menge, 1883-1893, Vol. 5), as Appendix 

Scholiorum  4. I thank Michael Fried for help on translating parts of it.  
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In the text we find no preliminary explanations about the background, or about what 

exactly the author had in mind when composing it. Rather, the text itself opens with 

arithmetical definitions similar in spirit and in wording to those found in Book VII: 

multiples of numbers, plane numbers, parts of numbers. More generally, the wording 

of the propositions, and especially the accompanying diagrams, resemble those found 

in Books VII-IX: they are not geometric constructions needed to support the 

argument, but rather indications, with the help of various lines drawn one next to the 

other, of the various numbers mentioned in the proof. Still, in some places Barlaam’s 

use of the lines appearing in the diagram deviates in important senses from standard 

usage. Let us see the details of his proof of II.5.   

Barlaam’s proof of this proposition relies on the use of II.1, and also, in an original 

way, of II.4. The accompanying diagram is as below (Heiberg & Menge, 1883-

1893, Vol. 5, 730-732):  

 

Figure 39 

The standard line appearing in all diagrams of proofs of II.5 also appears here, 

with ab representing a number (Barlaam stresses that this is an even number), that 

is divided into two equal numbers ag,gb and into two unequal numbers ad,db. But 

the additional three lines are quite unusual. They are defined as follows: 

 e represents “the square on gb”  

 zh is “the plane number from ad,db”  

 hq is “the square on gd”  
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 kl is “the square on bd” 

 nj is “the square on dg”  

 lm, mn are each “the plane number obtained from bd, dg” 

According to the diagram (but not mentioned anywhere in the text) kj = kl +lm 

+mn +nk. Notice then, that by virtue of II.4 and by referring to the meaning 

attributed to each of the four segments, Barlaam implicitly takes kj to represent 

the square on bd +dg. This is nothing but the square on bg, which by definition is 

e. Also according to the diagram (and not mentioned anywhere in the text) zq = zh 

+ hq. Thus, it is clear that the aim of the proof must be to show that also zq = e. 

The steps of the argument for reaching this conclusion can be schematically 

rendered as follows:  

(o.1) By definition, kl = bd·bd  and  lm = gd·bd. Hence km  = gb·bd 

             [since km = kl + lm    and gb = gd +db] 

(o.2) But gb = ga, hence km  = ga·bd 

(o.3) But by definition also, mn = gd·bd. Hence by (o.1-o.2), kn = ad·bd  

              [since kn = kl + mn   and    ad = ag + dg]   

(o.4) But also zh = bd·ad. Hence [by (o.3)] zh  = kn 

(o.5) But hq = nj, since both were defined as cd·cd . Hence kj  = zq 

              [since kj = kn + nj   and    zq = zh + hq]   

(o.6) But kj = e [by II.4 ‼], so that [by (o.5)] zq =e 

(o.7) But also zq = ad·db +dg2
  [since in the diagram  zq = zh + hq]   

(o.8) Hence, zq = ad·db +dg2
 and zq = e, so that ad·db +dg2

 = gb2
           Q.E.D. 

 

Barlaam’s proof presents another interesting example of an argument which is 

certainly based on operating with numbers and relies on general properties of these 

operations, but without thereby involving abstract manipulation of symbols. Nor does 
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there seem to be any kind of reliance on geometry. On the other hand, some of the 

information necessary for completing the proof derives from the diagram alone and is 

not explicitly mentioned in the text. Likewise, all the numbers involved are 

represented by straight lines, but some lines represent given numbers, while other 

represent numbers that arise from operations on the given numbers. The two kinds are 

treated differently. Worthy of special attention is the use of II.4 in step (o.6), since 

Barlaam tacitly completes the step by referring to a number for which only the 

diagram indicates the four factors that add up to it and that hence allow using the 

result previously proved, II.4. Even the wording attached to the use of II.4 is different, 

since it states that “since the number bghas been divided into two numbers gd,db, 

therefore the square on bg, namely e, is equal to the squares on bd, dg together with 

twice [the plane number from] bd, dg.” 

Notice that, while the proof is stated in purely arithmetic terms and while some of its 

steps amount to counting the units in each of the terms involved, it still seems that in 

some crucial places the geometric background to the original propositions did 

underlie the line of argumentation. Thus, like Gersonides, Barlaam produced a version 

of II.5 which was intended to assimilate this result into the body of arithmetic and 

indeed, one might say, of Euclidean arithmetic. Their proofs, however, were different 

as was also the fate of their works. Contrary to Gersonides’ book, Barlaam’s text was 

well-known in the 16
th

 century to authors of influential books, and some of them, such 

as Petrus Ramus (1515-1573) or Christopher Clavius (1538–1612), followed his 

formulations and his approach when handling II.5. Likewise, Sir Henry Billingsley (c. 

1545-1606), who in 1570 published the first full English version of the Elements in 

1570, explicitly relied on Barlaam’s text (Bllingsley 1570, Folio 62). Explaining the 

details of Barlaam’s influence on these authors, however, is beyond the scope of the 
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present article. We can say, at any rate, that this rather remote text appears to have 

been instrumental in furthering the possibility of looking at II.5 from perspectives that 

departed from the original, purely-geometric one that underlies Euclid’s conception. 

 

7. Concluding Remarks 

The first printed version of the Elements appeared in 1482 in Venice, based on 

Campanus’ translation, and it is usually known as the Erhard Ratdolt edition. The first 

published translation into Latin from a Greek text of the Elements appeared in 1505, 

also in Venice. The Greek text had its origins in a slightly modified edition of Theon 

of Alexandria. By comparing this Greek text with Campanus’ versions, its 16
th

-

century translator into Latin, Bartolomeo Zamberti (c. 1474 – after 1539), excluded 

sections that in his opinion had been added by Theon (Rose 1975, 51 (note 56)). 

Zamberti was an influential humanist who played a somewhat paradoxical role in 

promoting certain conceptions about the Elements at the time. On the one hand, he 

supported a view, commonly associated with Proclus, that stressed the “marvelous” 

nature and unity of the Elements. According to this view the Euclidean text could not 

possibly be rearranged or improved by means of new demonstrations without serious 

damage to its perfection. On the other hand, Zamberti was also instrumental in 

popularizing a view according to which, the choice of definitions, postulates, and 

propositions in the Elements were Euclid’s, whereas the demonstrations were 

Theon’s. This alternative view opened the way to editions in which the Euclidean text 

was altered, summarized, divided, or published without the proofs (Goulding 2010, 

152-159). 

In 1516 Jacques Lefèvre d'Étaples (Jacobus Faber Stapulensis) attempted to  reconcile 

the numerous discrepancies between existing translations of the Elements and came 
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up with a unified edition in which the Radtold’s and the Zamberti’s text appeared 

side-by-side. Eventually these two traditions, one stemming from Arabic sources (via 

Campanus) and one from Greek sources (via Zamberti), merged in the last third of the 

16
th

 century. In 1572 the edition of Federico Commandino (1509-1575), based on this 

new merging of traditions, appeared in print, marking an important milestone in the 

process of assimilation of the Elements as it came to be considered and understood in 

Europe.  

The Euclidean traditions within the world of the printed text, which were inaugurated 

with the 1482 edition, and consolidated with the Commadino edition of 1572, differed 

in important senses from the medieval ones that I have been discussing along this 

article. This is certainly the case for the question of the changing relationship among 

geometric and arithmetic ideas. For one thing, a main starting point of these traditions 

was the Campanus’ text, and the peculiar way in which Book II and the ideas related 

to it had been handled there. For another, new and vigorous trends of symbolic 

algebraic techniques began to attract increased attention and were incorporated into 

the text of the Elements. These new algebraic trends fitted in a relaxed manner into, 

and offered a natural continuation of, the kind of generalized arithmetic that 

Campanus, especially under the influence of Jordanus, had already made appear as the 

fundamental way to look at the results of Book II. Within the renaissance traditions of 

the Elements, then, Book II came to be understood in ways that went well beyond the 

purely geometric one that had informed Euclid’s original conception. A detailed 

analysis of this topic is well beyond the scope of this article and I intend to pursue it at 

a future opportunity.   
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