8.4 Filter Transformations

Reading Assignment: pp. 398-405

Q: OK, so we now have the solutions for Chebychev and
Butterworth low-pass filters. But what about high-pass,
band-pass, or band-stop filters?

A: Surprisingly, the low-pass filter solutions likewise provide
us with the solutions for any and all high-pass, band-pass and
band-stop filters! All we need to do is apply filter
transformations.
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Filter Transformations

Q: OK so we now know how to design a lumped-element lowpass
filter—how do we design say, a bandpass or highpass filter??

A: If we have already designed a lowpass filter, we are almost
donel

We can use the concept of filter transformations to determine
the new filter designs from a lowpass design. As a result, we
can construct a 3"-order Butterworth high-pass filter or a
5™_order Chebychev bandpass filter!

We will find that the mathematics for each filter design will be
very similar. For example, the difference between a lowpass
and highpass filter is essentially an inverse—the frequencies
below w, are mapped into frequencies above w,—and vice versa.
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For example, we find that:
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Thus, in general we find:
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where «a is some positive, real value (i.e., 0 < a < ).

For example, if « =0.5, then

T,(0=050,)=T, (0=200,)

In other words, the transmission through a low-pass filter at
one half the cutoff frequency will be equal to the transmission
through a (mathematically similar) high-pass filter at twice the
cutoff frequency.

Now, recall the loss-ratio functions for Butterworth and
Chebychev low-pass filters:
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Note in each case that the argument of the function has the

form:
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In other words, the frequency is normalized by the cutoff
frequency.

Consider now this mapping:
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This mapping transforms our lowpass filter response into a
corresponding high pass filter response! I.E.:
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Q: VYikes! Where did this mapping come from? Are sure this
works?

Consider the again the case where w =a w,; the low pass
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responses are.




Now consider the high-pass responses whereo =, /a:
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Thus, we can conclude from this mapping that:
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Exactly the result that we expected! Our mapping provides a
method for transforming a low-pass filter into a high-pass
filter!

Q: OK Poindexter, you have succeeded in providing another one
of your "fascinating” mathematical insights, but does this
‘mapping” provide anything useful for us engineers?

A: Absolutelyl We can apply this mapping one component
element (capacitor or inductor) at a time to our low-pass
schematic design, and the result will be a direct transformation
into a high-pass filter schematic.



Recall the reactance of an inductor element in a low-pass filter
design is:
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while that of a capacitor is:
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we find for the inductor:
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and the capacitor:
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It is clear (do you see why?) that the transformation has
converted a positive (i.e., inductive) reactance into a negative
(i.e., capacitive) reactance—and vice versa.




As a result, to transform a low-pass filter schematic into a
high-pass filter schematic, we:

1. Replace each inductor with a capacitor of value:
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2. Replace each capacitor with an inductor of value:
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Thus, a high-pass ladder circuit consists of series capacitors
and shunt inductors (compare this to the low-pass) ladder
circuitl).
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Q: What about band-pass filters?

A: The difference between a lowpass and bandpass filter is
simply a shift in the "center” frequency of the filter, where the
center frequency of a lowpass filter is essentiallyw = 0.



For this case, we find that the mapping:
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transforms a low-pass function into a band-pass function,

where A is the normalized bandwidth:

A:a)Z_a)l
Wy

and @, and ®, define the two 3dB frequencies of the bandpass
filter.

For example, the Butterworth low-pass function:
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becomes a Butterworth band-pass function:
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Applying this transform to the reactance of a low-pass inductive
element:
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Look what happened! The transformation turned the inductive
reactance info an inductive reactance in series with a capacitive
reactance.

As similar analysis of the transformation of the low-pass
capacitive reactance shows that it is transformed into an
inductive reactance in parallel with an capacitive reactance.

As a result, to transform a low-pass filter schematic into a
band-pass filter schematic, we:

1. Replace each series inductor with a capacitor and inductor in
series, with values:
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2. Replace each shunt capacitor with an inductor and capacitor
in parallel, with values:
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Thus, the ladder circuit for band-pass circuit is simply a ladder
network of LC resonators, both series and parallel:
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