PME 3230 – MECÂNICA DOS FLUIDOS I Habilitações nas Engenharias: Mecânica, Mecatrônica, Naval e Produção PLANO DE AULAS – 2º SEMESTRE/2018

Versão 2

Aula	1. TEORIA E EXERCÍCIOS:	T 03 2°Feira 9:20h	T 04 2°Feira 9:20h	T 01 4°Feira 9:20h	T 02 4°Feira 9:20h
T 1	INTRODUÇÃO A importância da Mecânica dos Fluidos e suas aplicações em engenharia.	06/08	06/08	01/08	01/08
	Algumas características dos fluidos. Análise do comportamento dos fluidos. medidas da massa e do peso dos fluidos. Lei dos gases perfeitos. Viscosidade. Compressibilidade dos fluidos. Pressão de vapor. Tensão superficial. Pequena revisão histórica da Mecânica dos Fluidos. – [Munson, Cap. 1], [Ap. N°1].	13/08	13/08	08/08	08/08
Т2	INTRODUÇÃO À CINEMÁTICA DOS FLUIDOS O Campo de Velocidade. Descrições Euleriana e Lagrangiana dos Escoamentos. Escoamentos Uni, Bi e Tri-dimensionais. Escoamento em Regime Permanente e Transitório. Introdução às linhas principais de escoamento: Linha de Corrente e Trajetória. Campo de Aceleração. Derivadas. Material, Local e Convectiva. Elementos característicos na seção de escoamento, conceito de vazão. [Munson, Cap. 4], [Ap. N°2].	20/08	20/08	15/08	15/08
Т3	DINÂMICA DOS FLUIDOS ELEMENTAR – EQUAÇÃO DE BERNOULLI Aplicação da Segunda Lei de Newton na direção da Linha de Corrente e na Direção Normal. Equação de Bernoulli. Pressões Estática, Dinâmica e de Estagnação. Exemplos de Aplicação da Equação de Bernoulli. Restrições de uso da equação de Bernoulli Tubo de Pitot. Medição de Vazão [Munson, Cap. 3], [Ap.N°9].	27/08	27/08	22/08	22/08
	1ª PROVA (10:00 horas - Biênio)	31/08	31/08	31/08	31/08
T 4	ANÁLISE COM VOLUMES DE CONTROLE FINITOS Sistemas e Volumes de Controle. Teorema de Transporte de Reynolds. Conservação da Massa e Equação da Continuidade. Noçoes de Volume de Controle Indeformável e Deformável. Exercícios de aplicação [Munson, Cap. 5], [Ap. N°4].	17/09 24/09	17/09 24/09	12/09 19/09	13/09 20/09
Т 5	ANÁLISE COM VOLUMES DE CONTROLE FINITOS Primeira Lei da Termodinâmica/Equação da Energia. Aplicações da Equação da Energia. Comparação com a Equação de Bernoulli. Exercícios de aplicação [Munson, Cap. 5], [Ap. N°5].	01/10 08/10	01/10 08/10	26/09 03/10	26/09 03/10
	2ª PROVA (10:00 horas - Biênio)	17/10	17/10	17/10	17/10

Т 6	ANÁLISE COM VOLUMES DE CONTROLE FINITOS. Segunda Lei de Newton. As equações da Quantidade de Movimento Linear. Exercícios de aplicação. [Munson, Cap. 5], [Ap. N°6].	22/10 29/10	22/10 29/10	24/10 31/10	25/10 01/11
Т7	ANÁLISE DIFERENCIAL DOS ESCOAMENTOS Cinemática dos elementos fluidos : translação, deformação linear, deformação angular,	05/11	05/11	07/11	08/11
	dilatação volumétrica. Conservação da Massa. Equação da Continuidade diferencial. Equação Diferencial da Quantidade de Movimento. Equações de Navier-Stokes	12/11	12/11	14/11	22/11
	[Munson, Cap. 6]	21/11*	21/11*	21/11	21/11
	3ª PROVA (10:00 horas - Biênio)	30/11	30/11	30/11	30/11
	PROVA SUBSTITUTIVA (10:00 horas - Mecânica)	07/12	07/12	07/12	07/12

		2. APLICAÇÕES E EXPERIÊNCIAS:	21A	23A	24/26B	31A	32B	51/53A	52B	61/65A	62/64B	63/67A
			2°Feira 7:30 h	2 ^ª Feira 13:10 h		3°Feira 7:30 h	3 Feira 7:30 h	5 Feira 7:30 h	5°Feira 7:30 h	6°Feira 7:30 h	6°Feira 07:30h	6°Feira 13:10 h
		SEMELHANÇA, ANÁLISE DIMENSIONAL E MODELOS	7.00 11	10.10 11	10.10 11	7.00 11	7.00 11	7.00 11	7.00 11	7.00 11	07.0011	10.10 11
	_	Análise Dimensional. Teorema Π de Buckingham.										
L	_1	Determinação dos Grupos Adimensionais; Adimensionais	06/08	06/08	13/08	07/08	14/08	02/08	09/08	03/08	10/08	03/08
		usuais na Mec. Fluidos. Modelos e Semelhança. Estudo										
		de Alguns Modelos Típicos. [Munson, Cap. 7], [Ap. N°3].										
		EXERCÍCIOS E COMPLEMENTOS DE ANALISE										
		DIMENSIONAL E SEMELHANÇA [Ap. N°3].										
L	_2	ESTÁTICA DOS FLUIDOS										
		Pressão num ponto. Equação básica do campo de	20/08	20/08	27/08	21/08	28/08	16/08	23/08	17/08	24/08	17/08
		pressão. Distribuição de Pressão num Fluido em										
		Repouso. Medição de Pressão. Manometria [Munson,										
		Cap. 2], [Ap. N°10].										
		ESCOAMENTO VISCOSO EM CONDUTOS										
L	_3	Características Gerais. Escoamento Laminar. Noções de	17/09	17/09	24/09	18/09	25/09	13/09	20/09	14/09	21/09	14/09
		Camada Limite [Munson, Cap. 8], [Ap. N°8].										
		ESCOAMENTO VISCOSO EM CONDUTOS.										
١.		Escoamento Turbulento. Diagrama de Moody. Equação										
L	L4	de Colebrook. Perda de Carga Distribuída. [Munson, Cap.	01/10	01/10	08/10	02/10	09/10	27/09	04/10	28/09	05/10	28/09
		8], [Ap. N°8].										
		1ª Experiência de Laboratório: Escoamento Laminar										

	2. APLICAÇÕES E EXPERIÊNCIAS:	21A 2 ^a Feira 7:30 h	23A 2°Feira 13:10 h			32B 3°Feira 7:30 h	51/53A 5°Feira 7:30 h	52B 5°Feira 7:30 h	61/65A 6°Feira 7:30 h	62/64B 6°Feira 07:30h	63/67A 6°Feira 13:10 h
1	ESCOAMENTO VISCOSO EM CONDUTOS. Perdas de Carga Distribuída e Localizada. Exercícios de escoamento em condutos - [Munson, Cap. 8], [Ap. N°8]. 2ª Experiência de Laboratório: Escoamento turbulento e medidores de vazão.	22/10	22/10	29/10	23/10	30/10	18/10	25/10	19/10	26/10	19/10
1	ESCOAMENTO EM CONDUTOS E MÁQUINAS DE FLUXO: Bomba centrífuga, características do comportamento das bombas, NPSH, características do sistema e seleção da bomba, parâmetros adimensionais e leis de semelhança, rotação específica 3ª Experiência de Laboratório: Ensaio de Bombas centrífugas com aplicação da Análise Dimensional e teoria da Semelhança. [Munson, Cap. 7 e 12]	05/11	05/11	12/11	06/11	13/11	08/11	01/11**	09/11	01/11**	09/11
	Exercícios de aplicação com escoamentos em condutos e aplicações de máquinas de fluxo.	21/11*	21/11*	21/11*	21/11*	21/11*	21/11*	22/11	21/11*	23/11	21/11*

*Na última aula (L7 - Exercícios Gerais), os professores de algumas das turmas de laboratório assinaladas com * ministrarão aulas de exercícios para as turmas A e B conjuntamente, fato que ocorrerá no dia 21 de novembro, no período da tarde (data reservada pelo calendário do biênio para aulas de reposições/complementares). Se necessário o aluno pode assistir esta aula em outra turma diferente da sua.

3. ASSUNTOS E DATAS DE REALIZAÇÃO E DE PUBLICAÇÃO DAS NOTAS DAS PROVAS:

PROVAS											
	P1	P2	P3	Substitutiva	Recuperação.						
Data de realização da Prova:	31/08 10:00 h	17/10 10:00 h	30/11 10:00 h	07/12 10:00 h	Informada no mural e na página do Sistema Stoa de Mec. Fluidos						
Data limite da publicação das notas:	14/09	31/10	06/12	12/12							
Assuntos:	T1 a T3 L1 e L2	T4 e T5 L3 e L4	T6 e T7 L5 a L7	Toda a matéria	Toda a matéria						

REVISÃO DE PROVAS: As notas das provas **P1**, **P2** e **P3** serão revistas, desde que o aluno faça o pedido até o 4º dia útil contado da data da publicação. A solicitação é feita em formulário próprio disponível na secretaria de Mecânica dos Fluidos, no qual o aluno especificará o porque da revisão, para cada questão isoladamente. Os gabaritos serão publicados durante a semana de provas. As revisões da prova Psub serão feitas no dia útil seguinte à data de publicação. Esclarecimentos de dúvidas sobre as revisões de provas solicitadas podem ser feitas durando o período agendado para realização da vista de prova, que deve ser pedida por escrito, pelos alunos que solicitaram revisão, até o 4º dia útil após a publicação do resultado da revisão, usando o mesmo formulário.

LOCAL DAS PROVAS: As provas P1, P2 e P3 serão realizadas nos Anfiteatros do Biênio. As provas substitutiva e de recuperação serão realizadas no Depto. de Engenharia Mecânica. Recomendamos aos alunos verificarem na página da disciplina no sistema STOA para confirmação do local e de outras informações.

^{**} A aula L6 (que inclui a 3ª experiência de Laboratório) será realizada para as turmas 52B e 62/64B no dia 1º de novembro em horário a combinar.

4. CRITÉRIO DE APROVEITAMENTO:

Média final =MF = (3P + L)/4 onde P=(P1+P2+P3)/3 e L= (R + Q)/2 onde R é a média das avaliações dos relatórios e Q é a nota da prova prática realizada junto com a P3 ou Psub (apenas para os alunos que deixaram de fazer a P3).

5. PROCEDIMENTOS E ORIENTAÇÕES AOS ALUNOS:

- **5.1.** Prazo para entrega de relatórios: até sete dias corridos após a realização da experiência, sendo que será ampliado em 1 semana quando houver intercalação de semana de provas. Feriados não ampliam o prazo. A entrega de relatórios deve ser feita na secretaria de Mecânica dos Fluidos, sendo a responsabilidade do grupo de alunos. Relatório entregue com atraso de até sete dias, terá desconto de dois pontos sobre a nota. Após essa data o relatório não será aceito. Orientações específicas e detalhas estão disponíveis no sistema STOA (moodle de disciplinas da USP), na página da disciplina.
- 5.2. É obrigatório o uso de sapatos fechados nas atividades de experiências de laboratório.
- **5.3.** Reposição de Aulas de Laboratório, não freqüentadas por motivos justificados, deverão ser feitas conforme orientação combinada com o professor de laboratório. Neste caso o desenvolvimento do relatório é individual.
- 5.4. Caso existam evidências de que um relatório foi copiado de colegas ou de turmas anteriores, este será considerado com nota zero, sem que o grupo possa refazêlo.
- 5.5. Os alunos que cursaram a disciplina PME3230 Mecânica dos Fluidos I, nos anos de 2016 ou 2017, e receberam nota R ≥ 7 deverão optar manifestando-se junto à secretaria de Mecânica dos Fluidos, até o dia 24/08/2018, por uma das seguintes possibilidades:
 - a) Realizar novamente as experiências e trabalhos práticos e obter nota nos relatórios para compor a nota R de laboratório, conforme previsto no plano de aulas.
 - b) Manter a nota **R** para o cálculo da nota **L**. Estes alunos, com **R** ≥ **7**, devem ter freqüência nas aulas de aplicações, como também devem fazer a prova **Q**. Não há dispensa de frequência nas aulas do item 2, apenas dispensa de realizar novamente as experiências e respectivos relatórios.
- **5.6.** Os alunos que precisam da disciplina PME-2230 para integralizar seu currículo relativo à EC2 devem ser aprovados nas disciplinas PME 3230 e PME3330 Mecânica dos Fluidos II para cumprir o conteúdo programático da antiga disciplina PME2230, assim como obter número de créditos suficientes.
- 5.7. Horário de atendimento aos alunos pelos docentes é informado nas páginas da disciplina no sistema STOA, na internet.
- 5.8. Todos os alunos devem estar cadastrados no sistema de disciplina no STOA.
- **5.9.** Os aparelhos de telefonia celular e outros que possibilitem comunicação devem estar desligados e guardados nas malas/mochilas/bolsas durante as provas.

6. BIBLIOGRAFIA

- LIVRO TEXTO: Fundamentos da Mecânica dos Fluidos, Munson, B., Young, O, Okiishi, T. Editora Edgard Blucher
- Coletânea de Exercícios Resolvidos-12 apostilas Oswaldo Fernandes e outros. Edição revisada. No sistema stoa-moodle ambiente da disciplina.
- Guia de Laboratório No sistema stoa-moodle ambiente da disciplina.
- Mecânica dos Fluidos. Frank White. Editora McGraw Hill. 6ª Edição.
- Introdução à Mecânica dos Fluidos Fox, R., McDonald, A. Editora LTC. 7ª Edição.
- Mecânica dos Fluidos- Fundamentos e Aplicações Assy, T. M. Editora LTC. 2ª Edição.