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Chemolithotrophs
Many prokaryotes can tap the energy available from the oxida-
tion of inorganic compounds. This form of metabolism is called
chemolithotrophy and was discovered by the Russian microbiolo-
gist Winogradsky ( Section 1.9). Organisms that carry out
chemolithotrophic reactions are called chemolithotrophs
(Figure 2.18). Chemolithotrophy occurs only in prokaryotes and
is widely distributed among species of Bacteria and Archaea.
Several inorganic compounds can be oxidized; for example, H2,
H2S (hydrogen sulfide), NH3 (ammonia), and Fe21 (ferrous iron).
Typically, a related group of chemolithotrophs specializes in the
oxidation of a related group of inorganic compounds, and thus
we have the “sulfur” bacteria, the “iron” bacteria, and so on.

The capacity to conserve energy from the oxidation of inor-
ganic chemicals is a good metabolic strategy because competi-
tion from chemoorganotrophs, organisms that require organic
energy sources, is not an issue. In addition, many of the inorganic
compounds oxidized by chemolithotrophs, for example H2 and
H2S, are actually the waste products of chemoorganotrophs.
Thus, chemolithotrophs have evolved strategies for exploiting
resources that chemoorganotrophs are unable to use, so it is
common for species of these two physiological groups to live in
close association with one another.

Phototrophs
Phototrophic microorganisms contain pigments that allow
them to convert light energy into chemical energy, and thus
their cells appear colored (Figure 2.2). Unlike chemotrophic
organisms, then, phototrophs do not require chemicals as a

source of energy. This is a significant metabolic advantage
because competition with chemotrophic organisms for energy
sources is not an issue and sunlight is available in many micro-
bial habitats on Earth.

Two major forms of phototrophy are known in prokaryotes. In
one form, called oxygenic photosynthesis, oxygen (O2) is pro-
duced. Among microorganisms, oxygenic photosynthesis is char-
acteristic of cyanobacteria and algae. The other form, anoxygenic
photosynthesis, occurs in the purple and green bacteria and the
heliobacteria, and does not yield O2. However, both oxygenic and
anoxygenic phototrophs have great similarities in their mecha-
nism of ATP synthesis, a result of the fact that oxygenic photo-
synthesis evolved from the simpler anoxygenic form, and we
return to this topic in Chapter 13.

Heterotrophs and Autotrophs
All cells require carbon in large amounts and can be considered
either heterotrophs, which require organic compounds as their
carbon source, or autotrophs, which use carbon dioxide (CO2)
as their carbon source. Chemoorganotrophs are by definition
heterotrophs. By contrast, most chemolithotrophs and pho-
totrophs are autotrophs. Autotrophs are sometimes called
primary producers because they synthesize new organic matter
from CO2 for both their own benefit and that of chemoor-
ganotrophs. The latter either feed directly on the cells of primary
producers or live off products they excrete. Virtually all organic
matter on Earth has been synthesized by primary producers, in
particular, the phototrophs.

Habitats and Extreme Environments
Microorganisms are present everywhere on Earth that will sup-
port life. These include habitats we are all familiar with—soil,
water, animals, and plants—as well as virtually any structures
made by humans. Indeed, sterility (the absence of life forms) in a
natural sample is extremely rare.

Some microbial habitats are ones in which humans could not
survive, being too hot or too cold, too acidic or too caustic, or too
salty. Although such environments would pose challenges to any
life forms, they are often teeming with microorganisms. Orga-
nisms inhabiting such extreme environments are called
extremophiles, a remarkable group of microorganisms that col-
lectively define the physiochemical limits to life (Table 2.1).

Extremophiles abound in such harsh environments as vol-
canic hot springs; on or in the ice covering lakes, glaciers, or the
polar seas; in extremely salty bodies of water; in soils and waters
having a pH as low as 0 or as high as 12; and in the deep sea,
where hydrostatic pressure can exceed 1000 times atmospheric.
Interestingly, these prokaryotes do not just tolerate their partic-
ular environmental extreme, they actually require it in order to
grow. That is why they are called extremophiles (the suffix -phile
means “loving”). Table 2.1 summarizes the current “record hold-
ers” among extremophiles and lists the terms used to describe
each class and the types of habitats in which they reside. We will
revisit many of these organisms in later chapters and examine
the special properties that allow for their growth in extreme
environments.
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Figure 2.18 Metabolic options for conserving energy. The organic
and inorganic chemicals listed here are just a few of the chemicals used
by one organism or another. Chemotrophic organisms oxidize organic or
inorganic chemicals, which yields ATP. Phototrophic organisms use solar
energy to form ATP.
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