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Retrotransposons are mutagenic units able to move within the

genome. Despite many defenses deployed by the host to

suppress potentially harmful activities of retrotransposons,

these genetic units have found ways to meld with normal

cellular functions through processes of exaptation and

domestication. The same host mechanisms targeting

transposon mobility allow for expansion and rewiring of gene

regulatory networks on an evolutionary time scale. Recent

works demonstrating retrotransposon activity during

development, cell differentiation and neurogenesis shed new

light on unexpected activities of transposable elements.

Moreover, new technological advances illuminated subtler

nuances of the complex relationship between retrotransposons

and the host genome, clarifying the role of retroelements in

evolution, development and impact on human disease.
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Introduction
Transposable elements (TEs) are genomic units able to

move within the genome of virtually all organisms [1].

More than half of our genome and likely over two-thirds of

it [2] consists of TEs or their ancient relatives. Notably, in

some plants such as maize, gene coding regions are just

small islands ‘floating in a sea of retrotransposons’ [3].

Transposons were discovered in maize and described as

‘controlling elements’ by Barbara McClintock in the late

1940s [4]. TEs were considered ‘genomic junk’ [5] until

more recent works highlighted the substantial impact of

mobile elements on shaping the genome and potentially

rewiring its control [6��,7�,8��]. Previous reviews give

comprehensive historical analysis of the different perspec-

tives, considering transposable elements either ‘controlling

elements’ with major functions in genome regulation,
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‘selfish DNA’ owing only to their selfish purpose of expan-

sion [9�] or, more recently ‘both mutualistic and extreme

parasites’ [6��].

TEs are usually subdivided into two major classes: retro-

transposons (class I) that use a ‘copy and paste’ process for

their replication and expansion and DNA transposons

(class II) that use a ‘cut and paste’ mechanism. Of these,

only retrotransposons are active in the modern human

genome and represent a prominent force of genomic

evolution [6��,10], although other mammals, notably cer-

tain bat taxa, have much more diverse TE populations,

including active DNA transposons [11,12]. Retrotranspo-

sons’ classification and molecular features are summa-

rized in Figure 1; see previous reviews [6��,13�,14�,15].

Retrotransposons are classified into two categories: LTR

(Long Terminal Repeat)-retrotransposons [16], and non-

LTR retrotransposons including LINEs (Long Inter-

spersed Elements), SINEs (Short Interspersed Elements)

and in humans, SVAs (SINE-VNTR-Alu elements).

LINEs, SVAs and LTR-elements are transcribed by

RNA polymerase II while SINEs are transcribed by

RNA polymerase III. Retroelement RNA is post-tran-

scriptionally retrotranscribed and the cDNA is integrated

into a new genomic location, a process called retrotran-

sposition. The LINE elements are the only autonomous

retrotransposons; SINEs and SVA elements depend on

LINE-1 machinery for retrotransposition. Retrotranspo-

sons have distinct evolutionary histories. LTR endoge-

nous retroviruses are clearly evolved from ancient viral

infections of the germ-line and are maintained vertically

in the germ line. Endogenous retroviruses encode Pro,

Gag, Pol and sometime Env-like proteins like their

exogenous cousins. Non-LTR retrotransposons like L1

are thought to have a common ancestor with group II

introns, which often encode a reverse-transcriptase and

can self-splice; they are likely ancestral to the modern

spliceosome [17]. The Alu SINEs derive from cellular

7SL RNA, the RNA subunit of the signal recognition

particle [18]. SVA elements are composite ‘patchworks’

originating from distinct retroelements. Retroelements’

distinct origins underlie substantial differences in life-

cycles, functional behavior and host-interactions; these

differences have to be taken into account when retro-

transposons are considered collectively.

The repetitive nature of TEs makes them challenging to

map onto a reference genome especially in the age of short

read DNA sequencing. Therefore, despite their abun-

dance in animals and plant genomes, the study of TEs,

their evolution and behavior and ultimately their impact on

the host has lagged behind. Recently, technological
www.sciencedirect.com
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Schematic of human retrotransposons. Retrotransposons (class I transposons) are subclassified into two categories: LTR (Long Terminal Repeats)-

retrotransposons, similar to exogenous retroviruses and further divided into multiple subfamilies [16], and non-LTR retrotransposons which include

LINEs (i.e. L1Hs), SINEs (i.e. Alus) and in humans, SVAs (SINE-VNTR-Alu elements, themselves subdivided into classes A–F). Retroelements are

thought to have evolved differently and their proposed origin is reported in the last column. The transcriptionally active domains of the different

retroelements are also indicated with checkered cylinders (see text). The triangles indicate target site duplications (TSD). The inverted ‘Alu-like’ tag

in the figure indicates the inverted orientation of these domains in SVA elements. Abbreviations: UTR, untranslated region; ORF, open reading

frame; EN, endonuclease domain; RT, reverse transcriptase domain; An, A-rich domain; pA, poly A; A B, domains essential for SINE transcription;

VNTR, variable number target repeats; Pro, protease; Gag, group-specific antigen (coat protein) gene; Pol, polymerase (reverse transcriptase);

Env, envelope gene; IN, integrase.
advances in bioinformatics [19] including creation of com-

prehensive databases of annotated repetitive elements

such as RepBase [20] and Dfam [21], incredible advances

in DNA sequencing including long-read methods [22,23]

and clearer knowledge of the genome from an ever-

expanding variety of organisms (i.e. [24�]), have injected

new technological power into ‘transposonology’.

In recent years, the discovery of retrotransposon activity

in somatic cells of the brain or their expression in

specific stages of development and cell differentiation

[23,25��,26��,27,28] raised the possibility of an actual ben-

eficial role conferred by retrotransposon activity on the

host, for example in neuronal plasticity [24�,27,29��]. Ad-

ditionally, the study of somatic insertions in cancer [30–32]

and the strive to elucidate the role of active retrotranspo-

sons in human pathologies [33�,34�], underscore the im-

portance of retrotransposons not only on an evolutionary

time scale but also in more dynamic and sometimes dele-

terious processes. These include epigenetic control and

transcriptional regulation, cell differentiation and repro-

gramming [28], cancer initiation and progression [14�], as

well as processes like normal aging [35�,36,37�].
www.sciencedirect.com 
Here we briefly cover the consolidated impact of retro-

transposons on genome architecture and genome evolu-

tion with particular focus on human retrotransposons and

new findings validating a more dynamic impact on retro-

transposon-induced regulation such as epigenetic and

gene transcriptional regulation. These more recently

identified effects of transposon mobilization may be less

‘disruptive’ and imply a more subtle reshaping of genome

control as opposed to gross effects on its structural orga-

nization. The more recent data supporting ‘positive’

effects of retrotransposon activation will be discussed

in light of the resurgent view of retrotransposons as major

drivers of genome evolution, echoing concepts postulated

by McClintock and by Britten and Davidson [38,39] more

than a half-century ago.

Retrotransposon-induced structural genomic
reorganization and genetic instability
Retrotransposon-induced genetic rearrangements

Because of their repetitive nature, retrotransposons are a

source of chromatin instability and genomic rearrange-

ments with deleterious consequences [15,40]. In the hu-

man genome, insertional inactivation and other genome
Current Opinion in Genetics & Development 2016, 37:90–100
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rearrangements lead to a wide spectrum of genetic diseases

including hemophilia, thalassemia and muscular dystrophy

[41]. Retroelement-induced genetic rearrangements can

be passive (due to the repetitive nature of TE) or active

(directly caused by retrotransposition events) and of sev-

eral types (reviewed in [13�,15,40,42��]): (I) non-allelic

homologous recombination [41] mainly driven by Alu
elements in humans, (II) insertional mutagenesis due to

the ‘hopping’ of retrotransposons within gene coding

sequences; it causes diverse effects on target gene ex-

pression depending on intragenic location, orientation,

length of the inserted sequence and other factors, (III) 30

and 50 transduction during which flanking genomic

regions can be co-retrotransposed with the retroelements

[43], (IV) trans-mediated mobilization of RNAs by ‘tem-

plate switch’ as is common with U6 RNA or by ‘template

choice’ as for the creation of processed pseudogenes (for

more details see [44]).

Retrotransposon-induced changes in genome topology

Numerous lines of evidence demonstrated the organiza-

tion of chromatin into nuclear domains [45] able to affect

genome regulation and gene expression [46]. Heterochro-

matization of repeats through the processes described

below have an effect on the topological distribution of

genomic regions [46–49] and on the 3D organization of

chromatin, likely through CTCF/cohesin binding to TEs

[50,51��]. It has been shown that at least 40% of the

CTCF binding sites in the mouse genome (22.8% in

human) are derived from SINEs elements [51��]. The

actual percentages are likely to be substantially higher

thanks to ancient transposition events that can no longer

be recognized due to mutational erosion. However, direct

evidence for such retroelement-dependent reorganiza-

tion is still lacking. Chromatin conformational studies

using for example, Hi-C focused on retrotransposons

and their relevance in the evolution of genomic looping

and long-range interactions could add a new dimension to

the established relevance of TEs to the diaspora of TSS

and TF binding sites discussed below [8��,51��]. It would

be interesting to compare the topological distribution of

common and species-specific retrotransposons in nuclei

of cells from closely and distantly related organisms to

evaluate the relevance of retroelements to extant genome

architecture.

Retrotransposon-induced changes in genome
regulation
Transposon-induced changes in gene expression

Most genome scale work on retrotransposons  examines

TEs and flanking sequences in genomes of model organ-

isms. This approach overlooks those insertions selected

against during evolution and development that likely had

the strongest effect on neighboring sequences. The

majority of retrotransposon insertions are unsurprisingly

found in non-coding or intronic regions. The effect of

these insertions is usually thought to be neutral or
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affecting processes like alternative splicing, premature

termination, long-range interactions or the creation of

new regulatory regions. Han et al. [42��,52] proposed a

model according to which antisense LINE-1 insertion in

an intron decreases RNA polymerase II processivity,

reducing transcription rate of the genes in which L1 is

inserted. This model called the ‘rheostat hypothesis’ was

demonstrated in vitro but direct evidence for it is limited.

More recently, methylation status of intronic TEs in

Arabidopsis thaliana  was correlated with lower transcrip-

tion of genes with TE insertions [53].

A classical example of retrotransposon dependent gene

regulation in mice is the agouti gene (A). The efficiency in

silencing an IAP (Intracisternal A-type Particle) element

upstream of this gene correlates with a range of coat colors

from yellow when the IAP is completely silenced to dark

brown when the IAP is active [54��].

A rigorous comparison of whole genome RNA expression

with DNA sequencing identifying novel sites of insertion

of in vitro expressed and ‘trackable’ retroelements (i.e.

recoded retroelements easily distinguishable from endog-

enous sequences [55]) will help answer these questions.

Also, more systematic knowledge about the influence of

stress or environmental cues on epigenetic control of

retrotransposons as well as impact of transposons on

phenotypic plasticity is still lacking. The stochastic and

sometime incomplete nature of epigenetic silencing of

retrotransposons may help explain and model complex

systems such as cancer progression, lineage differentia-

tion and brain complexity.

Epigenetic control and retrotransposon repression

Repetitive element mobilization represents a ‘dangerous’

process for the host cell/organism when viewed from an

individual perspective. Indeed, a clear ‘arms race’ exists

between retrotransposons and host defense mechanisms

[56,57��]. Conversely, it has been suggested that epige-

netic control of the genome (a process likely rooted in

transposon control, see below) paradoxically favored ret-

roelement expansion by inhibiting excessive homologous

recombination [58]. However, several mechanisms such

as DNA and histone methylation and RNAi, actively

suppress retrotransposon expression. The epigenetic

mechanisms controlling retroelements may well follow

retrotransposons during their movement ‘around’ the

genome and thereby modify the epigenetic control of

retrotransposition targeted loci [59��,60]. Below we de-

scribe ways of retrotransposon repression that contributed

to sculpt the modern genome and its regulatory mecha-

nisms.

Repression by cellular environment

An important factor that played an essential role in

promoting retrotransposon expansion was probably the

more permissive transcript survival environment of the
www.sciencedirect.com
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eukaryotic cytoplasm, promoted by the 50 cap/30 polyA

structure. On the other hand, cytoplasmic retrotranspo-

sons with longer mRNA half-life had to deal with the

inhibitory effect of the nuclear membrane, which may

represent a primitive defense against retrotransposition

[61]. It has been proposed that disruption of the nuclear

membrane during mitosis may be necessary for the en-

trance of the retrotransposon RNP particles into the

nucleus [62]. The mechanisms that mediate nuclear

translocation of retrotransposons are still unknown de-

spite the obvious relevance to retrotransposon life-cycle/

activity.

Repression by DNA methylation

DNA methylation is essential to control transposon re-

pression in the germline and undifferentiated cells

[63,64�]. Recent studies suggest that LTR hypomethyla-

tion and activation of HERV-K and HERV-H endoge-

nous retroviruses during early developmental stages

directly contributes to pluripotency maintenance

[25��,26��]. In the case of HERV-H, it can provide bind-

ing sites for TFs that mediate expression of pluripotency

transcripts. Tellingly, HERV-H transcripts were also

shown to function as lncRNAs important to maintain

pluripotency [65] and HERV-K was shown to protect

potentially vulnerable early embryonic cells from exoge-

nous virus infection, suggesting exaptation.

Interestingly, CpG islands created by de novo somatic

retrotransposition were shown to be hypomethylated,

implying an inability of differentiated cells to silence

newly mobilized elements [59��]. Moreover, hypomethy-

lated CpG islands create graded influence of hypomethy-

lation on nearby CpGs, a phenomenon termed ‘sloping

shores’. Because newly inserted retrotransposons created

sloping shores, previously shown to influence neighboring

gene expression, it is likely that retrotransposition events

in somatic cells influence gene expression of flanking

regions by modifying their methylation status.

Repression by histone modifications

Histone modifications are also essential for retroelement

repression particularly in undifferentiated cells [66,67].

G9a [68], Eset/Setdb1 [69,70�], KAP1/ZNF proteins

[37�,71] and Lsd1/KDM1A [72] repress retrotransposons

in embryonic stem (ES) cells. Jenuwein and colleagues

[73��] showed that in mouse ES cells, Suv39h histone

methyltransferase is recruited specifically to intact, full

length LINE-1. Recent studies support the idea that

retrotransposon and heterochromatin repression is initi-

ated by random recruitment of TFs such as Pax3/9, ZNF

proteins and homeodomain TFs [74]. Low-level mRNA

transcribed upon random recruitment of these TFs may

mediate silencing of repetitive element regions in undif-

ferentiated cells [73��,75]. Moreover, long non-coding

RNAs (lncRNAs) can mediate HP1 and H3K9me3

independent recruitment of the H4K20me3 methyl
www.sciencedirect.com 
transferase enzyme Suv4-20h2 onto non-pericentric or

telomeric IAP retroelements in quiescent and terminal-

ly differentiated cells [76].

Histone deacetylation is also important for LINE-1 retro-

transposition suppression in human embryonic carcinoma

cells [77].

These studies collectively demonstrate that retrotranspo-

sons are targeted by several epigenetic modifications

fundamental for establishment and maintenance of het-

erochromatin and that could have enabled rewiring of

transcriptome regulation through retroelement mobility

[54��]. A better understanding of the key players in

retrotransposon repression will certainly shed light on

basic unanswered questions about the molecular mecha-

nisms necessary for the establishment and maintenance

of heterochromatin repression.

Repression by RNA interference (RNAi) and piRNAs

RNA interference is another layer of control that host

organisms use to down-regulate retrotransposons [78–80].

Of the known RNA interference pathways (siRNA,

miRNA, piRNA, rasiRNA, endo-siRNA) retrotransposons

seem to involve a complex combination of DICER-de-

pendent and -independent RNAi responses [80,81]. It has

also been proposed that the miRNAs evolved from TEs

[82]. Interestingly, piRNA-mediated silencing of TEs can

spread to adjacent genes, affecting their expression in

Drosophila melanogaster [60]. Intriguingly, in Drosophila
germline stem cells (GSC) establishment of heterochro-

matin by SETDB1 was shown to be essential for expres-

sion of piRNA targeting transposable elements [70�]
supporting a intertwining of transposon expression and

host cell chromatin regulation.

Overall, the existence of diverse RNAi mechanisms tar-

geting retrotransposons implies that RNAi control is

another genomic process ‘expanded’ way beyond retro-

transposon control and that has been exapted and rewired

by the host cells in response to TE activity.

Retrotransposon-induced genetic innovation
Retrotransposons can also impact gene regulation simply

by inserting their own intrinsic regulatory sequences

(promoters, cryptic splice sites, terminators, enhancers

and insulators) in new genomic loci upon retrotransposi-

tion (Figure 1) [6��]. These regulatory elements can

disrupt expression and structure of genes located near

or within retrotransposition sites.

Alternative splicing broadens the diversity of protein rep-

ertoire produced from a ‘fixed’ genome. Retrotransposition

into an intron can alter its splicing through exon skipping,

alternative donor or acceptor splice sites, intron retention

[10,83] and exonization [84]. The LINE1 retrotransposon

(L1) was shown to contain numerous functional splice
Current Opinion in Genetics & Development 2016, 37:90–100
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acceptor and donor sites. L1 mRNA processing through

splicing that renders the spliced retrotransposon inactive

was proposed to serve as a host defense mechanism against

excessively burdensome L1 transcription [85]. Unpub-

lished data from our laboratory also support this hypothesis.

Retrotransposon promoter/enhancer sequences have do-

nated regulatory elements pervasively to many genes and

many if not all such sequences are targeted by several host

signals and proteins. Despite many predicted transcrip-

tion factor (TF) binding sites can be mapped on the L1

50UTR, and on endogenous retroviral LTRs [86], few

proteins have been directly shown to regulate retroele-

ment transcription. RUNX3 [87], MeCP2 [88], p53 [89],

SRY [90], Sp1 and Sp3 [91], YY1 [92,93] and more

recently Oct4, Sox2, Nanog and KLF4 [25��,26��,94]

are proteins demonstrated to mediate retrotransposon

transcription. Recent work demonstrated recruitment of

SIRT6 protein to the 50UTR promoter of L1 and its

repression through ribosylation of KAP1. Interestingly,

SIRT6 recruitment and repression function decreases

with aging, perhaps by redistribution of SIRT6 proteins

on DNA damage sites in aged animals or senescent cells

[37�]. Future efforts should focus on elucidating TFs

responsible for retrotransposon transcription in a more

comprehensive manner.

Several studies show that retrotransposon regulatory units

were expanded by being scattered genomewide through

retrotransposition events and were subsequently

‘rewired’ evolutionarily to provide many tissue specific

gene regulatory elements (promoters/enhancers) [95].

Regulatory features (i.e. promoter or enhancer regions)

of many retroelements have been shown to be co-opted

by the host cells (exaptation) [96]. C-GATE is a publicly

available catalog of known putative and directly charac-

terized transposons exapted by their host organisms [97].

These observations led to the hypothesis of relevant

evolutionary importance for retroelement activity, for

example, in evolution of humans from the least common

ancestor with other great apes [98��].

Also, some LTR-retrotransposon derived proteins have

been directly incorporated into host cellular processes in a

phenomenon defined as ‘transposon domestication’

[99,100]. The phenomenon of domestication/exaptation

provides a framework for understanding the fundamental

roles played by TEs in shaping genomic evolution in

several organisms. These phenomena support the idea of

a strong evolutionary benefit in retrotransposon mobili-

zation although this must always be balanced with the

clear negative effect at the level of the individual

[7�,8��,9,51��]. According to this viewpoint transposons

are ‘dormant genetic units’ with mutagenic and regulatory

potential ready to be set into action and mobilized for

adaptation to environmental stresses [101] (Figure 2).

The concept of ‘genomic shock’ initially hypothesized
Current Opinion in Genetics & Development 2016, 37:90–100 
by Barbara McClintock finally found substantial support-

ing evidence in more recent studies showing that perhaps

the majority of DNA regulatory regions (promoters,

enhancers, TF binding sites) evolved from mobilization

of TEs. Through various approaches, it has been shown

that at least 20% of evolutionary conserved regulatory

regions (TSS, enhancers or some TF binding sites) are

derived from TEs [8��,51��,102]. These very comprehen-

sive studies clearly demonstrate evolutionary relevance of

retrotransposon mobility to the rewiring and selection of

the most ‘fit’ gene networks.

Despite the well-substantiated nature of transposons as

‘controlling elements’, the stress-induced activation of TEs

is still not mechanistically well-characterized [103,104].

Stress activation (i.e. ionizing radiation, DNA damage,

nitrogen starvation, severe adenine starvation or heat shock,

adenovirus infection and cycloheximide treatment) has

been shown for Ty1 in yeast and/or for SINEs and

LINE-1 in human cells, but the TFs regulating such

activation are mostly unknown. Recent studies demonstrat-

ed activation of retroelement activity upon circadian and

aging stress [35�,105,106]. A genome-wide catalog of factors

and signals affecting transcription of L1 and other retro-

transposons would be very valuable.

Moreover, domestication and exaptation can also help

understanding the more recently described ‘advanta-

geous’ cellular effects of retroelements mobilization.

For example, active retrotransposition upon environmen-

tal cues such as exercise has been demonstrated in

hippocampus [27], an area with high adult neurogenic

potential. This observation suggests a potential role of

retrotransposition in the expansion of neuronal diversity

in response to external stimuli. Controversy over the

extent of retrotransposition activity in brain challenges

such a mechanistic role [29��,107,108��,109,110]. In line

with such ideas, recent work also demonstrated a funda-

mental role of L1 expression in fetal oocyte attrition, the

process of prenatal elimination of most oocytes [111�]. As

mention above, HERV-K and HERV-H reactivation have

been shown to play a role in maintaining pluripotency in

ES cells [25��,26��,65]. Interestingly, certain retroele-

ments are also reactivated in iPS cells demonstrating that

the process of reprogramming and resetting of pluripo-

tency induces and perhaps requires TE expression

[112,113].

These studies suggest that exaptation of retrotransposons

regulatory elements during cell development and differ-

entiation induces inevitable reactivation of the corre-

sponding retroelements still active in the genome

during those same developmental states (as for HERV-

H exaptation [26��]). Domestication of retroelements

proteins (as for HERV-K Env protein [25��]), on the

other hand, created a more direct need for expression

of retroelements during specific cell stages. Finally,
www.sciencedirect.com
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Figure 2
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Retrotransposons shape genome regulation. Retrotransposons contain several DNA controlling elements (transcription/enhancer domain, splicing

signals, transcription factor (TF) binding sites, repression signals, and so on) mobilized as part of retrotransposon activity in ‘jumping around’ the

genome. The immediate effect of retrotransposon activity is usually deleterious for the host cells (see top right insert and [10,13�]) and in humans

may lead to diseases such as cancer (black arrow). From an evolutionary standpoint retrotransposons can be defined as mutagenic units able to

rewire and expand gene regulatory networks (GRNs) (red arrow). Stimuli such as stress, aging and specific developmental cues induce

retrotransposon mobilization. Upon jumping, retrotransposon functional units can be exapted by the cell and in some cases retrotransposon

features can be ‘domesticated’ and incorporated into host cell functions, such as stem and germ cell regulation.
somatic reactivation of retroelements in tissues like the

brain or oocyte during attrition may represent a type of

domestication in the broader sense of the term, as reacti-

vation and mobilization of specific retroelements may

facilitate general processes like programmed cell death

and neuronal plasticity.

Implications and perspectives
The newly gained information about retroelements made

possible by great technological advances in bioinformatics

and deep sequencing leaves us with many new questions.

How does genome plasticity conferred by retrotranspo-

sons respond to different type of environmental stresses
www.sciencedirect.com 
and what are the molecular mechanisms driving this

stress-induced response? What is the impact of retroele-

ment mobility in processes like cancer, cellular repro-

gramming and aging? What is the molecular relevance of

retrotransposon activity in tissues like the brain or devel-

oping germ cells in which retrotransposons are not

completely repressed? The more recent perspectives

on the subject seem to suggest that in these contexts,

TE activity can no longer be considered simply due to

spurious and uncontrolled loss of regulation because of

the newly identified ‘beneficial’ roles conferred by retro-

transposons that suggest the existence of retroelement

functions co-opted and ‘safely’ modulated by the
Current Opinion in Genetics & Development 2016, 37:90–100
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host cell. Arguably, these views leave open the idea of

‘symbiotic retrotransposons’ however antithetical this

may seem to a dyed in the wool ‘selfish gene’ devotee

[9�]. Thus, what may seem like TE activation during

vulnerable windows in the organism development may in

fact have provided an opportunity for exaptation of TEs

for very specific cellular functions. It is even possible that

controlled retrotransposition might provide a selective

advantage in a very defined context (i.e. neuronal plas-

ticity or pluripotency maintenance). Targeted genome

engineering methods based on the CRISPR/Cas9 nucle-

ase, may help answer these questions, providing clean in
vivo systems for studies of retrotransposon impact. It is

now plausible to imagine construction of cells or organ-

isms completely lacking active retrotransposons [114] and

therefore determine their role in processes like cell dif-

ferentiation, neurogenesis, aging, tumorigenic prolifera-

tion or genome stability.

The relevance of retrotransposons and TEs to nuclear

architecture and 3D genome structure is still underde-

veloped. Heterochromatin compartmentalization in dis-

tinct nuclear territories and the increasingly recognized

importance of nuclear chromatin topology in processes

like gene repression and activation hint at a potentially

important role in genome architecture for retrotranspo-

sons, one of the major components of heterochromatin. Is

retrotransposon mobility able to induce topological

restructuring of the genome? Could alteration of retro-

transposon repression do so? Are there phenotypic/func-

tional consequences of retrotransposon activity that can

be explained by an alteration of nuclear architecture?

These questions are still open and surely poised to be

answered soon.

Overall, the recent and more ‘dynamic’ and nuanced view

of transposons, demonstrates the enormous relevance of

repetitive elements to genome control. From an evolu-

tionary standpoint it is fair to consider the modern ge-

nome of several, if not all organisms, as a simple

‘snapshot’ of their complex and ever-changing mobilome.

The newly proposed ‘positive’ cellular effects of retro-

transposons can be explained considering that these

effects evolved randomly from the activity of retroele-

ments and have been fixed genomically because of the

positive consequences they fortuitously offered to the

host organism. The emergence of these apparent retro-

transposon-dependent evolutionary ‘advantages’ may

help explain ‘windows’ of reactivation that are not only

tolerated by the host but actually create opportunities for

evolution and adaptation of new functions. In this view

the role of retrotransposon activity in human diseases can

be considered a failed attempt towards evolutionary ad-

vance/adaptation (in the case of genetic disorders) or a

‘misuse’ of the evolutionarily powerful but dangerous

weapon represented by TEs (in the case of reactivation

of retroelements in cancer).
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