Metabolismo Bacteriano

Cristiane Guzzo Departamento de Microbiologia - ICBII-USP

BMM0160 – Farmácia São Paulo, 13 de Setembro de 2018

Diversidade Metabólica

Chemical processes that form the basis of all cellular metabolism

- Enzyme-mediated catalysis
- Reaction coupling
- Energy harvesting by redox reactions organic substrates inorganic substrates photochemical reactions
- Use of membranes to form charge gradients and chemical concentration

O papel do ATP no acoplamento de reações anabólicas e catabólicas

Table 5.2 Gene products of *Escherichia coli* associated withvarious metabolic processes

Functional category	No. of genes
Metabolism of small molecules	
Degradation and energy metabolism	316
Central intermediary metabolism	78
Broad regulatory function	51
Biosynthesis	
Amino acids and polyamines	60
Purines, pyrimidines, nucleosides, and nucleotides	98
Fatty acids	26
Metabolism of macromolecules	
Synthesis and modification	406
Degradation	69
Cell envelopes	168
Cell processes	
Transport	253
Other, e.g., cell division, chemotaxis, mobility, osmotic adaptation, detoxification, and cell killing	118
Miscellaneous	107
Total	1,894

Em torno de 40 % das proteínas produzidas por um microorganismo

Metabolisto & Anabolisto Microbiano

Todo o Processo envolve Equilíbrio Redox: Oxidação e Redução

Phototrophs

Chemoorganotrophs

Chemolithotrophs

Reações Redox: Oxidação e Redução

Par Redox em Microorganismos

Figure 4.10 The oxidation–reduction coenzyme nicotinamide adenine dinucleotide (NAD⁺). NAD⁺ undergoes oxidation–reduction as shown and is freely diffusible. "R" is the adenine dinucleotide portion of NAD⁺.

Temos outras moléculas, como NADP+ para NADPH

ATP : Molécula de alta Energia para ser usada no

(b) Oxidative phosphorylation

Figure 4.13 Energy conservation in fermentation and respiration. (a) In fermentation, substrate-level phosphorylation produces ATP. (b) In respiration, the cytoplasmic membrane, energized by the proton motive force, dissipates energy to synthesize ATP from ADP + P_i by oxidative phosphorylation.

Fermentação ocorre para açucares mas não para ácidos Graxos (muito reduzidos para serem fermentados) **Table 5.4**Some cellular activities requir-ing energy

Cellular activity

Growth related

Entry of nutrients Biosynthesis of building blocks Polymerization of macromolecules Modification and transport of macromolecules Assembly of cell structures Cell division

Growth independent

Motility Secretion of proteins and other substances Maintenance of metabolite pools Maintenance of turgor pressure Maintenance of cellular pH Repair of cell structures Sensing the surroundings Communication among cells Fermentação e Respiração, Qual é a diferença?

Glicólise – Produz 2 moléculas de ATP

Respiração: FPM e Cadeia de elétrons na membrana

ENVIRONMENT

Respiração: FPM e Cadeia de elétrons na membrana

ATP sintetase usa a diferença de potencial na membrana (como se fosse uma bateria) para geral ATP

Respiração: FPM e Cadeia de elétrons na membrana

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Respiração – Após a Glicólise – CAC (Ciclo do Ácido Cítrico)

CAC (Ciclo do Ácido Cítrico) = 15 ATPs/Piruvato

Catabolism of organic food molecules

Revisão: Respiration and fermentation

Diferentes Produtos provindos da Fermentação

Diversidade Catabólica em Microrganismos

Exemplos de Autotóficos

(a)

Anabolismo – Sintese de DNA/RNA e Lipídios

