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where oy is the nominal or engineering stress (see table above). The

stress—strain conjugate pairs indicated in the table above form a family

of stress—strain measures called consistent. In the next chapter, we will
It is also interesting to note that the time derivative of the above  introduce the concept of the

. . gradient of deformation and
equation gives the general stress rate, use it to express strain and

. stress measures.
O = ONATT 4 (I =m)A""opnA,

which does not converge to a common value, even for A\ ~ 1.

7.2 Tensile tests

From the previous section, basic knowledge of a material mechanical
behaviour can be gained by loading a rod and measuring the force and
the stretching. Once these variables are known, one could express the
mechanical behaviour of the material by the stress—strain curve. This
curve plays a fundamental role in any structural analysis, as we have
already experienced in previous chapters.

The tensile test machine, as the one depicted in the next figure, is the
basic apparatus to measure the strength of a material and to obtain its
stress—strain relation. The material sample is usually machined flat or
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We can use strain gauges to
measure the strains in this
test. One arrangement is two
strain gauges glued in
opposite sides of the
specimen and connected in
half—bridge configuration.

A tensile test machine and a
composite material sample
fixed in the jaws.

on a cylindrical shape. There are standards describing the geometry and
the test, although a given research may require alternative dimensions.
The figure also shows a close—up of the tensile specimen fixed by the
machine jaws. In the straight segment of the specimen, there is clip gauge
to measure the displacement between the two knives of the gauge as the
specimen is pulled by the machine. Also, on the top of the superior jaw,
there is a load cell so it is possible to obtain the load and the stretching
during the test.

A remark is that tensile test machines have also an accurate sensor
to measure the jaw displacement. However, this information needs to be
handled with care since the machine transverse beam, which holds the
jaws, deforms as the stretching load increases. This adds to the actual
strain value experimented by the specimen. Hence, a local displacement
measure, as the one yielded by strain or clip gauges, is far better to be
used for the calculation of the strains.

Currently, image processing techniques are being more and more
used, allowing the mapping of the stretching of a sample only by track-
ing the motion of image pixels. We will explore this technique later in
this chapter.

From the measured load, the initial specimen cross—section area and
the jaw head displacement, we can obtain the nominal, or engineering,
and the true stress—strain curves. From the previous sections, it is pos-
sible to change from the nominal to the true stress—strain definitions
according to

o=s(1+e) and e=In(1+e),

when assuming that there is no volume change in the plastic regime, e
AL = AgLyg.
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Note that the difference between engineering and true stress—strain
values can be quite large for ductile materials and the next figure presents
the case of a steel alloy. In this particular case, the true stress—strain
curve is in the equivalent space, a concept that we will explore next.
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We see from the results in the figure that the material in play presents
a nearly linear behaviour for small strains. For many materials, when
this linear stress—strain behaviour ceases, the material enters in the
plastic regime, e the removal of the load leaves the material permanently
strained. This transition, not clear for some metals, is the yield stress,
an important design parameter. There are many cases though, that even
metals do not behave linearly in small strain regimes, like the cast iron
seen in the opening of this chapter.

After yielding, a typical metal continues to increase its strength as it
enters in the strain hardening regime. Observe that, as the strain grows,
the discrepancy between the nominal and true stress curves become more
evident. The true stress grows quicker because the sample cross—section
area decreases.

It is important to realize that the fact that the material behaviour
ceases to be linear does not mean that it entered the plastic regime. As
shown in the next figure for a polymer, the behaviour is non-linear in an
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Stress—strain curve for a
polymer showing non-linear
behaviour at an early stage of
loading (from H. Darijani, R.
Naghdabadi and M.H.
Kargarnovin, Constitutive
modeling of rubberlike
materials based on consistent
strain energy density
functions, Polymer
Engineering and Science, p.
1058-1066, 2010).

Some lectures notes delivered
by Richard von Mises at the
School of Engineering,
Harvard University, in 1946,
were registered by M. Vargas
and collect by R.T. Vargas in
book form available at
www.gmsie.usp.br.

early stage but there is no guarantee that such a behaviour is plastic. The
only macroscopic way to gauge plastic strains is by unloading the sample
and measuring the left deformation. In other words, plastic strains are
revealed only after load removal, given that what one measures during
a test is the total strain. This is why the plastic strains are called an
internal variable.
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7.2.1 Equivalent stress and strain

So far in this chapter, we have been dealing only with uniaxial stress.
More generally, the stress in a point is represented by a set of stress
components, according to the reference system used and to the assump-
tions made. Two important questions arise. First, how to represent this
set of stress components by a single representative stress value. Second,
to what value this single parameter should be compared to in order to
allow us to access whether material plastic flow is established. As for
the first question let us define the effective, or equivalent (true) stress,
or von Mises stress as

) (0p —0y)* 4 (0y — 0.)* + (0, — 0,)* + 6(U§y + ng +a2,)

eq 9 )

which becomes simply o,y = o0, for the uni—dimensional stress case.
For the case of pure shear, we have 0.4 = \/gaxy. It will be shown later
that this expression is proportional to one of the various invariants of the
stress tensor. Clearly, this stress state quantification takes into account
all components of the stress tensor.
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We can define a similar expression for the equivalent (true) plastic
strain. We expect that this variable should always increase, for both pos-
itive and negative values of the various strain components, so to go side
by side with the equivalent stress, which is always positive. Accordingly, In finite element analysis, the

we define the equivalent plastic strain rate as material behaviour is usually
informed by pairs of

pa 2. 2 , 2 . D equivalent stress —
(816)‘1) - 5 {(813Z - 81?;) + (85 - gzz)) + (Eg - 513;) +} . equivalent strain.

g {46 [(€2,)? + (€0.)% + (2%}

and from there the equivalent plastic strain

For a circular bar being pulled in tension, before necking takes place,
the equivalent stress reduces to the (true) unidimensional case, ie

F
g eq — O, — Z
To obtain an expression for the equivalent strain in such a bar, let
us evaluate the variation of volume of the unity cube shown in the next
figure.

A unity cube experimenting a
change in its dimensions.

The variation in volume of the unity cube is AV = (1 4+ &;)(1 +
ey)(1 4+ ¢e2) — 1, which equals to AV = ¢, + ¢, +¢, = ,(1 — 2v) when
high order cross product are disregarded and use is made of the Poisson
ratio definition, v = —¢, /ex = —€./e,. Now, various experiments in
metals have shown that v ~ 1/2 as plastic flow grows, which indicates
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See M. Alves and N. Jones,
Influence of the hydrostatic
stress on failure of
axisymmetric notched
specimens. Journal of the
Mechanics and Physics of

Solids, 47(3):643-667, 1999.

from the AV expression above that volume is conserved in the plastic
regime.
For the cylinder under tension, we then write

7mD3Lo/A =7DL/A — 2InD/Dy+1InL/Ly =0 — 29 + ¢, = 0.

Using now the expression for the equivalent strain, we arrive at

l d
Eeq =ln% =2In (FO) ,

which points to the fact that it is only necessary to trace the specimen
diameter to obtain the equivalent strain (in the probing area). O course
that we can measure the stretching of the bar along its length. The
advantage of monitoring the diameter becomes more apparent when we
seek for the equivalent stress—strain pair after localization, which ensues
the phenomenon of necking.

7.2.2 Necking

We have established that the true values of axial stress and natural
axial strain that occur in a tensile test coincide with their equivalent
counterparts. This is true up to a certain point in a test. If we continue to
pull a tensile specimen, there will be a moment when material instability
occurs and the deformation in the specimen becomes concentrated in a
small necking zone, see next figure. The formation of the necking zone
is roughly the point where the load reaches its maximum value, which
is the ultimate engineering stress. Once necking starts, to measure the
strain with the clip gauges and using e.q = In(l/ly) is meaningless since
this measure will be a too rough value for the actual localized straining
process in the neck.

The question now is the calculation of the equivalent stress and strain
in the necking zone. This is important because it gives us information
of the material behaviour at large strains, necessary when dealing, for
instance, with crushing of a device. After necking, the stress field ceases
to be unidimensional. An analysis of the stress field in the necking zone
was developed by Bridgman. He found, and modern numerical models
corroborate it , that the equivalent stress in this region is given by

Lo _AF !
TR (1 )

with the term 4F/md? being just the axial true stress and the remaining
term a correction factor, f., which takes into account the three dimen-
sionality of the stress field. Here, R is the necking radius, which needs
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to be measured as the test progresses, a somewhat easy task with image
analysis systems.

The next figure plots the correction factor for a ductile steel alloy.
We can see that the difference between the equivalent stress and the true
unidimensional stress (F'/A) can be significantly large and may lead to
important errors in a non-linear finite element analysis if no distinction
between true axial and true equivalent stresses are made.
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Necking zone in a tensile
specimen and a sketch of the
stress field.

The factor f. for a ductile
steel alloy.



