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Titanium alloy Ti-6Al-4V
compressive stress—strain
behaviour at various strain
rates. Adapted from
Experimental and numerical
analysis of high strain rate
response of Ti-6Al-4V
titanium alloy A.Bragov, A.
Konstantinov, A. Lomunov,
|.Sergeichev and B. Fedulov,

DYMAT 2009, p. 1465-1470,

2009.

7.6 Material constitutive laws

The topic of constitutive laws is a broad one. Basically, a constitutive
law is a mathematical expression that aims to describe the material
behaviour. In structural analysis, one inputs mainly the strain, strain
rate and temperature, to obtain the stress levels.

A simple constitutive law is the elastic one and it relates the stress
and strain via the single parameter elastic modulus, F,

o= Fe.

We have also seen in Chapter 5 the perfectly plastic material constitutive
law,
g = 0y

where og is the flow stress. Note in this case that there is no unique
stress—strain relation, ie for any strain value different from zero, the
stress level is always the flow stress. Yet, this equation can describe well
some materials, classically the mild steel, but also some titanium alloys,
as seen in the next figure from the experimental data after the strain
rate jump.
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The perfectly plastic material law is a particular case of

o=—2

(oy/E)"
with n = 0. The constants o, and n are given in the next table for some
steel alloys, while the next figure presents a titanium alloy compressed

n
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at a strain rate of 1000/s indicating that the rigid—plastic model is a
reasonable assumption for this material at such a rate.

Material oy, (MPa) n

16NC6 345 0.17
100C6 430 0.14
35CD4 473 0.09
35NC15 790 0.08
Z38CDV5 390 0.17
Z15CN17-03 804 0.10
Z2CN18-10 200 0.21
42CD4 515 0.10
XC18 350 0.10
XC38 576 0.11
X(C48 419 0.16
XC65 345 0.24
XC80 303 0.17

Constitutive parameters for various steel alloys with £ = 210 GPa. Valid for
o= %s” and adapted from A. Nayebi, R. El Abdi, O. Bartier and G. Mauvoisin,
O'y

New procedure to determine steel mechanical parameters from the spherical indentation
technique, Mechanics of Materials, 34, p. 243-254, 2002.
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The behaviour of a titanium

7 true stress alloy at a strain rate of
(MPa) 1000/s.

As we have seen in other occasions, some materials increase their
flow stress levels when loaded dynamically. If we plot this increase of the
flow stress, say o4/0s — 1, against strain rate, €, we can conjecture, and
experimental results for many metals have confirmed, that the resulting
relation is linear when using a log scale for the strain rate. It follows
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Various stress predictions for
the steel alloy BS EN 10025

FE430A according to the

Cowper—Symonds equation,
with its constants determined

from the yielding stress.

See M. Alves, Material
constitutive law for large
strains and strain rates,
Journal of Engineering
Mechanics, 216-218, 2000.

then

04 — O0g

Ly (g)”ﬁ] ,

with C and p being material constants. This is the well known Cowper—
Symonds equation, implemented in most explicit finite element codes. It
can also be written as

1 1

_ n — i
o4 =0s(14+me"), m= S n 5

Observe that the equation above can also be adapted to strain hard-
ening materials by writing the static flow stress as a function of the
strain, eg 05 = 0y + AeP. The constants m and n are determined at a
given plastic strain, say at the yielding strain ,. In this case, only the
dynamic yielding stress can be well predicted. Using these constants to
predict, for instance, the ultimate stress, oy, or the failure stress, oy,
would lead to an error, as shown in the next figure.
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A remedy to this situation is to use the equation
O'eqd = O'eqs —+ Méﬁ,

with

_ o _ 1

m = i/ and n = a,
valid for materials whose strain hardening is not affected by the strain
rate. Here, 0y, and oy, are the dynamic and static equivalent stresses,
respectively. The coefficients C' and g are determined in the same way

as in Cowper—Symonds’. The parameters o and € can be freely cho-
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sen based on the available experimental data or application. Upon this
choice, the coefficients m and n will assume specific values. This equa-
tion is just a slight modification of the Cowper—Symonds equation, yet
it avoids the problem of dealing with strain dependent coefficients. The
next figure shows the predictions of these equations together with ex-
perimental data for a steel alloy.
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Another common constitutive equation, referred to as Norton equa-

tion, simply reads
é q
gq = 00 <_> 5
€0

where ¢ is a constant assigned to minimize the error between experimen-
tal and predicted data. g is a reference strain rate, usually very small,
associated with a quasi—static tensile or compressive flow stress value,
op. This equation has the great advantage of facilitating the develop-
ment of some theoretical models, as we have seen in Chapter 5 and we
shall see in Chapter 9. Despite of being simple, this equation compares
well with the predictions given by the Cowper—Symonds equation, as
illustrated in the next figure for a mild steel.

In impact engineering, a much used constitutive equation is the one
due to Johnson and Cook and it reads

N é T-T,\"
=asnn (1een ) - (727 |

with the constants A, B, C, n, m being determined by best fitting a
series of stress—strain curve measured at different strain rates and tem-
peratures. Here, T is the temperature and its subscripts refer to melting

Impact Engineering, M Alves

Prediction of the constitutive
law Geq, = Teq, + me™ for
steel alloy BS EN 10025
FE430A together with
experimental results for A:
lower yield, oy, o: ultimate,
ou, and o: failure, oyq,
stresses versus strain rate.

Care should be taken with the
fact that the term A + Be"™
may not represent the
quasi-static material
behaviour but rather its
behaviour at £g.
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Predicted dynamic flow stress
for a typical mild steel.
Continuous line,
Cowper—Symonds equation
with p =5 and D = 40/s.
Dashed line, Norton equation
with €9 = 0.001/s and

q = 0.077. In both
predictions o9 = 235 MPa.

—Cowper-Symonds
== Norton

T T T
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and room (or reference) temperature. €g is a reference strain rate, usu-
ally the unity in the Johnson—Cook work but it can well be associated
with the quasi-—static tensile test, say 0.001/s. Once the five constants
of a material are known, we can enter any temperature, strain rate and
plastic strain to obtain the stress level. It is possible to obtain a true
equivalent stress if we input the equivalent plastic strain value and in
this case, of course, the constants have to be obtained from true equiv-
alent stress—strain pairs. It has been found that this equation performs
relatively well for many materials but poor predictions are equally pos-
sible.

The next table lists the values of these constants for various materials
and as measured in the original work of Johnson and Cook.

material P E ¢ Ther A B n C m
kgm2GPa m/s °K
copper 8960 100 10001356 90 292 0.31 0.025 1.09
brass 8520 100 10001189 112 505 0.42 0.009 1.68
nickel 8900 100 10001726 163 648 0.33 0.006 1.44
1006 Steel 7890 100 10001811 350 275 0.36 0.022 1.00
2024 Al. 2770 100 1000 775 337 343 0.41 0.010 1.00
4340 steel 7830 100 10001793 792 510 0.26 0.014 1.03
tungsten 17000 100 100017231506 177 0.12 0.016 1.00

Johnson& Cook constitutive parameters for some metals.

The more complex the behaviour of a material is, so is the consti-

Impact Engineering, M Alves



7.6. Material constitutive laws 319

tutive equation. An example of a somewhat complex behaviour is the
polymer stress—strain curve depicted in the next figure. The constitu-

tive equation relating engineering stress and strain See Mechanical models of
n cellular solids: Parameters
_ _ (—Ee/A)(l—e)m] € identification from
o=A4 [1 erp +B 1—¢ ! experimental tests, M. Avalle,

G. Belingardi and A. Ibba,
with A, B, E, m and n being fitting constants, predicts well this typical International Journal of

polymer behaviour. Impact Engineering, 2007, 34,
p. 3-27.
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In connection with the polymers behaviour, a well known constitutive
equation is the Mooney—Rivlin, which can be used for stretching as
large as 100%, like in rubber sheets. Because it is obtained from a strain
energy function, we refer to it as a hyperelastic model, a subject that
will be further explored in the next chapter. For now, we present the
relation between true stress and stretching, which reads

U—(201+ /\)(A /\)’

with C and Cy being material constants that are determined from curve
fitting to the experimental test. In terms of engineering stress, it follows

that o0 )
2
5= (201+T> (/\_ﬁ)’

which is useful for obtaining the C; parameters. We will have the chance
to apply this equation in Chapter 10, in connection with the impact of
tires.

A material can also be pulled at different speeds during loading.
This is exemplified in the next figure, where a titanium alloy is pulled
at different strain rates. The various experimental curves are fitted well

by the constitutive equation See A. S. Khan, R. Kazmi
) ) and B. Farrokh, Multiaxial
Impact Engineering, M Alves and non—proportional loading

responses, anisotropy and
modelling of Ti-6Al-4V
titanium alloy over wide
ranges of strain rates and
temperatures, International
Journal of Plasticity, 2007,
23, p. 931-950
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A titanium alloy mechanical
behaviour at various strain
rates.

Iné\* ENC/ Tm—T \*
=|A+B|1—-—— o= L
7 |: - ( IIID> €:| (€*> (Tm_Tref> 7
with A, B, D, a, b, ¢, d being material constants. Here, T is the current

temperature and T, is the material melting temperature. 7).y and &*
are temperature and strain rate references.
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Another constitutive equation, based on physics rather than empiri-
cal, is the Zerilli—Armstrong one, described by

o=0Cy+ C1e_CST+C4T1né + Cse™.

This equation has been used to predict various material behaviours at
a wide range of strains, strain rates and temperatures, as exemplified in
the next figure for a tungsten alloy.

7.7 Inverse modelling and image analysis

Another way to obtain the true equivalent stress—strain curve of a ma-
terial is by trial and error. This can be efficiently done using an opti-
mization algorithm, as available in commercial finite element packages.

The idea is to experimentally load a specimen and record force and
displacement. The specimen under the same load and boundary con-
dition configuration is then analysed with the finite element method,
a procedure which requires the material stress—strain curve. A set of
stress—strain pairs are given, or else some constitutive parameters, and
the analysis is run, giving as output a load—displacement curve. This
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