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Abstract

25th-order high-temperature series are computed for a general nearest-neigh-
bor three-dimensional Ising model with arbitrary potential on the simple cu-
bic lattice. In particular, we consider three improved potentials character-
ized by suppressed leading scaling corrections. Critical exponents are ex-
tracted from high-temperature series specialized to improved potentials, ob-
taining γ = 1.2373(2), ν = 0.63012(16), α = 0.1096(5), η = 0.03639(15),
β = 0.32653(10), δ = 4.7893(8). Moreover, biased analyses of the 25th-order
series of the standard Ising model provide the estimate ∆ = 0.52(3) for the
exponent associated with the leading scaling corrections.

By the same technique, we study the small-magnetization expansion of the
Helmholtz free energy. The results are then applied to the construction of
parametric representations of the critical equation of state, using a systematic
approach based on a global stationarity condition. Accurate estimates of several
universal amplitude ratios are also presented.

Keywords: Critical Phenomena, Ising Model, High-Temperature Expansion, Criti-
cal Exponents, Critical Equation of State, Universal Ratios of Amplitudes.
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1 Introduction

The Ising model is one of the most studied systems in the theory of phase transitions,
not only because it is the simplest nontrivial model that has a critical behavior with
nonclassical exponents, but also because it describes the critical behavior of many
physical systems. Indeed, many systems characterized by short-range interactions
and a scalar order parameter undergo a continuous phase transition belonging to
the Ising universality class. We mention the liquid-vapor transition in simple fluids
and the critical transitions in multicomponent fluid mixtures, in uniaxial antiferro-
magnetic materials, and in micellar systems. Continuous transitions belonging to the
three-dimensional Ising universality class are also expected in high-energy physics, for
instance in the electroweak theory at finite temperature and in the theory of strong
interactions at finite temperature and finite baryon-number chemical potential. For
a recent review, see, e.g., Ref. [1].

The high-temperature (HT) expansion is one of the most efficient approaches to
the study of critical phenomena. Very precise results have been obtained by perform-
ing careful extrapolations to the critical point, by using several different methods,
see, e.g., Ref. [2]. For moderately long series, such as those available for models in
the three-dimensional Ising universality class, the nonanalytic confluent corrections
are the main source of systematic errors. For instance, according to renormalization-
group theory, the critical behavior of the magnetic susceptibility is given by the
Wegner expansion

χ = Ct−γ
(
1 + aχ t

∆ + a2 t
2∆ + ... + b t∆2 + ...+ e1 t + e2 t

2 + ...
)
, (1.1)

where t ≡ (T − Tc)/Tc is the reduced temperature and ∆ is a noninteger exponent,
∆ ≈ 0.5 in the Ising case. In the analysis of HT expansions these nonanalytic terms
introduce large and dangerously undetectable systematic deviations in the results.

In order to obtain precise estimates of the critical parameters, the approximants
of the HT series should properly allow for the confluent nonanalytic corrections [3–9].
However, the extensive numerical work that has been done shows that in practice,
with the series of moderate length that are available today, no unbiased analysis is
able to take effectively into account nonanalytic correction-to-scaling terms. In order
to treat them properly, one should use biased methods in which the presence of the
leading nonanalytic term with exponent ∆ is imposed (see, e.g., Refs. [10–17]). An
alternative approach to this problem consists in considering models—we call them
improved—that do not couple the leading irrelevant operator that gives rise to the
confluent correction of order t∆. Therefore, such correction does not appear in the
expansion of any thermodynamic quantity near the critical point: for instance, aχ = 0
in Eq. (1.1). In this case, we expect standard analysis techniques to be much more
effective, since the main source of systematic error should have been eliminated.
There are no methods that allow to determine exactly improved models, and one must
therefore use numerical techniques. One may use HT expansions, but in this case the
improved model is determined with a relatively large error [1, 6, 8, 9, 18, 19] so that
the final results do not significantly improve the estimates obtained from standard
analyses using biased approximants. Recently [19–27], it has been realized that Monte
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Carlo (MC) simulations using finite-size scaling techniques are very effective for this
purpose, obtaining accurate determinations of several improved models in the Ising,
XY, and O(3) universality classes.

As shown in Refs. [19,25,27–29], analyses of the HT series for the improved models
lead to a significant improvement in the estimates of the critical exponents and of
other infinite-volume HT quantities. Our working hypothesis is that, with the series
of current length, the systematic errors, i.e., the systematic deviations that are not
taken into account in the analysis, are largely due to the leading confluent correction,
so that improved models give results with smaller and, more importantly, reliable
error estimates. This hypothesis can be checked by comparing the results obtained
using different improved models: if correct, they should agree within error bars. In
the following we shall report results that confirm our hypothesis. Indeed, the esti-
mates obtained from three different improved Hamiltonians are perfectly consistent.
Moreover, they are very stable with respect to the order of the series considered in
the analysis, without showing dangerous trends, but only an apparent reduction of
the error. The results obtained in Ref. [19] using 20th-order series are fully consistent
with the 25th-order analysis that we present.

We consider a simple cubic lattice and scalar models with Hamiltonian

H = −β
∑

<i,j>

φiφj +
∑

i

V (φ2
i ), (1.2)

where β ≡ 1/T , <i, j> indicates nearest-neighbor sites, φi are real variables, and
V (φ2) is a generic potential satisfying appropriate stability constraints. These models
are expected to have either a critical transition belonging to the Ising universality
class or a first-order transition between a disordered and an ordered phase, apart
from special cases that correspond to multicritical points. Using the linked-cluster
expansion technique, we compute, for an arbitrary potential, the HT expansion of the
two-point correlation function to 25th order on a simple cubic lattice. These results
extend those of Ref. [19] that reported the two-point function to 20th order [30]. In
particular, we consider three classes of models depending on an irrelevant parameter,
which is fixed by requiring the absence of the leading scaling correction. The first one
is the φ4 lattice model with potential

V (φ2) = φ2 + λ4(φ
2 − 1)2. (1.3)

MC simulations using finite-size scaling techniques have shown that the model is
improved for [31]

λ4 = λ∗
4 = 1.10(2). (1.4)

A consistent but less precise estimate can be obtained from the HT expansion [19].
The second class of models is the φ6 lattice model with potential

V (φ2) = φ2 + λ4(φ
2 − 1)2 + λ6(φ

2 − 1)3. (1.5)

Fixing λ6 = 1, the φ6 Hamiltonian is improved for [19]

λ4 = λ∗
4 = 1.90(4). (1.6)
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Finally, we consider the spin-1 (or Blume-Capel) Hamiltonian

H = −β
∑

<i,j>

sisj +D
∑

i

s2i , (1.7)

where the variables si take the values 0,±1. An improved spin-1 model is obtained
for [32]

D = D∗ = 0.641(8). (1.8)

The comparison of the results obtained using the above-mentioned improved Hamil-
tonians represents a strong check of the expected reduction of systematic errors in
the HT results, and provides an estimate of the residual errors due to the subleading
confluent corrections to scaling.

We also extend the HT expansion of the zero-momentum n-point correlation
functions χn. In particular, we compute χ4, χ6, and χ8 to 21st, 19th, and 17th
order respectively. The analysis of such series provides information on the small-
magnetization expansion of the Helmholtz free energy in the HT phase. These results
are used to determine approximate representations of the equation of state that are
valid in the critical regime in the whole (t, H) plane. For this purpose, following
Ref. [19], we use a systematic approximation scheme based on polynomial parametric
representations and on a global stationarity condition. This approach allows us to
obtain an accurate determination of the critical equation of state in the whole critical
region up to the coexistence curve.

In Table 1 we anticipate most of the results that we shall obtain in this paper. We
report HT estimates of the critical exponents and of the coefficients parametrizing
the small-magnetization expansion of the Helmholtz free energy: they are denoted by
IHT, where the “I” stresses the fact that we are using improved models. Then, we
report several amplitude ratios (definitions are given in Sec. 5). Those appearing in
the column IHT-PR are obtained from an approximate representation of the equa-
tion of state that uses the HT results as inputs, those labelled by LT are obtained
from the analysis of low-temperature expansions, while those reported under IHT-
PR+LT are obtained combining the IHT-PR and LT results. The comparison with
the corresponding Table XIII of Ref. [19] shows that the estimates obtained from the
25th-order series are essentially identical to those obtained by using the shorter 20th-
order series. However, the longer series allow us to give error bars that are smaller by a
factor of 1.5-2, depending on the observable. The estimates reported in Table 1 are in
substantial agreement with, and substantially more precise than, the best theoretical
and experimental results that have been previously obtained [10, 20–23, 35–50]. For
a comprehensive recent review of theoretical and experimental results, see Ref. [1].
On the experimental side, we mention the planned experiments in microgravity en-
vironment described in Ref. [51], which may substantially improve the experimental
determinations of the critical quantities and make the comparison with the theoretical
computations more stringent.

After completion of this work, the study reported in Ref. [17] appeared, where
analyses of 25th-order series for spin-S models are reported. Results for the critical
exponents are obtained by means of biased analyses, essentially by fixing ∆. Com-
paring Ref. [17] with Refs. [10, 13], where 21st- and 23rd-order series are analyzed, a
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trend appears towards better agreement with improved Hamiltonian results (Ref. [19]
and present paper). The latest results of the authors of Ref. [17] are in full agreement
with our estimates.

The paper is organized as follows.
In Sec. 2 we report the HT expansions. Section 3 reports the results of our analysis

of the HT series for the critical exponents. In Sec. 4 we determine approximate
representations of the critical equation of state. In Sec. 4.1 we give the definitions,
in Sec. 4.2 we give estimates of the zero-momentum four-point coupling and of the
first few coefficients of the small-magnetization expansion of the equation of state, in
Sec. 4.3 we explain the method, and in Sec. 4.4 we give the final results. In Sec. 5 we
present estimates of several universal amplitude ratios. In Sec. 6 we determine the
low-momentum behavior of the two-point function in the HT phase.

2 High-temperature expansion

We considered a simple cubic lattice and computed the HT expansion of several quan-
tities for a generic lattice model defined by the Hamiltonian (1.2), using the vertex-
and edge-renormalized linked-cluster expansion technique, developed in Refs. [18,52]
and described in detail in Ref. [53]. Some technical points that allowed us to ex-
tend the computation of Ref. [53] will be reported in a forthcoming publication. We
computed the 25th-order HT expansion of the two-point function

G(x) = 〈φ(0)φ(x)〉. (2.1)

In the present context we consider its moments

m2j =
∑

x

|x|2j G(x), (2.2)

and therefore, the magnetic susceptibility χ ≡ m0 and of the second-moment corre-
lation length ξ2 = m2/(6χ).

We also calculated the HT expansion of the zero-momentum connected 2j-point
correlation functions χ2j

χ2j =
∑

x2,...,x2j

〈φ(0)φ(x2)...φ(x2j−1)φ(x2j)〉c (2.3)

(χ = χ2). More precisely, we computed χ4 to 21st order, χ6 to 19th order, χ8 to 17th
order. The correlation function χ10 was computed to 15th order in Ref. [19].

It would be pointless to present here the full results for an arbitrary potential:
the resulting expressions are only fit for further computer manipulation. They are
available on request. In Table 2 we give the new coefficients only for the three
improved models we have considered, i.e., for the φ4 model at λ4 = 1.10, for the
φ6 model at λ6 = 1 and λ4 = 1.90, and for the spin-1 model at D = 0.641.
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Table 1: Summary of the results obtained in this paper (unless a reference is ex-
plicitly cited) by our high-temperature calculations (IHT), by using the parametric
representation of the equation of state (IHT-PR), by analyzing the low-temperature
expansion (LT), and by combining the results of the two approaches (IHT-PR+LT).
The estimates of critical exponents marked by an asterisk have been obtained using
scaling and hyperscaling relations.

IHT IHT-PR LT IHT-PR+LT

critical γ 1.2373(2)
exponents ν 0.63012(16)

α 0.110(2), ∗0.1096(5)
η ∗0.03639(15)
β ∗0.32653(10)
δ ∗4.7893(8)
∆ 0.52(3)
ω 0.83(5)

ωNR 2.0208(12) [19, 33]

small-magnetization g+4 23.56(2)
expansion of r6 2.056(5)

the free-energy r8 2.3(1)
in the HT phase r10 −13(4) [19] −10.6(1.8)

universal U0 0.532(3)
amplitude U2 4.76(2)
ratios U4 −9.0(2)

see Sec. 5 R+
c 0.0567(3)

for notations R−

c 0.02242(12)
R+

4 7.81(2)
v3 6.050(13)
R−

4 93.6(6)
v4 16.17(10)
Rχ 1.660(4)
w2 4.75(4) [14]
Uξ 1.956(7)
Q+ 0.01880(8)
R+

ξ 0.2659(4)

Q− 0.00472(5)
Qc 0.3315(10)
g−3 13.19(6)
g−4 76.8(8)
Q+

ξ 1.000200(3)

Q−

ξ 1.032(4) [34]

Uξgap 1.896(10)
Qc

ξ 1.024(4)

Q2 1.195(10)
Pm 1.2498(6)
Pc 0.3933(7)
Rp 1.9665(10)
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Table 2: Coefficients of the HT series for the improved models. Lower-order coeffi-
cients appear in Ref. [19].
n φ4 : λ4 = 1.10 φ6 : λ6 = 1, λ4 = 1.90 spin-1: D = 0.641

χ
21 958465949.119795229380125 55356759.0258594943774739 521863527.549747127784405
22 2581828793.17418316658592 130996257.131383657648562 1367254366.70256684609648
23 6953921835.10625772660286 309956395.981892002096689 3581814299.63029965928082
24 18716342130.2600278822297 732873665.558914443007657 9376338630.49601545283933
25 50369768053.5367726030130 1732674465.68758001711514 24543094928.9205155990856

m2

21 32990320251.5660972216018 1900950559.23375555678011 17908950773.4801706544197
22 94071328367.8146359923071 4762044317.91673448231502 49684326561.5439542757331
23 267461898855.689392585599 11894571003.1970044574018 137433163639.457494472451
24 758423675496.642760823002 29631147101.2512233682029 379139772127.101469600055
25 2145329356955.42924803892 73634162230.2093808561076 1043350926215.22611634874

m4

20 541141652908.631074719231 35399348720.3598637148375 299758906549.791610350073
21 1643345014677.80358819408 94444621918.7858920241050 885976701269.736104292700
22 4961021084766.33884428748 250485298262.046958470064 2603026564263.78069815384
23 14895796670810.3387628037 660748522303.208118944668 7606210964865.32821158574
24 44504475774409.2126174407 1734347627024.93369651634 22115153167519.1984380502
25 132362288688779.709839376 4531641133142.45499870752 64005596692608.8036008995

χ4

19 −141558376231.985023846408 −9210343000.40488445467068 −77210883309.3840433243811
20 −440895445559.088001425635 −25206881115.0765162521666 −234263398532.544236218037
21 −1363771989486.31756523825 −68511054288.5805997438372 −705801443484.646787710146

χ6

18 25922773662329.4681285982 1657400403425.39611029038 13110582140461.8241625980
19 93214547843378.1420243052 5239283130720.37310719268 46080008679021.7095625364

χ8

17 −3021378127745877.943411840 −188904527250502.5683919596 −1360671334948122.792253527

For the standard Ising model, we give below the coefficients of the terms that
extend the expansions presented in Refs. [15, 53] for χ, m2, and χ4:

χ = · · ·+ 18554916271112254v24 + 85923704942057238v25 +O(v26)

m2 = · · ·+ 977496788431483776v24 + 4767378698515169334v25 +O(v26),

χ4 = · · · − 6306916133817628v18 − 34120335459595728v19

−183166058308506108v20 − 976373577976196368v21 +O(v22), (2.4)

where v ≡ tanh β.
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3 The critical exponents

In this section we shall report three different analyses for the critical exponents. In
Sec. 3.1 we shall use integral approximants and derive the estimates reported in Table
1. In Secs. 3.2 and 3.3 we shall use two other methods that have been recently used
in the literature [10, 16, 17] to confirm the integral-approximant results.

3.1 Analysis using integral approximants

In order to estimate γ and ν, we analyze the HT series of the magnetic susceptibility
and of the second-moment correlation length respectively. We follow closely App. B
of Ref. [19], to which the reader is referred for more details.

We use integral approximants (IA’s) of first, second, and third order (see Ref. [2]
for a review). Given an nth-order series f(β) =

∑n
i=0 ciβ

i, its kth-order integral
approximant [mk/mk−1/.../m0/l] IAk is a solution of the inhomogeneous kth-order
linear differential equation

Pk(β)f
(k)(β) + Pk−1(β)f

(k−1)(β) + ...+ P1(β)f
(1)(β) + P0(β)f(β) +R(β) = 0, (3.1)

where the functions Pi(β) and R(β) are polynomials of order mi and l respectively,
which are determined by the known nth-order small-β expansion of f(β). Follow-
ing Fisher and Chen [9], we also consider integral approximants, FCIAk’s, in which
Pk(β) is a polynomial in β2. FCIAk’s allow for the presence of the antiferromagnetic
singularity at βaf

c = −βc [54]. In our analyses we consider diagonal or quasi-diagonal
approximants, since they are expected to give the most accurate results. For each
set of IAk’s we determine the average of the values corresponding to all nondefective
IAk’s. The error bar from each class of IA’s is essentially the spread of the results,
and it is given by the standard deviation of the results obtained from all nondefective
IA’s. In most cases the nondefective IA’s are more than 90%.

All IA’s considered give perfectly consistent results. Moreover, the results turn out
to be very stable with respect to the number of terms of the series, so that there is no
need to perform problematic extrapolations in the number of terms in order to obtain
the final estimates. In Fig. 1 we show the estimates of γ obtained by analyzing the
series of χ for the φ4 model at λ4 = 1.10 by using IA1’s, IA2’s, IA3’s, and FCIA2’s, as
a function of the order n of the series considered in the analysis. Perfect agreement
is also found among the results for the three improved Hamiltonians. This is shown
in Fig. 2, where the results of the IA2 analyses for the three improved Hamiltonians
are reported versus n. In Fig. 2 we also show the results of the IA2 analysis applied
to the series of χ for the standard Ising spin-1/2 model. The corresponding results
disagree with those obtained by using improved Hamiltonians: clearly, there is a large
error that is not taken into account by the spread of the approximants. The results
for the Ising model improve if one biases the analysis by using the very accurate MC
estimate of βc [47]: βc = 0.22165459(10). Indeed, γ drops from 1.245 to γ = 1.2400(5).
However, the error obtained from the spread of the approximants is still incorrect.
Results that are closer to those obtained by using the improved Hamiltonians (and
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13 14 15 16 17 18 19 20 21 22 23 24 25 26

n

1.232

1.236

1.240

1.244

1.248

γ

IA1’s
IA2’s
FCIA2’s
IA3’s

Figure 1: Estimates of γ as obtained by analyzing the HT series of χ for the φ4

model at λ4 = 1.10 versus the order n of the series considered in the analysis. Several
approximants (defined in the text) are considered.

substantially compatible with them) are only obtained by additionally biasing the
series, allowing for O(t∆) confluent corrections, see, e.g., Ref. [10].

For the φ4 lattice model we obtained

βc(λ4 = 1.10) = 0.3750975(5), (3.2)

γe(λ4) = 1.23732(10) + 0.006(λ4 − 1.10), (3.3)

where γe(λ4) is the effective critical exponent obtained in the IA analysis, which has
a small but nonvanishing dependence on λ4 around the favorite value λ4 = 1.10.
(Here and in the following, we report explicitly the dependance on λ4 and equivalent
couplings: should a better estimate of λ∗

4 become available, it can be immediately used
to improve our results.) The number between parentheses is basically the spread of
the approximants at λ4 = 1.10. The λ4-dependence is estimated by determining the
variation of the results when changing λ4 around λ4 = 1.10. The best estimate of γ
should be obtained at λ4 = λ∗

4. Thus, using the MC estimate of λ∗
4, i.e., λ

∗
4 = 1.10(2),

and taking into account its uncertainty, we obtain the estimate γ = 1.23732(10)[12]
(which is also reported in Table 3), where the error in brackets is related to the
uncertainty on λ∗

4. As final error we consider, prudentially, the sum of these two
numbers. The estimate (3.2) is in substantial agreement with the MC estimate of
βc [23] obtained using finite-size scaling techniques, βc(λ4 = 1.10) = 0.3750966(4).

Similarly, for the φ6 lattice model we obtain

βc(λ4 = 1.90, λ6 = 1) = 0.4269791(5), (3.4)
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13 14 15 16 17 18 19 20 21 22 23 24 25 26

n

1.225

1.230

1.235

1.240

1.245

1.250

1.255

1.260

γ

φ4, λ4=1.1

φ6, λ6=1, λ4=1.9
spin-1  D=0.641
spin-1/2

Figure 2: Estimates of γ as obtained by analyzing the HT series of χ for the improved
models and for the spin-1/2 model, versus the order n of the series considered in the
analysis. IA2’s are considered.

Table 3: Critical exponents obtained from the HT analysis. In parentheses we report
the approximant error at λ∗ or D∗, in brackets the uncertainty due to the error on λ∗

or D∗, in braces the uncertainty due to the error on βc.
φ4 φ6 spin-1

γ χ-series 1.23732(10)[12] 1.23726(10)[22] 1.23725(20)[10]
α χ-series (af) 0.110(2) 0.110(2) 0.112(5)
ν ξ2-series 0.6302(2)[1] 0.6301(3)[3] 0.6300(2)[1]
ν ξ2-series (βc-biased) 0.63014(1){6}[9] 0.63009(1){16}[16] 0.63010(1){10}[9]
ην χ, ξ2-series (CPRM) 0.02294(3)[6] 0.02291(2)[10] 0.02294(8)[4]
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γe(λ4, λ6 = 1) = 1.23726(10) + 0.0055(λ4 − 1.90), (3.5)

and, using the MC result λ∗
4 = 1.90(4), the estimate γ = 1.23726(10)[22]; for the

spin-1 model

βc(D = 0.641) = 0.3856717(10), (3.6)

γe(D) = 1.23725(20)− 0.012(D − 0.641) (3.7)

and therefore, using D∗ = 0.641(8), γ = 1.23725(20)[10].
Our final estimate of γ is obtained by combining the results of the three improved

Hamiltonians: as estimate we take the weighted average of the three results, and as
estimate of the uncertainty the smallest of the three errors. According to this rather
subjective but reasonable procedure we obtain

γ = 1.2373(2). (3.8)

A direct estimate of the specific-heat exponent α is obtained from the singular be-
havior of χ at the antiferromagnetic critical point βaf

c = −βc, since [54]

χ = c0 + c1
(
β − βaf

c

)θaf + ... (3.9)

where
θaf = 1− α. (3.10)

FCIAk’s provide rather precise estimates of θaf . The corresponding results for α are
reported in the second line of Table 3. No error in brackets is reported since the
dependence on λ4, D is negligible. As final estimate we give

α = 0.110(2). (3.11)

The exponent ν is obtained from the series of the second-moment correlation length
ξ, since ξ2 ∼ (βc − β)−2ν . Unbiased analyses of the 24th-order series of ξ2/β provide
the results reported in the third line of Table 3. The corresponding estimates of βc

are consistent with those derived from χ, although less precise. For instance, for the
φ4 model at λ4 = 1.10 we found βc = 0.375098(2).

In order to get a more precise estimate of ν, we follow the procedure suggested in
Ref. [2], i.e., we use the estimate of βc obtained from χ to bias the analysis of ξ2. For
this purpose we use IA’s that have a singularity at a fixed value of βc, or, in order
to take into account the antiferromagnetic singularity, a pair of singularities at ±βc;
the two choices give equivalent results. This analysis provides the following effective
exponents for the three classes of models. For λ4 ≈ λ∗

4

νe(λ4) = 0.63014(1){6}+ 0.0045(λ4 − 1.10) (3.12)

for the φ4 model, where the number in braces gives the variation of the estimate when
βc varies within one error bar;

νe(λ4, λ6 = 1) = 0.63009(1){16}+ 0.004(λ4 − 1.90) (3.13)
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for the φ6 model;

νe(D) = 0.63010(1){10} − 0.011(D − 0.641) (3.14)

for the spin-1 model. Then, using the MC estimates of λ∗
4, D

∗, one obtains the
results reported in Table 3, where the error due to the uncertainty on λ∗

4 and D∗

is reported between brackets. They are perfect consistent with the results of the
unbiased analysis, but more precise. Combining the results of Table 3 as we did for
γ, we obtain

ν = 0.63012(16). (3.15)

Using the hyperscaling relation α = 2− 3ν, we derive

α = 0.1096(5), (3.16)

which is fully consistent with, but more precise than, the direct estimate (3.11).
Using the above-reported results for γ and ν and the scaling relation γ = (2−η)ν,

we obtain η = 0.0364(6), where the error is estimated by considering the errors on γ
and ν as independent, which is of course not true. We can obtain an estimate of η with
a smaller, yet reliable, error by applying the so-called critical-point renormalization
method [55] to the series of χ and ξ2. This method provides an estimate for the
combination ην. Proceeding as before, we obtain

[ην]e(λ4) = 0.02294(3) + 0.003(λ4 − 1.10) (3.17)

for the φ4 model,

[ην]e(λ4, λ6 = 1) = 0.02291(2) + 0.0025(λ4 − 1.90) (3.18)

for the φ6 model, and

[ην]e(D) = 0.02294(8)− 0.005(D − 0.641) (3.19)

for the spin-1 model. We then obtain the results reported in Table 3, which lead to
an estimate of η with a considerably smaller error:

η = 0.03639(15). (3.20)

Then, by using the scaling relations we obtain

δ =
5− η

1 + η
= 4.7893(8), (3.21)

β =
ν

2
(1 + η) = 0.32653(10), (3.22)

where the error on β has been estimated by considering the errors of ν and η as
independent.

Finally, we estimate the exponent ∆. For this purpose, we analyze the HT expan-
sion of tγχ that behaves like

tγχ = C+
(
1 + aχt

∆ + ...
)
, (3.23)
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for t ≡ 1 − β/βc → 0. We consider the spin-1/2 model—here improved models are
not useful since aχ ≈ 0—fix the exponent γ to our best estimate, γ = 1.2373, and use
biased IA’s that are singular at βc = 0.22165459(10), which is the most precise MC
estimate of the critical point [47]. We obtain

∆ = 0.52(3), (3.24)

where the error takes into account the uncertainty on βc and γ. Correspondingly, we
obtain ω = ∆/ν = 0.83(5). Consistent results are obtained from the analysis of the
series of t2νξ2, fixing ν and βc.

3.2 The ratio method

In order to check the above-reported results, we consider the ratio method proposed by
Zinn-Justin in Ref. [3] (see also Ref. [2]). Such a method has been recently employed
in Refs. [10, 17] to analyze the 25th-order HT expansions of spin-S models on the
simple cubic and on the body-centered cubic lattice.

According to this method, given a quantity

S =
∑

n

cnβ
n ≈ AS(βc − β)−ζ [1 + aS(βc − β)ǫ + ...] , (3.25)

one considers the sequences

β(n)
c =

(
cn−2cn−3

cncn−1

)1/4

exp

[
sn + sn−2

2sn(sn − sn−2)

]
, (3.26)

ζ (n) = 1 + 2
sn + sn−2

(sn − sn−2)2
, (3.27)

where

sn = −
1

2

[
1

ln(cncn−4/c2n−2)
+

1

ln(cn−1cn−5/c2n−3)

]
. (3.28)

Asymptotically, the two sequences β
(n)
c and ζ (n) approach βc and ζ , with corrections

of O(1/n1+ǫ) and O(1/nǫ) respectively. More precisely, if

cn ≈ β−n
c nζ−1

(
A0 + Aǫn

−ǫ
)

(3.29)

for n → ∞, then

β(n)
c ≈ βc

[
1 +

Aǫ

2A0
ǫ2(ǫ− 1)

1

n1+ǫ

]
(3.30)

ζ (n) ≈ ζ

[
1 +

Aǫ

ζA0

ǫ(ǫ2 − 1)
1

nǫ

]
. (3.31)

Note that, if only analytic corrections are present, i.e., ǫ = 1, the convergence is faster
with corrections of order n−3 and n−2 for βc and ζ :

β(n)
c ≈ βc

[
1−

(
A2

1

A2
0

ζ − 2

ζ − 1
+

7

12
(ζ − 1)

)
1

n3

]
, (3.32)

ζ (n) ≈ ζ

[
1−

(
3
A2

1

A2
0

ζ − 2

ζ − 1
+

3

4
(ζ − 1)

)
1

ζn2

]
. (3.33)
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n

0.37508

0.37509

0.37510

0.37511

0.37512

β
c

(n)

Figure 3: Sequence β
(n)
c for the φ4 model at λ4 = 1.10 using the series for χ. The

dashed lines indicate the IA estimate of βc.

In Figs. 3 and 4 we show, for the φ4 model at λ4 = 1.10 and for the spin-1 model
at D = 0.641 respectively, the sequence β

(n)
c obtained using S = χ. The sequence

clearly approaches the IA estimate. For the φ4 model the agreement is quite good and
indeed β

(n)
c differs from the IA estimate (3.2) by 15×10−7 and 9×10−7 for n = 24, 25

(note that the error on the IA estimate of βc is 5× 10−7). In principle, one could try

to extrapolate the sequence β
(n)
c to get a better estimate of βc. For this purpose, we

have tried to fit β
(n)
c assuming a behavior of the form

β(n)
c = a+ bn−σ, (3.34)

where a, b, and σ are free parameters. If we interpolate β
(n)
c for n = 21, 23, 25 with

Eq. (3.34), we obtain

β(n)
c = 0.3750977(−5) + 3.0(+4)× 10−6

( n

20

)−6.6(−1.5)

, (3.35)

where the “errors” show the variation of the parameters between the interpolation
with n = 21, 23, 25 and n = 19, 21, 23. Analogously, the even sequence n = 20, 22, 24
gives

β(n)
c = 0.3750968(−25) + 4(+2)× 10−6

( n

20

)−6(−2)

. (3.36)

The extrapolated values are in perfect agreement with Eq. (3.2), but it is quite difficult
to interpret the results for σ. Indeed, in an improved model the leading corrections
in the coefficients cn are of order n−∆2 , n−1, with [56] ∆2 ≈ 1. The analytic term
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n

0.38560

0.38562

0.38564

0.38566

0.38568

0.38570

0.38572

β
c

(n)

Figure 4: Sequence β
(n)
c for the spin-1 model at D = 0.641 using the series for χ.

The dashed lines indicate the IA estimate of βc.

gives a contribution of order n−3, while the nonanalytic one gives a correction of order
n−∆2−1. However, its amplitude is of order ∆2 − 1, and thus, since ∆2 ≈ 1, it could
be very small. The next correction terms are of order n−∆3 , n−1−∆, and give rise
to corrections of order n−1−∆3 , n−2−∆. Inclusion of corrections with 2 < σ . 5/2
does not improve the fit [57]. Clearly, we are not yet sufficiently asymptotic to be
able to extrapolate using the leading asymptotic behavior. At the values of n we are
considering, several corrections are still important and apparently conspire to give a
uniformly small correction.

The same behavior is observed in the φ6 model, where both odd and even points
extrapolate to 0.4269787, with effective exponent σ ≈ 12, 8. The agreement with the
IA estimate (3.4) is quite good. We finally analyze the spin-1 results. Even points
show again a very fast convergence with σ ≈ 9 and extrapolate to 0.3856662. Odd
points instead are well fitted by assuming corrections of order n−2 or n−5/2. Fixing
σ = −2, we obtain 0.3856730, while for σ = −5/2 we have 0.3856719. Again, the IA
result (3.6) is very well confirmed.

For comparison, in Fig. 5 we plot the sequence β
(n)
c for the spin-1/2 model versus

1/n3/2 which should be approximately the leading correction. The higher-n results
have apparently the predicted O(n−3/2) behavior, and indeed an extrapolation with
Eq. (3.34) and σ = 3/2 gives results that are close to the MC estimate of βc. The
odd (resp. even) points extrapolate to 0.22165686 (resp. 0.22165717): they are close
to the MC estimate [47] 0.22165459(10). However, it is hard to go beyond a relative
precision of 10−5.

In Fig. 6 we show the sequence γ(n) as obtained from the series of χ for the three
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0.000 0.005 0.010 0.015 0.020 0.025

1/n
3/2

0.22164

0.22166

0.22168

0.22170

0.22172

β
c

(n)

Figure 5: Sequence β
(n)
c for the spin-1/2 model using the series for χ. The dashed

lines indicate the MC estimate of βc, while the dotted line corresponds to a n−3/2

extrapolation of the four points with n = 22, 23, 24, 25.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

1/n

1.234

1.236

1.238

1.240

1.242

1.244

1.246

1.248

1.250

1.252

γ(n)

φ4,  λ4=1.1

φ6,  λ6=1, λ4=1.9
spin 1, D=0.641
spin 1/2

Figure 6: Sequences γ(n) for the φ4 model at λ4 = 1.10, the φ6 model at λ4 = 1.90,
the spin-1 model at D = 0.641, and the standard Ising model. The dashed lines
indicate the IA estimate of γ.
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0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

1/n

1.255

1.260

1.265

1.270

1.275

1.280

1.285

[2ν](n)

φ4,  λ4=1.1

φ6,  λ6=1, λ4=1.9
spin 1, D=0.641
spin 1/2

Figure 7: Sequences [2ν](n) for the φ4 model at λ4 = 1.10, the φ6 model at λ4 = 1.90,
the spin-1 model at D = 0.641, and the standard Ising model. The dashed lines
indicate the IA estimate of 2ν.

improved models and for the standard Ising model. The improved results clearly
approach our best estimate γ = 1.2373(2), the φ4 and φ6 models from above and the
spin-1 model from below. Note that the results are extremely flat and no extrapolation
is needed. We also report the sequence γ(n) for the Ising model. If we extrapolate
the results assuming a behavior of the form a + bn−∆, with ∆ = 0.52, we obtain
γ = 1.23857, 1.23832, 1.23801 using pairs n = (21, 23), (22, 24), and (23, 25). Clearly,
the estimates converge towards the IA estimate γ = 1.2373(2).

In Fig. 7 we show the sequence [2ν](n) obtained from the series of ξ2. Again, the
improved models show a very good convergence to the IA estimate, in spite of the
fact that the analysis is unbiased—the value of βc is not fixed. The Ising results are
sensibly higher and steadily decreasing, reaching ν ≈ 0.638 for n = 25. Results that
are closer to the IA estimate are obtained by an extrapolation. Assuming a behavior
of the form a+ bn−∆, we obtain ν = 0.6290 and 0.6284 from even and odd sequences
respectively. Again, the agreement is satisfactory.

In conclusion, this analysis based on the variant of the ratio method proposed by
Zinn-Justin [3] supports the IA estimate obtained in Sec. 3.1.

3.3 Matching the coefficients with their asymptotic form

In the preceding section we have determined the critical exponents and βc by gener-
ating sequences that converge to the asymptotic value for n → ∞. In this Section,
following Ref. [16], we wish to perform a more straightforward analysis, both con-
ceptually and practically. The idea is to generate sequences of estimates by fitting
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the expansion coefficients with their asymptotic form. By adding a sufficiently large
number of terms we can make the convergence as fast as possible, although of course
the procedure becomes unstable if the number of terms included is too large com-
pared to the number of available terms. In practice, one should include those terms
that give rise to the maximal stability of the results. In some sense, the variant ratio
method of the previous section corresponds to considering the leading singular be-
havior and the first analytic correction—and also the leading nonanalytic term if we
further extrapolate the sequence.

On the cubic lattice, the large-order behavior is dictated by the singularities at
±βc. Indeed, given an observable S with expansion S =

∑
n cnβ

n, for n → ∞ the
expansion coefficients behave like

βn
c cn = nζ−1

(
A0 +

A1

n∆
+

A2

n
+

A3

n1+∆
+

A4

n2
+ ...

)
(3.37)

+(−1)nn−(θaf+1)

(
B0 +

B1

n
+

B2

n2
+

B∆af

n∆af
+ ...

)
.

Here, we have neglected all subleading exponents except the first one ∆, and in
particular, the first subdominant ∆2. However, since ∆2 ≈ 1 [56], for all practical
purposes a term n−∆2 cannot be distinguished from a purely analytic correction.
Also, we do not write terms of order n−k∆ since they cannot be distinguished from
the analytic terms and corrections of order n−m−∆. Note also the presence of the
parity-dependent corrections with exponent θaf and the subleading corrections with
exponent ∆af . For the susceptibility χ, it is known [54] that θaf = 1−α. The argument
can be generalized to all moments m2k and thus in all cases we predict θaf = 1 − α.
We have tested this prediction for χ, cf. Sec. 3.1, m2, and m4. By analyzing the
expansion of m2 with biased IAk’s that have a pair of singularities in ±βc, we obtain
θaf = 0.884(12), while from the expansion of m4 we obtain θaf = 0.90(9). These
results are clearly compatible with the prediction θaf = 1 − α = 0.8904(5). For the
exponent ∆af nothing is known. We have analyzed the expansion using ∆af = 1/2
and ∆af = 1. The results appear to be quite insensitive on either choice. For this
reason, in the following we only report the results corresponding to purely analytic
corrections, i.e., we set B∆af

= 0.
Note that this method allows to determine the nonuniversal amplitudes A0, A∆,

. . ., and consequently the amplitudes ai appearing in the expansion of S for β → βc.
If

S = AS(βc − β)−ζ
[
1 + aS (βc − β)∆

]
(3.38)

then

AS = Γ(ζ)A0, (3.39)

aS =
Γ(ζ −∆)A1

Γ(ζ)A0
. (3.40)

In the following, we shall perform two different analyses: (essentially) unbiased anal-
yses in order to determine the exponents ζ and βc and biased analyses in which ζ
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and βc are fixed. In all cases we fix the value of ∆, ∆ = 0.52, and the exponent of
the antiferromagnetic singularity. In the unbiased analyses, in order to have a linear
problem, we consider ln cn that behaves

ln cn = −ln(βc) n+ (ζ − 1)lnn + b0 +
b1
n∆

+
b2
n

+
b3

n1+∆
+

b4
n2

+ ... (3.41)

+(−1)nn−(ζ+θaf)

(
d0 +

d1
n∆

+
d2
n

+
d3

n1+∆
+

d4
n2

...

)
.

As before, we have neglected terms that have exponents similar to those already
present: for instance, terms O(n−k∆−m) or O(n−k∆2−h∆−m). In the expansion of the
antiferromagnetic part we have assumed ∆af = ∆, or ∆af = 1. Note that if only
analytic terms are present in Eq. (3.37), i.e., Baf = 0, then d1 is proportional to A1

and therefore it vanishes in improved models.
We first analyze improved models and we verify that A1 ≈ 0. For this purpose,

we consider the susceptibility χ and, for each improved Hamiltonian, we generate two
sequences of amplitudes in the following way:

(a) We choose two integers h, k and consider Eq. (3.41) keeping only b0, . . ., bh−1

in the ferromagnetic part and d0, . . ., dk−1 in the antiferromagnetic one. Then,

we generate sequences β
(n)
c , γ(n), b

(n)
0 , . . ., b

(n)
h−1, d

(n)
0 , . . ., d

(n)
k−1, by solving the

(h + k + 2) equations ln cn−m = Rn−m, m = 0, . . . , h + k + 1, where Rn is the
right-hand side of Eq. (3.41). We use ∆ = 0.52, γ + θaf = 2.1277.

(b) We choose two integers h, k and consider Eq. (3.37) keeping only A0, . . ., Ah−1

in the ferromagnetic part and B0, . . ., Bk−1 in the antiferromagnetic one. We use
∆ = 0.52, γ = 1.2373, θaf = 0.8904, the IA estimate of βc, and Baf = 0. Then,
we generate sequences A

(n)
0 , . . ., A

(n)
h−1, B

(n)
0 , . . ., B

(n)
k−1, by solving the (h + k)

equations cn−m = Rn−m, m = 0, . . . , h+ k − 1, where Rn is the right-hand side
of Eq. (3.37).

In both cases we vary h and k, trying to find the values that give the best stability of
the exponents or of the leading amplitudes. In the unbiased analysis (a), the preferred
choice is (h, k) = (4, 4), while for analysis (b) we use (h, k) = (3, 2). For these choices

of the parameters, in Fig. 8 we report the corresponding sequence of a
(n)
χ ≡ a

(n)
1 ,

obtained using Eq. (3.40). In the unbiased analysis (a), a
(n)
χ clearly converges to zero

for the improved Hamiltonians φ4 and φ6, as expected. For the spin-1 model, it is not
that clear, and presumably more orders are need to observe convincingly aχ = 0. In

the case of the biased analysis, a
(n)
χ is very stable and small already for n & 15. For

all Hamiltonians we observe |aχ| . 10−3.
As a second check of consistency we have verified that our estimates of aχ are

compatible with the quoted error bars on λ∗
4 and D∗. For this purpose, using the

analysis of type (b) reported above, we have computed aχ for λ∗
4 ±∆λ4, where ∆λ4

is the quoted error bar—for the spin-1 model we are referring to D∗ ± ∆D. In all
cases, we find |aχ(λ

∗
4 ± ∆λ4)| > |aχ(λ

∗
4)| and that aχ(λ

∗
4 + ∆λ4) and aχ(λ

∗
4 − ∆λ4)

have opposite sign. This confirms the correctness of our estimates of λ∗
4 and D∗. Of
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Figure 8: Amplitude aχ of the leading scaling correction as obtained from several dif-
ferent analyses of χ for the standard spin-1/2 Ising model and for the three improved
models. Details are explained in the text.

course, since we use βc and γ obtained in the IA analysis, the above results represent
only a check of consistency. Indeed: (i) we determine βc and γ by performing a IA
analysis whose results should be reliable only if the models are improved (in some
sense we assume weakly here aχ ≈ 0); (ii) using such values of βc and γ, we estimate
aχ and find aχ ≈ 0.

Once we have verified that A1 is very small and compatible with zero within the
precision of the analysis, we have performed several analyses fixing A1 = 0 and b1 = 0.
At the same time, we have set d1 = 0, which corresponds to assuming ∆af = 1. We
have determined the exponents by performing the analysis (a) reported above. In the
case of the φ4 model for λ4 = 1.10, this analysis gives γ ≈ 1.2374. Similarly, we obtain
γ ≈ 1.2375 for the φ6 model at λ4 = 1.90 and for the spin-1 model at D = 0.641. In
Fig. 9 we show the sequence γ(n) for (h, k) = (5, 5) (since two coefficients vanish, we are
considering four amplitudes in the ferromagnetic and antiferromagnetic expansion).
We observe a very good agreement with the IA estimate γ = 1.2373(2). It is difficult
to estimate the uncertainty, since the results do not show a sufficiently robust stability
with respect to the number (h, k) of coefficients used in the analysis.

Finally, we report the estimates of the amplitudes obtained in the analysis of type
(b) for the magnetic susceptibility:

φ4 : A
(χ)
0 ≈ 0.5246, A

(χ)
2 ≈ 0.13, B

(χ)
0 ≈ −0.0351;

φ6 : A
(χ)
0 ≈ 0.4601, A

(χ)
2 ≈ 0.11, B

(χ)
0 ≈ −0.0311;
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Figure 9: Exponent γ as obtained from the analysis (a) of χ for the three improved
models. Details are explained in the text.

spin-1 : A
(χ)
0 ≈ 0.5126, A

(χ)
2 ≈ 0.12, B

(χ)
0 ≈ −0.0359.

Moreover, |A
(χ)
3 | . 10−2 for the φ4 and φ6 models, while A

(χ)
3 ≈ −0.02 for the spin-1

model. Errors should be ±1 on the last reported digit and include the uncertainty
on the n → ∞ extrapolation of the sequences and the variation of the estimates for
h and k in the range h = 3− 5 and k = 2− 4. They do not take into account instead
the variation of the estimates with γ and βc. Note that the estimate of A2 is purely
phenomenological and in practice it should correspond to the sum of the amplitude
of n−1 and of n−∆2 (note that in improved models the amplitude of n−2∆ vanishes).

We have performed similar analyses for the spin-1/2 Ising model, in order to
compute the nonuniversal amplitudes. We have performed: (a) an analysis of type
(a) using (h, k) = (4, 4); (b) an analysis of type (a) in which we have fixed βc to its
MC value using (h, k) = (4, 3); (c) an analysis of type (b) using (h, k) = (3, 2). The

results for a
(n)
χ are reported in Fig. 8. These analyses give perfectly consistent results

and allow us to determine the amplitudes:

A
(χ)
0 = 1.233− 10(γ − 1.2373)− 0.013(∆− 0.52), (3.42)

A
(χ)
1 = −0.13− 0.7(∆− 0.52) + 50(γ − 1.2373), (3.43)

B
(χ)
0 = −0.073, (3.44)

where we have explicitly written the dependence on the input parameters (when it
turns out to be relevant). We have repeated the same analysis for the second moment
m2. We obtain

A
(m2)
0 = 1.301− 10(γ + 2ν − 2.49754)− 0.07(∆− 0.52), (3.45)
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A
(m2)
1 = −0.73− 4(∆− 0.52) + 55(γ + 2ν − 2.49754), (3.46)

B
(m2)
0 = 0.06. (3.47)

Using the above results and Eq. (3.40), one can determine the amplitudes aχ and aξ,
associated with the O(t∆) of the scaling corrections in the Wegner expansion of χ and
ξ respectively, and evaluate their universal ratio. We obtain aξ/aχ = 0.9(1), where
the error takes also into account the uncertainty on the input parameters of the biased
analysis. For comparison we mention the recent HT result aξ/aχ = 0.76(6) [17], and
the field theoretical estimate aξ/aχ = 0.68(2) [35].

4 The critical equation of state

4.1 Definitions

The equation of state relates the magnetization M , the magnetic field H , and the
reduced temperature t ≡ (T −Tc)/Tc. In the neighborhood of the critical point t = 0,
H = 0, it can be written in the scaling form

H = B−δ
c M δf(x), (4.1)

x ≡ t(M/B)−1/β , (4.2)

where Bc and B are the amplitudes of the magnetization on the critical isotherm and
on the coexistence curve,

M = BcH
1/δ t = 0, (4.3)

M = B(−t)β H = 0, t < 0. (4.4)

Using these normalizations the coexistence curve corresponds to x = −1, and the
universal function f(x) satisfies f(−1) = 0, f(0) = 1. Griffiths’ analyticity implies
that f(x) is regular everywhere for x > −1. It has a regular expansion in powers of
x,

f(x) = 1 +
∞∑

n=1

f 0
nx

n, (4.5)

and a large-x expansion of the form

f(x) = xγ

∞∑

n=0

f∞
n x−2nβ . (4.6)

At the coexistence curve, i.e., for x → −1, f(x) has at most an essential singularity
[58]. It can be asymptotically expanded as

f(x) ≈
∞∑

n=1

f coex
n (1 + x)n. (4.7)
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It is useful to rewrite the equation of state in terms of a variable proportional to
Mt−β , although in this case we must distinguish between t > 0 and t < 0. For t > 0
we define

H =

(
C+

C+
4

)1/2

tβδF (z),

z ≡

[
−

C+
4

(C+)3

]1/2
Mt−β , (4.8)

while for t < 0 we set

H =
B

C−
(−t)βδΦ(u),

u ≡
M

B
(−t)−β. (4.9)

The constants C± and C+
4 are the amplitudes appearing in the critical behavior of

the zero-momentum connected n-point correlation functions χn:

χn = C±
n |t|

−γ−(n−2)βδ. (4.10)

The susceptibility χ corresponds to χ2 and we simply write C± = C±
2 .

With the chosen normalizations [41, 46, 49]

F (z) = z +
1

6
z3 +

∑

j=3

1

(2j − 1)!
r2j z

2j−1, (4.11)

Φ(u) = (u− 1) +
∞∑

j=3

1

(j − 1)!
vj (u− 1)j−1. (4.12)

The functions F (z) and Φ(u) are related to f(x). Indeed,

z−δF (z) = F∞
0 f(x), z = z0x

−β , (4.13)

and

u−δΦ(u) =
C−Bδ−1

Bδ
c

f(x), u = (−x)−β. (4.14)

The constant F∞
0 is defined by the large-z behavior of F (z),

F (z) = zδ
∑

k=0

F∞
k z−k/β , (4.15)

while

z0 =

[
−

C+
4

(C+)3

]1/2
B. (4.16)

To compare with experimental data, it is useful to determine the magnetization as a
function of tH−1/βδ. Therefore, we define

E(y) ≡ B−1
c MH−1/δ = f(x)−1/δ, (4.17)

y ≡ (B/Bc)
1/βtH−1/(βδ) = xf(x)−1/(βδ). (4.18)
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Finally, we shall also determine the scaling behavior of the susceptibility, by defining

D(y) ≡ B−1
c H1−1/δχ =

f(x)1−1/δ

δf(x)− 1
β
xf ′(x)

. (4.19)

4.2 Small-magnetization behavior

In this section we determine the first few coefficients r2j appearing in the expansion
of the scaling function F (z), cf. Eq. (4.8). We shall also compute the four-point
renormalized coupling constant g4, which, although not related to the equation of
state, is relevant for the field-theoretical approach and will be used to determine
amplitude ratios involving the second-moment correlation length.

In order to estimate the critical limit of g4 and of r2j we first determine their HT
expansions using the corresponding results for χ2j and m2

g4 = −
χ4

χ2ξ3
, (4.20)

r6 = 10−
χ6χ2

χ2
4

, (4.21)

r8 = 280− 56
χ6χ2

χ2
4

+
χ8χ

2
2

χ3
4

. (4.22)

The corresponding series [59] have been analyzed following closely the procedure
presented in App. B.3 of Ref. [25]. We use biased IA1’s with a singularity at βc or a
pair of singularities at±βc, where βc is obtained from the analysis of the susceptibility.
Around βc, IA1’s behave like [60]

IA1 ≈ f(β) (1− β/βc)
ζ + g(β), (4.23)

where f(β) and g(β) are regular at βc, provided ζ is not a negative integer. In
particular

ζ =
P0(βc)

P ′
1(βc)

, g(βc) = −
R(βc)

P0(βc)
(4.24)

(see Eq. (3.1) for the definition of the above quantities). In the case we are considering,
ζ is positive and, therefore, g(βc) provides the desired estimate.

In Table 4 (first line) we report the estimates of g4 obtained for the three improved
Hamiltonians. The error in parentheses is related to the spread of the approximants
and the second one in brackets to the uncertainty on λ∗

4, D
∗. The error induced by

the uncertainty on βc is negligible. The results are perfectly consistent. Our final
estimate is

g4 = 23.56(2). (4.25)

The result for the exponent ζ in Eq. (4.23) is ζ = 1.3(3), which is consistent with
our expectation for improved models, i.e., ζ = ∆2 ≈ 2∆ and ∆ ≈ 0.5. For com-
parison, the same analysis applied to the standard Ising model gives g4 = 23.5(5)
and ζ = 0.6(3), in agreement with the fact that in this case ζ = ∆. Notice that
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Table 4: Results for g4, r6 and r8.
φ4 φ6 spin-1 final estimates

g4 23.559(8)[11] 23.554(8)[20] 23.560(20)[5] 23.56(2)
r6 2.057(4)[1] 2.056(4)[2] 2.052(8)[2] 2.056(5)
r8 2.29(9)[3] 2.31(5)[5] 2.37(7)[3] 2.3(1)

the small difference with the estimate of g4 reported in Ref. [19] is essentially due to
the different analysis employed here, which is better justified due to the nonanalytic
behavior at βc predicted by renormalization group [61]. With respect to standard
Padé approximants, biased IA1’s require more terms of the series to give reasonable
results, but they are less subject to systematic errors since they allow for confluent
nonanalytic corrections at βc. Biased IA1’s give [1] g4 = 23.54(4) when applied to the
17th-order series of Ref. [19].

Results for r6, r8 are obtained using the same method and are reported in Table 4.
We finally recall that a rough estimate of r10 was obtained in Ref. [19] from the
analysis of its 15th-order series, obtaining r10 = −13(4). A review of the available
results for these quantities can be found in Ref. [1].

4.3 Parametric representations of the equation of state

In this section we shall determine the equation of state using parametric representa-
tions, improving the results of Refs. [19, 41]. This method has also been applied in
two dimensions [62], and to the three-dimensional XY [25, 29] and Heisenberg [27]
universality classes.

In order to obtain approximate expressions for the equation of state, we parametrize
the thermodynamic variables in terms of two parameters R and θ, implementing all
expected scaling and analytic properties. Explicitly, we write [63–65]

M = m0R
βθ,

t = R(1− θ2),

H = h0R
βδh(θ), (4.26)

where h0 and m0 are normalization constants. The function h(θ) is odd and normal-
ized so that h(θ) = θ+O(θ3). The smallest positive zero of h(θ), which should satisfy
θ0 > 1, corresponds to the coexistence curve, i.e., to T < Tc and H → 0. We mention
that alternative versions of the parametric representations have been considered in
Ref. [66].

It is easy to express the scaling functions introduced in Sec. 4.1 in terms of θ.
The scaling function f(x) is obtained from

x =
1− θ2

θ20 − 1

(
θ0
θ

)1/β

,
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f(x) = θ−δh(θ)

h(1)
, (4.27)

while F (z) is obtained by

z = ρθ
(
1− θ2

)−β
,

F (z(θ)) = ρ
(
1− θ2

)−βδ
h(θ), (4.28)

where ρ can be related to m0, h0, C
+ and C+

4 using Eqs. (4.8) and (4.26).
It is important to note that Eq. (4.26) and the normalization condition h(θ) ≈ θ

for θ → 0 do not completely fix the function h(θ). Indeed, one can rewrite the relation
between x and θ in the form

xγ = h(1) f∞
0 (1− θ2)γθ1−δ. (4.29)

Thus, given f(x), the value of h(1) can be arbitrarily chosen to completely fix h(θ).
In the expression (4.28) we can fix this arbitrariness by choosing arbitrarily the pa-
rameter ρ [1, 19, 29, 41].

As suggested by arguments based on the ǫ-expansion [19,41], we approximate h(θ)
with polynomials, i.e., we set

h(θ) = θ +

k∑

n=1

h2n+1θ
2n+1. (4.30)

This choice is further supported by the effectiveness of its simplest version with k =
1, which is the so-called linear model. If we require the approximate parametric
representation to give the correct (k − 1) universal ratios r6, r8, . . ., r2k+2, we obtain

h2n+1 =
n∑

m=0

cnm6
m(h3 + γ)m

r2m+2

(2m+ 1)!
, (4.31)

where

cnm =
1

(n−m)!

n−m∏

k=1

(2βm− γ + k − 1), (4.32)

and we have set r2 = r4 = 1. Moreover, by requiring that F (z) = z + 1
6
z3 + ..., we

obtain the relation
ρ2 = 6(h3 + γ). (4.33)

In the exact parametric representation, the coefficient h3 can be chosen arbitrarily. Of
course, this is no longer true when we use our truncated function h(θ), and the related

approximate function f
(k)
approx(x, h3) depends on h3. We must thus fix a particular value

for this parameter. Here we use a variational approach, requiring the approximate
function f

(k)
approx(x, h3) to have the smallest possible dependence on h3. Thus, we set

h3 = h3,k, where h3,k is a solution of the global stationarity condition

∂f
(k)
approx(x, h3)

∂h3

∣∣∣∣∣
h3=h3,k

= 0 (4.34)

26



Table 5: Polynomial approximations of h(θ) using the global stationarity condition
for various values of the parameter k. The reported expressions are obtained by using
the central values of the input parameters. The last column shows the corrections to
the simple linear model hlin(θ, θ0) ≡ θ(1− θ2/θ20).
k h(θ)/θ θ20 h(θ)/hlin(θ, θ0)

1 1− 0.734732θ2 1.36104 1
2 1− 0.731630θ2 + 0.009090θ4 1.39085 1− 0.0126429θ2

3 1− 0.736743θ2 + 0.008904θ4 − 0.000472θ6 1.37861 1− 0.0113775θ2 + 0.0006511θ4

for all x. Equivalently one may require that, for any universal ratio R that can be
obtained from the equation of state, its approximate expression R

(k)
approx obtained by

using the parametric representation satisfies

dR
(k)
approx(h3)

dh3

∣∣∣∣∣
h3=h3,k

= 0. (4.35)

The existence of such a value of h3 is a nontrivial mathematical fact. The stationary
value of h3 is the solution of the algebraic equation [19]

[
2(2β − 1)(h3 + γ)

∂

∂h3
− 2γ + 2k

]
h2k+1 = 0. (4.36)

For k = 1, the so-called linear model, Eq. (4.36) gives

h3 =
γ(1− 2β)

γ − 2β
, (4.37)

which is the optimal value of h3 considered in Ref. [64]. Thus, the optimal (sometimes
called restricted) linear model represents the first approximation of our scheme.

4.4 Results

Following Ref. [19], we apply the variational method by using the HT results for
γ = 1.2373(2), ν = 0.63012(16), r6 = 2.056(5), r8 = 2.3(1), and r10 = −13(4) as input
parameters of the approximation scheme. This provides different approximations with
k = 1, 2, 3, 4. In Table 5 we report the polynomials h(θ) for k = 1, 2, 3, that are
obtained in the variational approach for the central values of the input parameters.
The fast decrease of the coefficients of the higher-order terms in h(θ) gives further
support to the effectiveness of the approximation scheme. We do not report h(θ)
for k = 4, since it requires r10 and its available estimate is rather imprecise. Using
the results reported in Table 5 and Eqs. (4.27), (4.28), and (4.14), one may easily
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Figure 10: The scaling function f(x). We also plot the asymptotic behavior of f(x)
at the coexistence curve (dotted line), i.e., f(x) ≈ f coex

0 (1 + x) for x → −1.

compute the corresponding approximations for the scaling functions f(x), F (z), and
Φ(u). The results show a good convergence with increasing k. Actually, the results
for k = 2, 3, 4 are already consistent within the errors induced by the uncertainty on
the input parameters, indicating that the systematic error due to the truncation is at
most of the same order of the error induced by the input data. In Figs. 10, 11, and
12 we show respectively the scaling functions as obtained from h(θ) for k = 1, 2, 3.

In Table 6 we report results concerning the behavior of the scaling function f(x),
F (z) and Φ(u) for H = 0 and on the critical isotherm, cf. Eqs. (4.5), (4.6), (4.7),
(4.11), (4.12), (4.15). Note that the results for k = 1, 2, 3 oscillate and that the
uncertainty due to the input parameters on the k = 3 results is approximately the
same as the difference between the estimates with k = 2 and k = 3. Therefore,
it is reasonable to consider the k = 3 truncation as the best approximation of the
method using the available input parameters and to use the corresponding errors as
final uncertainties.

In Fig. 13 we give the behavior of the magnetization as a function of t and
H , reporting the scaling function E(y). The behavior of the susceptibility can be
obtained from the scaling function D(y). The function D(y) has a maximum for
ymax = 1.980(4), corresponding to the so-called crossover or pseudocritical line (see
Sec. 5). In order to simplify possible comparisons, it may be convenient to consider
the rescaled function

C(yR) =
D(y)

D(ymax)
,
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Figure 11: The scaling function F (z). We also show the plot of the small-z expansion
(dotted line), i.e., F (z) ≈ z + 1

6
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5 for z → 0.
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Figure 12: The scaling function Φ(u). We plot also the asymptotic behavior of Φ(u)
at the coexistence curve (dotted line), i.e., Φ(u) ≈ (u− 1)+ 1

2
v3(u− 1)2+ 1

6
v4(u− 1)3

for u → 1.
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Table 6: Expansion coefficients for the scaling equation of state obtained by the
variational approach. See text for definitions. Numbers marked with an asterisk are
inputs, not predictions.

k = 1 k = 2 k = 3 k = 4

θ20 1.3610(8) 1.390(2) 1.38(2) 1.34(6)
ρ 1.7365(8) 1.741(1) 1.733(10) 1.69(6)
r6 1.938(3) ∗2.056(5) ∗2.056(5) ∗2.056(5)
r8 2.50(2) 2.39(3) ∗2.3(1) ∗2.3(1)
r10 −12.59(2) −12.08(5) −10.6(1.8) ∗−13(4)
F∞

0 0.03277(8) 0.03388(11) 0.03382(15) 0.0338(2)
z0 2.8254(7) 2.792(2) 2.794(3) 2.798(8)
f0
1 1.05041(7) 1.0532(2) 1.0527(7) 1.051(2)
f0
2 0.04298(6) 0.04494(13) 0.0446(4) 0.0439(13)
f0
3 −0.02474(4) −0.02595(8) −0.0254(7) −0.023(4)

f∞

0 0.5960(4) 0.6031(7) 0.6024(15) 0.601(4)
f coex
1 0.93912(9) 0.9347(3) 0.9357(11) 0.938(4)
v3 6.013(4) 6.062(4) 6.050(13) 6.02(5)
v4 16.32(3) 16.10(4) 16.17(10) 16.4(3)

yR =
y

ymax
, (4.38)

which is such that the maximum corresponds to yR = 1 and satisfies C(1) = 1. In
Fig. 14 we plot the scaling function C(yR), as obtained from the k = 1, 2, 3 approxi-
mate parametric representations.

In experimental work on magnetic systems, it is customary to report [67,68] h/m ≡
H|t|−γ/M versus m2 = M2|t|−2β. Such a function can be easily obtained from our
approximations for f(x), since m2 = B2|x|−2β and

h

m
= k|x|−γf(x), (4.39)

where the constant k can be written as

k = B−δ
c Bγ/β =

Rχ

C+
, (4.40)

where Rχ ≡ C+Bδ−1/Bδ
c is a universal constant, see Sec. 5. A plot of m2/B2 versus

C+h/m for the two cases t > 0 and t < 0 is reported in Fig. 15.
It is interesting to observe that in a neighborhood of the critical isotherm the

equation of state can be written in the Arrott-Noakes form [69]

(
H

M

)1/γ

= at + bM1/β , (4.41)
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Figure 13: The scaling function E(y). We also report its asymptotic behaviors
(dotted lines): E(y) ≈ Rχy

−γ for y → +∞, and E(y) ≈ −yβ for y → −∞.
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R ≈ 1.97y−γ

R for yR → +∞, and C(yR) ≈
β(f coex

1 )−1y−γ
maxD(ymax)

−1(−yR)
−γ ≈ 0.413(−yR)

−γ for yR → −∞.

31



0 1 2 3 4 5 6 7 8 9 10

 C
+
h/m

0

1

2

3

 m
2
/B

2

 k=1  t>0
 k=1  t<0
 k=2  t>0
 k=2  t<0
 k=3  t>0
 k=3  t<0

Figure 15: Plot of m2/B2 versus C+h/m.

where a and b are numerical constants. Indeed, using the results of Table 6 for k = 3,
we obtain
(
H

M

)1/γ

k−1/γ =

(
M

B

)1/β

+ 0.851 t− 0.050 t2
(
M

B

)−1/β

− 0.008 t3
(
M

B

)−2β

· · ·

(4.42)
Thus, corrections to Eq. (4.41) are small and thus this expression has a quite wide
range of validity.

5 Universal amplitude ratios

From the critical equation of state one may derive estimates of several universal am-
plitude ratios. They are expressed in terms of the amplitudes of the magnetization, cf.
Eqs. (4.3) and (4.4), of the magnetic susceptibility and n-point correlation functions,
cf. Eq. (4.10), of the specific heat

CH = A±|t|−α, (5.1)

of the second-moment correlation length

ξ = f±|t|−ν , (5.2)

and of the true (on-shell) correlation length, describing the large distance behavior
of the two-point function,

ξgap = f±
gap|t|

−ν . (5.3)
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U0 ≡ A+/A− U2 ≡ C+/C−

U4 ≡ C+
4 /C

−
4 R+

4 ≡ −C+
4 B

2/(C+)3

R+
c ≡ αA+C+/B2 R−

c ≡ αA−C−/B2

R−
4 ≡ C−

4 B
2/(C−)3 Rχ ≡ C+Bδ−1/(Bc)

δ

v3 ≡ −C−
3 B/(C−)2 v4 ≡ −C−

4 B
2/(C−)3 + 3v23

g+4 ≡ −C+
4 /[(C

+)2(f+)3] w2 ≡ C−/[B2(f−)d]

Uξ ≡ f+/f− Uξgap ≡ f+
gap/f

−
gap

Q+ ≡ αA+(f+)3 Q− ≡ αA−(f−)d

R+
ξ ≡ (Q+)1/3 Q+

ξ ≡ f+
gap/f

+

Q−
ξ ≡ f−

gap/f
− Qc

ξ ≡ f c
gap/f

c

Qc ≡ B2(f+)3/C+ Q2 ≡ (f c/f+)2−ηC+/Cc

Pm ≡ T β
p B/Bc Pc ≡ −T 2βδ

p C+/C+
4

Rp ≡ C+/Cp

Table 7: Amplitude-ratio definitions.

One can also define amplitudes along the critical isotherm, e.g.

χ = Cc|H|−γ/βδ, (5.4)

ξ = f c|H|−ν/βδ, (5.5)

ξgap = f c
gap|H|−ν/βδ. (5.6)

We also consider the crossover (or pseudocritical) line tmax(H), that is defined as
the reduced temperature for which the magnetic susceptibility has a maximum at H
fixed. Renormalization group predicts

tmax(H) = TpH
1/(γ+β), (5.7)

χ(tmax, H) = Cpt
−γ
max. (5.8)

We consider several universal amplitude ratios. They are defined in Table 7.
In Table 8 we report the universal amplitude ratios, as derived by the approximate

polynomial representations of the equation of state for k = 1, 2, 3, 4. The reported
errors are only due to the uncertainty of the input parameters and do not include
the systematic error of the procedure, which may be determined by comparing the
results of the various approximations. In Table 8 we also show results for zmax, xmax

and ymax which are the values of the scaling variable z, x and y (y was defined in
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Table 8: Universal amplitude ratios obtained by taking different approximations of
the parametric function h(θ).

k = 1 k = 2 k = 3 k = 4

U0 0.5231(11) 0.533(2) 0.5319(25) 0.529(6)
U2 4.826(7) 4.745(10) 4.758(19) 4.78(5)
U4 −9.73(3) −8.85(6) −9.0(2) −9.3(5)
R+

c 0.05545(7) 0.0570(1) 0.0567(3) 0.0562(11)
R−

c 0.021967(11) 0.02253(3) 0.02242(12) 0.0222(4)
R+

4 7.983(4) 7.794(8) 7.81(2) 7.83(4)
R−

4 92.15(13) 94.13(13) 93.6(6) 92(2)
Rχ 1.6779(11) 1.658(2) 1.660(4) 1.665(10)

U2 R
+
4 38.52(5) 36.98(10) 37.1(2) 37.4(6)

R+
4 R+

c 0.4427(7) 0.4444(7) 0.443(2) 0.440(6)
Pm 1.25203(6) 1.2493(2) 1.2498(6) 1.251(2)
Pc 0.3831(3) 0.3938(5) 0.3933(7) 0.3930(11)
Rp 1.9789(3) 1.9658(6) 1.9665(10) 1.9671(16)
zmax 1.2443(4) 1.2317(5) 1.2322(8) 1.2326(12)
xmax 12.32(3) 12.26(3) 12.27(4) 12.31(8)
wmax 1.990(1) 1.977(2) 1.980(4) 1.984(9)

D(wmax) 0.36179(4) 0.36277(7) 0.36268(14) 0.3626(3)

Eq. (4.18)) associated with the crossover line. As already mentioned in Sec. 4.4, we
consider the k = 3 results as our best estimates, and report them in Table 1.

Estimates of universal ratios of amplitudes involving correlation-length ampli-
tudes, such as Q+, R+

ξ , and Qc, can be obtained using the HT estimate of g4. For

instance Q+ = R+
4 R

+
c /g4. Other universal ratios can be obtained by supplementing

the above results with the estimates of w2 and Q−
ξ (see Table 7), obtained by an anal-

ysis of the corresponding low-temperature expansions [14, 34], and the HT estimate
of Q+

ξ (see Sec. 6). Moreover, using approximate parametric representations of the
correlation length, see Refs. [1, 19] for details, one may also estimate the universal
ratios Qc

ξ and Q2 defined in Table 7.

6 Low-momentum behavior of the structure factor

In this section we update the determination of the first few coefficients that parametrize
the low-momentum expansion of the scaling two-point function in the HT phase
[19, 34, 70]

g(y) ≡
χ

G̃(k)
= 1 + y +

∞∑

i=2

ciy
i, (6.1)

where y = k2ξ2.
The coefficients ci can be related to the critical limit of appropriate dimensionless
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Table 9: Estimates of the coefficients ci, i = 2, 3, 4, of the low-momentum expansion
of the structure factor.

φ4 φ6 spin-1 final estimates

c2 −0.390(7)× 10−3 −0.390(6)× 10−3 −0.389(12)× 10−3 −0.390(6)× 10−3

c3 0.882(8)× 10−5 0.882(6)× 10−5 0.88(4)× 10−5 0.882(6)× 10−5

c4 −0.4(1)× 10−6 −0.4(1)× 10−6 −0.4(1)× 10−6 −0.4(1)× 10−6

ratios of spherical moments m2j . See Ref. [34] for details. We have estimated the
first few coefficients ci from the corresponding series derived from the 25th-order
expansions of m2j , using the analysis described in Sec. 4.2. The results for the three
improved models and our final estimates are reported in Table 9. Other interesting
quantities are

SM ≡ M2
gap/M

2, (6.2)

SZ ≡ χM2/Zgap, (6.3)

where Mgap (the mass gap of the theory) and Zgap determine the long-distance be-
havior of the two-point function:

G(x) ≈
Zgap

4π|x|
e−Mgap|x|. (6.4)

As discussed in Refs. [19,34], one may estimate SM and SZ from c2, c3, and c4. Indeed,
we have

SM = 1 + c2 − c3 + c4 + 2c22 + ... (6.5)

SZ = 1− 2c2 + 3c3 − 4c4 − 2c22 + ... (6.6)

where the ellipses indicate contributions that are negligible with respect to c4. There-
fore, one finds SM = 0.999601(6) and SZ = 1.000810(13). From the result for SM ,
one obtains Q+

ξ ≡ f+
gap/f

+ = 1.000200(3).
A more detailed analysis of the behavior of the structure factor for all momenta

can be found in Ref. [71].
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