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212 [CH. 6] COMBINING SEQUENTIAL AND SIMULTANEOUS
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Simultaneous-Move Games
with Mixed Strategies I
Two-by-Two Games

N OUR STUDY of simultaneous-move games in Chapier 4, we came across a

class of games that the solution methods described there could not solve;

in fact, games in that class have no Nash equilibria in pure strategies. To

predict outcomes for such games, we need an extension of our concepts
of strategies and equilibria. This is to be found in the randomization of moves,
which is the focus of this chapter and the next. -

Consider the tennis-point game from the end of Chapter 4. This game is
zero sumy; the interests of the two tennis players are purely in mutual conflict.
Evert wants to hit her passing shot to whichever side—down the line (DL) or
crosscourt (CC)—is not covered by Navratilova, whereas Navratilova wants to
cover the side to which Evert hits her shot. In Chapter 4, we pointed out that in
such a situation, any systematic choice by Evert will be exploited by Navratilova
to her own advantage and therefore to Evert’s disadvantage. Conversely, Evert
can exploit any systematic choice by Navratilova. To avoid being thus exploited,
each player wants to keep the other guessing, which can be done by acting un-
Systematically or randomly.

However, randomness doesn't mean choosing each shot half the time, or al-
ternating between the two. The latter would itself be a systematic action open
to exploitation, and a 60-40 or 75-25 random mix may be better than 50-50 de-
bending on the situation. In this chapter we develop methods for calculating the

best mix and discuss how well this theory helps us understand actual play in
such games.
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lied to non-zero-sum

Our method for calculating the best mix can also be app
n partially coincide,

in such games the players’ interests ca
systematic choice (0 her own advantage, it is not
Therefore the logic of keeping the other player
non-zero-sum games. We will

games. However,
so when player B exploits Als
necessirily to As disadvantage.
guessing 15 weaker or even absent altogether in
o when mixed-strategy equilibria make sense in such games.

Throughout this chapter, we limit the discussion to two-by-two games and
to the most direct method for calculating a mixed-strategy equilibrium in order
to present the basic ideas in the simplest possible setting. Many of the con-
cepts and methods we develop here continue to be valid in more general games;
most important, our discussion in Sections 6 and 7 of how to mix strategies and
whether mixing is observed in reality is perfectly general, However, we leave
to Chapter 8 the general analysis of best responses in mixed strategies and of

mixed-sirategy equilibria for games with more than two pure strategies.

discuss whether an

1 WHAT 1S A MIXED STRATEGY?

When players choose 10 act unsystematically, they pick from among their pure
strategies in some random way. In the tennis-point game, Navratilova and Evert
each choose from (wo initially given pure strategies, DL and CC. We call a ran-
dom mixture of these two pure strategies a mixed strategy.

Such mixed strategies cover d whole continuous range. At one extreme, DL
could be chosen with probability 1 (for sure), meaning that CC is never chosen
(probability 0); this "mixture” is just the pure strategy DL. At the other extreme,
DL could be chosen with probability 0 and CC with probability 1; this “mixture”
is the same as pure CC. In between is the whole set of possibilities: DL chosen
with probability 75% (0.75) and CC with probability 25% {0.25); or both chosen

with probabilities 50% (0.5] each: or DL with probability 1/3 (33.33 ... %) and

CC with probability 2/3 (66.66 .. . g95); and so on.'
The payoffs from a mixed strategy are defined as the corresponding

prubabiltw-w&iglued averages of the payoffs from its constituent pure
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strategies. For example, i i
ple, in the tennis game of Secti
i - . of Section 4.8, against Navratilova’
e 1; 5yDL f(r)ozr;l ?é)ls 50.and from CC is 90. Therefore the payoff of Ever\t,': Snll)l)I; :
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2 m is defined as a list of mixed i '
goalls & . J ed strategies, one for each
- = ; chowfe of each is her best choice, in the sense of yielding theI!J E y‘;r'
oot expetted. ;2y? f for her, given the mixed strategies of the others A]lovxlrg :
el Iiles l1]n ;:1 game solves the problem of possible nonex.istenceu;gf
, which we encountered for i
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amost reiiltlr?lyilNashs celebrated theorem shows that Ender vermat]ca]lyl o
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st level, therefore, incor i i .
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eveloped in Chapter 5. However, the special case of mixed strlartluo'us
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does bring with it
several special conce,
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2 UNCERTAIN ACTIONS: MIXING MOVES TO KEEP
THE OPPONENT GUESSING

We begin wi i
equilibgr iumlit: the tennis example of Section 4.8, which did not have a Nash
e d;:f.;rt? strategies. We show how the extension to mixed strate;iz
ciency, and we inter i :
. pret the resultin ilibri i
hich each player keeps the other guessing Bl T nel
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i) . it players will ealewlate and o i e
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A. The Benefit of Mixing
payoff matix of Figure 4.15 with both players’
payoffs included. Even though (his is a constant-sum game, We now show the
payoffs for the two players separately, because it is more intuitive 1o think of
each player as rying o get a higher payoff for Ierself. In this game, if Evert al-
ways chooses DL, Navratilova will then cover DL and hold Evert's payoff down to
50, Similarly, if Evert always chooses CC, Nayratilovit will choose to cover CC and
oose one of her two basic (pure} strat-

hold Evert down to 20. 1 Evert can only ¢h
egies, and Navratilova can predict that choice, Evert's better {or less bad) pure
strategy will be DL, yielding her & payoffof 50. (‘This argument fallows the mini-
max reasoning of Chapter 4, Section 5.)
But suppose Evert is not restricted 10 using only pure strategies and can
choose a mixed strategy, perhaps one in which the probability of playing DL on
any one occasion is 75%, or 0.75; this makes her probability af playing CC 25%,
or 0,25, Using the method outlined in Section 1, we can calculate Navratilova’s
expected payoff against this mixture as

—37.5+25=40if she covers DL, and
0 = 35 if she covers CC.

we reproduce in Figure 7.1 the

0.75 X 50 + 0.25 % 10
0.75><20+0,25><80=15+2

If Bvert chooses this mixture, the expected payoffs show {hat Navratilova can

best exploit it by covering DL.
When Navratilova chooses
works to Evert's disadvantage because this is

DL 1o best exploit Evert’s 75-25 mix, her choice
2 Zero-sum game. Evert's expected

payoffs are

0.75 X 50 + 0.25 X 90=375+2
0.75 X 80 + 0.25 X 20=60 +

By choosing DL, Navratilova holds fvert down to 60 rather than 65. But notice
that Evert's payoff with the mixture is still better than the 50 she would get by

playing purely D1, or the 20 she would get by playing purely CC.*

The 75-25 mix does leave Evert's strategy open 10 some exploitation by
Navratilova. By choosing 1o cover DL she can hald Evert down to a lower ex-
pected payoff than when she ¢hooses CC. Ideally, Evert would like o find a mix
that would be exploitation proof, To find such a mix requires taking a more gen-
eral approach to describing Evert's mixed SUalegy. Specifically, we denote the

2.5=60if Navratilova covers DL, and
5 = 65 if Navratilova covers CC.

3Not every mixed strategy will perform better than the pure strategies. For example, if Evert ixes
50:50 between DL and CC, Navratilova can hold Fverts expected payofl down to 50, exnctly the same
as from pure DL. And a mixtire thit attaches a probability of léss than 30% to Dl will bo worse for
t than pure DL. We ask you to verify these stalements asa useful exerclse 1o acgquine thie skill of

Ever
pected payolls ant comparing strategies.

calculating ex
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NAVRATILOVA
DL cC
DL
EVERT 50,50 | 80,20
cc 90,10 20,80

FIG!
URE 7.1  Payoffs of Both Players in the Tennis Point

probability of Evert choosin

. g DL by the algebrai

choosing CCis 1 — gebraic symbol p (so the ili

proof (ing terrriz (l)f P )S an(_i find the condition for this mixture to bg ;bflib.lllt).’ .
So suppose Ep). olving the condition for p provides the answe - Oltal?on

vert chooses DL with ili e

(1 — p). We wi . ) probability p and CC wi n

Nav P ).1 € ‘Wlll refer to this mixture as Evert’s p-mix for sh WTth probability
ratilova's expected payoffs are ort. Against the p-mix,

50p + 10(1 — p) if she covers DL, and
20p + 80(1 — p) if she covers CC.

For Evert's strate, i
gy to be exploitation
tegy ¢ proof, these twi
l;: le(;lofl:l;}:)at implies 50p + 10(1 — p) = 20p + 80(10_6”:;??::01’3‘3’0&3 -
] ; O = ’ : 5 N .
I p = 0.7. Thus Evert’s exploitation-proof mix uses IIJ)L “7”(1;1 l:.'))’
prob-

ablhty 70% and CC with ()l)ablllty 30%. Evi expecte
p . Bvert's pect: d payoff from this mixed

50X 0.7+90X03 = i
el 2(; 9 03: i 27 = 62 if Navratilova covers DL, and also
.3 =56 + 6 = 62 if Navratilova covers CC.

This expected i
payoff is better than the 5
0 that E i
- vert would get
pure st egxy i)L, a.nd better than the 60 from the 75-25 mixi;ur lf\;/he o
ploitation proof, but does it ensure E . i e
= vert the best possible expected
To answer this i
. question, we first consids

= ider how Navratilova will
ey o I]s 015 : by Fvert’. To see this explicitly, we construct a diare:pond'to
ST ol 1gof Evratl,lovas e.xpected payoffs from covering DL andgfrzml o
i hOrizove;rtl s p'os.81b1.e p-mixes. Evert’s choice of p for her o ?0",-
e L tﬁ aﬁaxls in Figure 7.2; Navratilova’s expected payoff’:-mlx )
chetee of purs bL a de gure are two lines, one corresponding to Navr: :lre O?
lines ate ven b r}ll the other to her choice of pure CC. The equati TR
e Cover)irntg ](; Ifwosexpressions above—that is, Navratilova':):)fpzf :hg
4 . =50p+100—p)=1 N

Orr;lioverlng il e Bopi p ; + 40p and her expected payoff

€ upward i i ine i :
. fml:n hl; i sl;(meg .stralght line in Figure 7.2 shows Navratilova’s e
against Evert's p-mix. The intuition for this shapex l;)se :Lea(i
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1

Navratilova’s
expected
payoffs

80

38

; 07 ,
0 Evert's p-mix

. '« pomixes
FIGURE 7.2 Navratilova’'s Expected Payoffs Against Evert's p-mixe!

N ilova does better by covering DL (so her expected payoff ls‘ hi.gl;ier] ::}:1;1;
aveatilova kely to use DL (or when pis higher). The falling straight line :
o isdr:(;:::INa:rraﬂlova‘s expected payoff from her CC ag.ainst Evert’s p-mix.
f!lgau:;:ttllota fares worse as the likelihood that Evert uses D:;;:fé ——

If Navratilova were to usea mixl}lm(:tfi i:t;:ge(:; 1:11150 o
herr:z:lr::;:?; nTYl?gs‘;::’z :t:::e: :]::cﬁ from choosing a ;n ixed :Zattc::' ‘:r::l:i
- . f lines in Figure 7.2. (As
pi S?H’Whel’:ﬁt:rlw'?:‘.l l:‘;:;i?f;;‘l;’;?;!;: time a g, to represent the prob-
fﬂl" EW-'ﬂ: ‘I:e hichuzwaﬁ'lova covers DL. Then we will refer to t.he mhn.ufe plf:r
?jtr'::gr::l:u:lh:l\;ty g on DLand probability 1 — g on CC as Navratilova's g-mix,
s‘mrltt.)i:; useful to calculate the value of pat the point of imcrsgc;l?r):l :i ;k;z ct:/\erg

lines in Figure 7.2. That psatisfies 10 + 40p =80 — 60p, orhpimﬁ.: i.t B+
if for Navratilova at this value of pis the same on bot e
f o ; l'_ a5 + 3 = 38 when calculated using the line for DL, and 2 5
1?0%30; 1; + 24 = 38 when calculated uslng.:he line for :Cm l
We can now identify the strategy that is best for ia‘lfds il e
ible value of Evert's p. This is just the strategy that yie o
POS.!- ff in each case. For p=0, for example, the diagram shows ol
R e higher payoff when she plays CC, namely 80, than the payo‘ e
it et ‘l‘,'hyin DL, namely 10. If Navratilova were (o play a 75-25 mlx:’u ¢
W;l [l;.lllfl iﬂc: g}((:z;alnsgl Evert’s p=0, then Navratilova’s expected payt:}f; \;o_u:idz 50;
Oweigh?ed average of the pure strategy payofls, or 80 x 0.75+ 10 x 0. A

ff
her payoft from pure CC is higher than her payoff from pure DL, then her payo!

ilova against each
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from pure CCis also higher than that from any such average. Therefore her pure
CC is not only better for Navratilova than her pure DL, it is also her best choice
among all her strategies, pure and mixed.

This continues to be true for all values of p to the left of the intersection point
in the diagram. For all such values of p, pure CCis hgﬁé{ than DL for Navratilova
when played against Evert's p-mix and is also better than any mixed strategy of
her own. Pure CC is Navratilova’s best response for this range of values of p. Sim-
ilarly, to the tight of the point of intersection, pure DL is her best response.*

Against Evert's specific p-mix at the point of intersection, Navratilova does
equally well (expected payoff 38) from her CC and DL. Because the expected
payoff associated with a mixture of her CC and DL lies “between” the CC and DL
lines, it follows that she also does equally well with any ¢-mix of her own. The
weighted average of 38 and 38 is 38, no matter what the weights used fbul:eiverag-
ing. Thus, Navratilova’s best response to Evert's choice of p = 0.7 can be a g-mix

for any q in the entire range from Qo 1. .

We can summarize Navratilova's best-response rule as follows:

If p < 0.7, choose pure CC (g = 0).

If p = 0.7, all values of qin the range from 0 to 1 are equal best responses.
If p > 0.7, choose pure DL (g = 1).

To see the intuition behind this rule, note that p is the probability with which
Evert hits her passing shot down the line. Navratilova wants to prepare for Evert’s
shot. Therefore if p is low (Evert is more likely to go crosscourt), Navratilova does
better to defend crosscourt. If p is high (Evert is more likely to go down the line),
Navratilova does better to defend down the line. For a critical value of p in be-
tween, the two choices are equally good for Navratilova. This break-even point is
not p = 0.5 because the consequences (measured by the payoff numbers of the
various combinations) are not symmetric for the two choices.

Recall that our purpose in drawing Figure 7.2 was to help answer the ques-
tion of whether Evert’s exploitation-proof mixture, p = 0.7, is her best mixed
strategy, in the sense of giving her the highest expected payoff. The answer is
yes. We can see this by looking at the expected payoff that Navratilova can get
when she makes her best response to each of Evert’s p-mixes. In Figure 7.2, this
is shown by the higher of the two lines, which corresponds to Navratilova's cover-
age of DL or CC, The best-response expected payoffs make up a V-shaped curve.
The point of interseetion of the two lines in the figure is the lowest point of the V.
When Evert chooses p= 0.7, Navratilova gets her worst possible expected payoff,
and therefore Evert gets her best possible expected payoff.

“If, in some numerical problem you are trying to solve, the expected payoff lines for the pure
Strategies do not intersect, that would indicate that one pure strategy was best for all of the oppo-
nent’s mixtures. Then this player's best response would always be that pure strategy.
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Even’é
expecte
payoff 90

62

When
Navratilova

plays
20

07 3
0 Evert’s p-mix

i i ‘ offs
FIGURE7.3 Navratilova's Best-Response Calculation Using Evert's Pay!

ivert’ sted payoffs
We can see this even more clearly by graphing E-.\rer; s‘u;\:r:::p:;:zagt ); o
f her p-mixes. We just have to remember tha S
e ilova does better when Evert gets low payc:ft‘s. . gu oo’
E',‘ame' Nﬁ\’l‘fﬂ 01 the horizontal axis as in Figure 7.2, but Evert's own exp; it
b aret mhe vertical axis, Since Bvert's payolfs are 100 mh?us Navrat olwu
s e t? 4 is a vertically inverted version of Figure 7.2. We show i
i T_:lgl“‘e : esponding to Navratilova's choice of pure CC and the ot "
it aga'“-iﬂm fL 0::0 DL. Here, the CC line is tising from left to right. 'l‘:;f :‘c;m
52;;:;(::[:;:!12 il:!ea that Everts expected payoff :;::S;?r::;e (?:‘essmr“aﬂy. !
) against Navratilova’s cove .. v
‘Slml:n‘:eni::}a(lrl‘it?: ?:n'r; lﬁl to right, as does :iven;s ;:2;?;?0532:1::2:1 \,:r]::;ﬁ
'. ore often against an opponent who is alway: v 8
B bt T C
g ;Bhi'@‘;lﬁ:‘;: %v:::. l; i?:m; it entails a lower expected payoff for
ol Ih?l" o rctr'| !a:; — 0.7, the DL line is lower than the CC ling, so DLis l?eluzi
rooe k" ot til::va And the expected payoff at the point of m{ersemmr:hg
pps C('. s Nai:;r:'l is ]u;[ 100 minus the 38 that we found for Navratilova I:‘l e
i Ewmz b hler ayoffs. Further, for each of Bvert's p-mixes, Navrati m:;:e
analysis based ?’ﬁl ldpuvm: down to the lower of the expected payoffs ah’mg. e
. fESPC"mL’ . 1.0 nses make an inverted Vin {his case, and Evert’s hig :
D T he ber;icr:rsnp; at the vertex of the inverted V, that is, at t.he‘ pfaigt ?d
ot QKPEC_IEd pt?:;‘e two straight lines. Thus, the exploitation-proof mixis I:;[at\‘.-;'.‘j
E‘:;J:;:‘:::?;wice. Om; results are the same as we found by using Navra

own payoffs; only the basis of the analysis is slightly different.
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Let us recapitulate the argument for finding Evert’s exploitation-proof mix-
ture. For each p that Evert could choose for her p-mix, we find the lowest payoff
to which Navratilova can hold her down by choosing the appropriate response.
Then we find the p that gives the highest of these lowest payoffs. This matches
exactly the minimax reasoning that we developed for pure strategies in Chapter
4, Section 5, and it has the same justification here. Navratilova is going to choose
the strategy that is best for her. The game is zero sum; what is best for Navratilova
is worst for Evert. Therefore Evert would be correct to entertain a pessimistic
belief about Navratilova's best responses, and that is exactly what minimax rea-
soning does. We develop this idea in a little more detail in subsection C below,

We can find Navratilova’s best mixture by using exactly the same reason-
ing. First you will need to identify Evert's best choice of p against each of

Navratilova’s g-mixes. We leave the analysis to you but provide the result.
Evert’s best-response rule is:

If g < 0.6, choose pure DL (p = 1).

If g = 0.6, all values of pfrom 0 to 1 are equal best responses,
If 4> 0.6, choose pure CC (p = 0).

To understand the intuition, observe that g is the probability of Navratilova
defending down the line. Evert wants to hit her passing shot to the side that
Navratilova is not defending. Therefore, when g is low, Evert does better to go
down the line and, when g is high, she does better to go crosscourt. Follow-
ing the same reasoning as we gave above from Evert's perspective, g = 0.6 Is
Navratilova's best mixture, immune to exploitation by Evert.

B. Equilibrium in Mixed Strategies

When each player chooses her best, exploitation-proof, mixture, the outcome
will be an equilibrium in mixed strategies. In the next chapter we will verify for-
mally that it is indeed a Nash equilibrium in continuous strategies, regarding the
mixture probabilities as the continuous variables in the choices of the two play-
ers’ strategies. There we will also develop more general theory of mixed strate-
gles and their equilibria when each player has several pure strategies. Here we
merely state the procedure you have to follow to calculate such an equilibrium
in two-by-two games.

Let the Row player’s general mixed strategy be her p-mix, putting probabil-
ity p on playing her first pure strategy and probability (1 — p) on her second
pure strategy. Given this p-mix, calculate the algebraic expressions for the Col-
umn player’s expécted payoffs from each of her pure strategies. As in Section
2.A, these expressions will depend on the parameter p. Then equate the two ex-

Pressions, and solve the resulting equation for p. This p defines the Row player’s
Optimal, exploitation-proof mixture.
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¢ g-mix put probability ¢ on playing
on her second pure stralegy. Find
mix by equating the expressions
from each of her pure strate-

Similarly, for the Column player, let he
her first pure strategy and probability (1 = ¢)
the ¢ that defines the Column player’s best g-
for the expected payoffs the Row player would get
gies against this g-mix.®

We illustrate this met
seen that against Evert's p-mix,
she covers DL, and 20p + 80(1 —

50p + 10(1 — p) = 20p + 800 — p),
or 30p=700-p) or 100p=70, or p= 0.7.

hod using the tennis point example. We have already
Navratilova's expected payoff is 50p + 1001 — p)if
p) if she covers CC. Equating these two we have

Against Naveatilovas ¢-mix, Evert's expected payoffs are similarly found using
Figure 7.1; they are 50¢ + B0(1 — ) if Bvert plays DL, and 904 + 20(1 — gq) if she

plays CC. Equating the two, we have

504 + 80(1 — q) = 90g + 2001 — g%
or 60(1 —¢g)=40g, or 100g =60, or g= 0.6.

These values, p = 0.7 and g = 0.6, describe the equilibrium in mixed strategies
in the tennis point game.
Each player’s equilibrium
the oltﬂhérri;layer’s‘ expected payoffs
riun mixture of each player satisfies the con
be indifferent between ‘her two pure strategies. We
indifference property of mixed strategy equilibria.

(best) mixture probability is found by equating
For her two pure strategies. Thus, the equilib-
dition that the other player should
call this the ‘oppom‘mt"s’

C. The Minimax Method

In Chapter 4, Section 5, we developed the minimax reasoning for zero-sum

games in which players used only pure strategies. That approach can be used for

zero-sum games with no equilibrium in pure strategies as well, if we expand the

set of strategies to include mixtures for the two players.

In Figure 7.4, we show Evert’s payoffs in the tennis point game with pure
strategies alone, but augmented to show row minima and column maxima, 8
we did in Figure 4.8 for the football game. Evert's minimum payofis (success val-
ues) for each of her strategies are shown at the far right of the table: 50 for the DL
row and 20 for the CC row. The maximuim of these minima, or Evert's maximin,

is 50. This is the best that Evert can guarantee for herself by using pure strategics,

he range for probabilities—that is, if one

51f your solution yields values of por g that are outside & h
1—then the game has an equilibrium i1

ot both of the solutions is either less than 0 or greater than

pure strategies. Inspect the original payoff matrix to find it.
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NAVRATILOVA
DL de
DL i
EVERT 2 80 min = 50
S 90 20 min =20

max =90 max =80

FIGURE 7. ini i
E7.4  Minimax Analysis of the Tennis Point with Pure Strategies

knowing that Navrati
tilova responds in her
own best i i i
guaranteed payoff, Evert would play DL et nterests o achieve this
At th :
e ese tftoc.)t of ea.ch column, we show the maximum of Evert’s success
Navra%ilo :,la :mable 'm that column. This value represents the worst payoff f}fr;
o arfljet if she plays the pure strategy corresponding to that };olumz
of these maxima, or the minimax, i i .
o e x, is 80. This is the best payoff that
arantee for herself by using p i
— ! Sing pure strategies, knowing thai
pThe s nlln h.er .nwn best interests. To achieve this, Navratilova wuuldgpla tCEgert
I ma);)m?um and minimax values for the two players are not thg sa -
e explainr:;r; s.uc(c;ss percentage (50) is less than Navratilova's minimax (;r(;(;.
in Chapter 4, this shows that th .
. ! . at the game has no equilibri i
o (el:;u:'e) strat.egles available to the players in this analysis. In thi(i amr ey
low);r an achieve a better outcome—a higher maximin value for ]gve te I EZCh
minimax value for Navratilova—] i i xtore of
e by choosing a suitable random mixture of
Letuse i
. m):)pand the .sets of strategies available to players to include random
- tvfes or mlxe?d strategies. We do the analysis here from Evert’s -
g ,F . at for Navratilova is similar, and we leave it for you as an e p'er_
, - xercise,
i Hglixevzl.f we (lalxpand the payoll table of Figure 7.4 by adding a row for
e S};OW te;e she plays DL with probability pand CC with probability
e expected payoffs of this mix against each of Navratilova's

NAVRATILOVA

DL @€
Dl
L 50 80 min =50
EVERT cC 90 20 min =20
p-mix 50p+90(1-p) | 80p+20(1-p) | min=2?

FIGURE 7
5 Min: .
Minimax Analysis of the Tennis Point with Evert's Mixed Strategies
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i lawerh(:cl;ﬂ::i:z: !:?em;ﬁ:)l::l Gazplainsl each other, E\..'ert‘s‘ maxim'.:':
When ﬂ.ﬁ:-;:::'s minimax, and we have a Nash cqulilibriun_'n in r.nu’ced :;L::a |
GQ}WS 5_“[3""“ l lity of maximin and minimax for optimal mixes is 4 gen !
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3 NASH EQUILIBRIUM AS A SYSTEM OF BELIEFS AND RESPONSES
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However, in Chapter 4 we considered only pure-strategy Nash equilibria.
Therefore a hidden assumption went almost unremarked—narmely, that each
player was sure or confident in her belief that the other would choose a particu-
lar pure strategy. Now that we are considering more gen
the concept of belief requires a cotresponding reinterpret; 1.

Players may be unsure about what others might be doing. In the coordina-
tion game in Chapter 5, in which Harry wanted to meet Sally, he might be un-
sure whether she would go to Starbucks or Local Latte, and his belief might be
that there was a 50-50 chance that she would go to either one. And in the tennis
example, Evert might recognize that Navratilova was trying to keep her (Evert)
guessing and would therefore be unsure of which of Navratilova's available
actions she would play. In Chapter 2, Section 4, we labeled this as strategic un-
certainty, and in Chapter 4 we mentioned that such uncertainty can give rise to
mi'xé'd-strategy equilibria. Now we develop this idea more fully.

TItis important, however, to distinguish between being unsure and having
incorrect beliefs, For example, in the tennis evx”évmplé; Navratilova cannot be sure
of what Evert is choosing on any one occasion. But she can still have correct
beliefs about Evert's mixture—namely, about the probabilities with which Evert
chooses between her two pure strategies. Having correct beliefs about mixed ac-
tions means knowing or calculating or guessing the correct probabilities with
which the other player chooses from among her underlying basic or pure ac-
tions. In the equilibrium of our example, it turned out that Evert's equilibrium
mixture was 70% DL and 30% CC. If Navratilova believes that Evert will play DL
with 70% probability and CC with 30% probability, then her belief, although un-
certain, will be correct in equilibrium.

Thus we have an alternative and mathematically equivalent way to define
Nash equilibrium in terms of beliefs: each player forms beliefs about the prob-
abilities of the mixture that the other is choosing and chooses her own best re-
sponse to this. A Nash equilibrium in mixed strategies occurs when the beliefs
are correct, in the sense just explained.

In the next section, we consider mixed strategies and their Nash equilibria
in non-zero-sum games. In such games, there is no general reason that the other
player’s pursuit of her own interests should work against your interests. Therefore
it is not in general the case that you would want to conceal your intentions from
the other player, and there is no general argument in favor of keeping the other
player guessing. However, because moves are simultaneous, each player may
still be subjectively unsure of what action the other is taking and therefore may
have uncertain beliefs that in turn lead her to be unsure about how she should
act. This can lead to mixed-strategy equilibria, and their interpretation in terms
of subjectively uncertain but correct beliefs proves particularly important.
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4 MIXING IN NON-ZERO-SUM GAMES
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SALLY
Starbucks | Local Latte
Starbucks 1,1 0,0
HARRY ——|— ]
Local Latte 0,0 2,2

FIGURE7.6 Assurance Game
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choose one café or the other. The probability of his choosing Local Latte can be
any real number between 0 and 1 (that is, between 0% and 100%). We can cover
all possible cases by using algebra, letting the symbol p denote the probability
(in Sally's mind) that Harry chooses Starbucks; the variable p can take on any
real value between 0 and 1. Then (1 — p} is the probability (again in Sally’s mind)
that Harry chooses Local Latte. In other words, we describe Sally’s strategic un-
certainty as follows: she thinks that Harry is using a mixed strategy, mixing the
two pure strategies, Starbucks and Local Latte, in proportions or probabilities p
and (1 — p) respectively. We call this mixed strategy Harry’s p-mix, even though
for the moment it is purely an idea in Sally’s mind.

Given her uncertainty, Sally can calculate the expected payoffs from her ac-
tions when they are played against her belief about Harry's p-mix. If she chooses
Starbucks, it will yield her 1 X p + 0 X (1 — p) = p. If she chooses Local Latte, it
will yieldher 0 X p+ 2 X (1 — p) = 2 X (1 - p). When pis high, p> 2(1 — p), so
that Sally is fairly sure that Harry is going to Starbucks, then she does better by
also going to Starbucks. Similarly, if pis low, p < 2(1 — p) and if Sally is fairly sure
that Harry is going to Local Latte, then she does better by going to Local Latte. If
p=2(1 = p),or3 p= 2, orp=2/3, the two choices give Sally the same expected
payoff. Therefore if she believes that p = 2/3, she might be unsure about her
own choice, so she might dither between the two.

Harry can figure this out, and that makes him unsure about Sally’s choice.
Thus Harry also faces subjective strategic uncertainty. Suppose in his mind
Sally will choose Starbucks with probability g and Local Latte with probability
(1 — ). Similar reasoning shows that Harry should choose Starbucks if g > 2/3
and Local Latte if g < 2/3. If g = 2/3, he will be indifferent between the two ac-
tions and unsure about his own choice.

Now we have the basis for a mixed-strategy equilibrium with p = 2/3 and
q = 2/3. In such an equilibrium, these p and g values are simultaneously the
actual mixture probabilities and the subjective beliefs of each player about the
other's mixture probabilities. The correct beliefs sustain each player's own indif-
ference between the two pure strategies and therefore each player’s willingness
to mix between the two. This matches exactly the concept of a Nash equilibrium
as a system of self-fulfilling beliefs and responses described in Section 3.

The key to finding the mixed-strategy equilibrium is that Sally is willing to
mix between her two pure strategies only if her subjective uncertainty about
Harry's choice is just right—that is, if the value of pin Harry's p-mix is just right.
Algebraically, this idea is borne out by solving for the equilibrium value of p
by using the equation p = 2(1 — p), which ensures that Sally gets the same ex-
Pected payoff from her two pure strategies when each is matched against Harry's
P-mix. When the equation holds in equilibrium, it is as if Harry's mixture prob-
abilities are doing the job of keeping Sally indifferent. We emphasize the “as if"
because in this game, Harry has no reason to keep Sally indifferent; the outcome
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is merely a property of the equilibrium, Still, the general idea is worth remem-
bering: in a mixed-strategy Nash equilibrium, each person’s mixture probabili-
ties keep the other player indifferent between her pure stralegies. We called this
the opponent’s indifference method in the zero-sum discussion above, and now
we see that it remains valid even in NON-ZET0-SUIM Bames.

However, the mixed-strategy equilibrium has some very undesirable prop-
erties in the assurance game. First, it yields both players rather low expected
payoffs. The formulas for Sally's expected payoffs from her two actions, p and
2(1 — p), both equal 2/3 when p = 2/3. Similarly, Harry's expected payoffs
against Sally’s equilibrium q-mix for ¢ = 2/3 are also both 2/3. Thus, each player
gets 2/3 in the mixed-strategy equilibrium. In Chapter 4 we found two pure
strategy equilibria for this game; even the worse of them (both choosing Star-
bucks) yields the players 1 each, and the better one (both choosing Local Latte)
yields them 2 each.

The reason the two players fare so badly in the mixed-strategy equilibrium
is that when they choose their actions independently and randomly, they create
a significant probability of going to different places; when that happens, they
do not meet, and each gets a payoff of 0. Harry and Sally fail to meet if one goes
to Starbucks and the other goes to Local Latte, or vice versa. The probability of
this happening when both are using theit equilibrium mixtures is 2 X (2/3) X
(1/3) = 4/9.7 Similar problems exist in the mixed-strategy equilibria of most
non-zero-sum games.

A second undesirable property of the mixed-strategy equilibrium here is
that it is very fragile. If either player departs ever so slightly from the exact values
p=2/30rq=2/3 the best choice of the other tips to one pure strategy. Once
one player chooses @ pure sITAtCgy, then the other also does better by choos-
ing the same pure strategy, and play moves to one of the two pure-strategy

equilibria. This instability of mixed-strategy equilibria is common 10 many
non-zero-sum games. However, some important non-zero-sum games do have
mixed-strategy equilibria that are not 50 fragile. One example considered later
in this chapter and in Chapter 13 is the mixed-strategy equilibrium in Chicken,
which has an interesting evolutionary interpretation.
Given the analysis of the mixed-strategy equilibrium in the assurance ver-
sion of the meeting game, you can now probably guess the mixed-strategy

e probability that each chooses Sarbucks in equilibrium s 2/3. The probability that each
chooses Local Latte is 113, The probability that one choases Starbucks while the other chooses Local
Latte is 203 % 1/3. But that can happen two different ways (once when Harry chooses Starbucks
and Sally ¢hooses Local Latte, and ogain when the choices are teyersed) so the wtal probability of

not meeting s 2 % 2/3 % 178, Sve the Appendix te this chapter for more detuils on the e

of probabilities.
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equilibri
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B. Will James Meet Dean? Chicken

The - - i
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: od developed its i
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o st Choosz ; p.— 1if he cho'oses Swerveand 1 X p -2 X (1 — p) =
by ehom s Straight. Comparing the two, we see that Dean does bet-
g A g is;/vlerve when p - 1 >3p—2,orwhen2p <1, orwhen p<1/2
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DEAN
Swerve (Chicken) | Straight (Tough)
Swerve (Chicken
JAMES ) - !
Straight (Tough) 1,-1 ~2i=2

FIGURE?7.7 Chicken
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The propeities of this equilibrium have some similarities but also some dif-

ferences when compared with the mixed-strategy equilibria of the meeting game.
Here, each player’s expected payoff in the mixed-strategy equilibrium is low
(—1/2). This is bad, as was the case in the meeting game, but unlike in that game,
the mixed-strategy equilibrium payoff is not worse for both players than either of
the two pure-strategy equilibria. In fact, because player interests are somewhat
opposed here, each player will do strictly better in the mixed-strategy equilibrium
than in the pure-strategy equilibrium that entails his choosing Swerve.

This mixed-strategy equilibrium is again unstable, however. If James in-
creases his probability of choosing Straight to just slightly above 1/2, this
change tips Dean's choice to pure Swerve. Then (Straight, Swerve) becomes
the pure-strategy equilibrium. If James instead lowers his probability of choos-
ing Straight slightly below 1/2, Dean chooses Straight, and the game goes to the

other pure-strategy equilibrinm.?
5 GENERAL DISCUSSION OF MIXED-STRATEGY EQUILIBRIA

Now that we have seen how to find mixed-strategy equilibria in both zero-sum
and non-zero-sum games, it is worthwhile to consider some additional features
of these equilibria. In particular, we highlight in this section some general prop-
trategy equilibria. We also introduce you to some results that

erties of mixed-s
seem counterintuitive at first, until you fully analyze the game in question.

A. Weak Sense of Equilibrium

erty described in Section 2 implies that in

The opponent’s indifference prop
same expected payoff from

a mixed-strategy equilibrium, each player gets the
each of her two pure strategies, and therefore also gets the same expected payoff
Thus mixed-strategy equilibria are Nash equi-
libria only in a weak sense, When one player is choosing her equilibrium mix, the
other has ho positive reason 10 deviate from her own equilibrium mix. But she
would not do any worse if she chose another mix or even one of her pure strate-
gies. Each player is indifferent between her pure strategies, or indeed betweern
any mixture of them, so long as the other player is playing her correct (equilib-
rium) mix. This is also a very general property of mixed-strategy Nash equilibria.

from any mixture between them.

8(n Chapter 19 we considera different kind of stability, namely evolutionary stability, The ques:
tion in the evolutiohary context B whether a stable mix of Straight and Swerve choosers can arise
and persist in & population of Chicken players, The answer s yes, and the proportions of thi twa
types are exactly cqual to the probabilities of playing each action in the mixed-strategy eoquilibrivm.
Thus, we derive o new and different motiv

atton fok that equilibrium in this game.
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NAVRATILOVA

DL cC
DL 30,7
EVERT o || 80.20
cC 90,10 20, 80

FlGy
RE7.8  Changed Payoffs in the Tennis Point




232 [CH. 7] SIMULTANEOUS-MOVE GAMES WITH MIXED STRATEGIES |
But when we calculate Navratilova's g-mix by using the condition of Evert’s
indifference between her two pure strategies, we get 30g + 8001 — q) = 90qg +
20(1 — ), or g = 0.5. The actual equilibrium value for ¢, 50%, has exactly the op-
than what many people’s intuition predicts,

posite relation to the original g of 60%
it misses an important aspect of

Although the intuition seems reasonable,
the theory of strategy: the interaction between the two players. Evert will also
be reassessing her equilibrivm mix after the change in payoffs, and Navratilova
musi take the new payoff structure arid Evert's hehavior into account when de-
termining her new mix. Specifically, because Navratilova is now so much better
at covering DL, Evert uses CCmore often in her mix. To counter that, Navratilova
covers CC more often, too.

We can see this more explicitly by calculating Evert's new mixture. Her
equilibrium p must equate Navrtilova's expected payoff from covering DL,
30p + 90(1 — p) with her expected payoff from covering CC, 80p + 20(1 — p).
So we have 30p + 90(1 — p) = 80p 4+ 2001 — p), or 90 — 60p = 20 + 60p,
or 120p = 70. Thus, Evert's p must be 7/12, which is 0.583, or 58.3%. Comparing
this new equilibrium p with the original 70% calculated in Section 2 shows that

Evert has significantly decreased the number of times she sends her shot DLin
response to Navratilova's improved skills. Evert has taken into account the fact
that she is now facing an opponent with better DL coverage, and so she does
better to play DL less frequently in her mixture. By virtue of this behavior, Evert
makes it better for Navratilova also to decrease the frequency of her DL play.
Evert would now exploit any other choice of mix by Navratilova, in particular a
mix heavily favoring DL.
So is Navratilova’s skill improvement wasted? No, but we must judge it
properly—not by how often one strategy or the other gets used but by the result-
ing payoffs. When Navratilova uses her new equilibrium mix with ¢ = 0.5, Evert’s
success percentage from either of her pure strategies is (30 % 0.5) + (80 X 0.5) =
(90 X 0.5) + (20 X 0.5) = 65. This is less than Evert's success percentage of 62 in

the original example. Thus, Navratilova’s average payoff also rises from 38 to 45,

and she does benefit by improving her DL coverage.

Unlike the counterintuitive result that we saw when we considered Navrati-
lova's strategic response to the change in payoffs, we see here that her response
is absolutely intuitive when considered in light of her expected payoff. In fact,
players’ expected payoff responses to changed payoffs can never be counterin-
tuitive, although strategic responses, s we have seen, can be.® The most inter-
esting aspect of this counterintuitive outcome in players’ strategic responses is

the message that it sends to tennis players and to strategic game players more

g the payuffina particular cell has on the equi-
srittm, ste Vincent Crawford and Dennis Small-
ilibria in Moncoaperative Games,” Theory and

°For a general theory of the effect that changin
librium mixture and the expected payoffs in equilil
wood, “Comparative Statics of Mixed-Strategy ¥
Decision, vol. 16 (May 1984}, pp- 225-232.
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" . .
lglenzrally. The rfesult here is equivalent to saying that Navratilova should improve
Y T(l)lwn-the-lme coverage so that she does not have to use it so often. ’
ere imi i .
ey requ;;esﬁzﬁ similar examples of possibly counterintuitive results, but
y more ease with algebra than
! many readers may have.
herefore we postpone them to the next, optional, chapter (Section 8.6) g )

6 How To UsE MIXED STRATEGIES IN PRACTICE

T . .
Sthetre ar(? several important things to remember when finding or using a mixed
rategy in a zero-sum game. First, to i
: , to use a mixed strategy effecti i
et vely in such
Wigth V:},l.a }E)layer needs to do more than calculate the equilibrium percentages
o 1.c to use each of her actions. Indeed, in our tennis-point game, Evert
= mgc }s:{nplyu play DL seven-tenths of the time and CC three-tenths of tﬁ:?i;he
anically rotating seven shots down the li
e line and three sh
ik 2 tin [ shots cross court.
the};]r;)r:. Btecl'c—luse rr;lxmg your strategies is supposed to help you benefit from
element of surprise against your op !
lement of su styo ponent. If you use a re i
e : cognizable pattern
) s sure to discover it and exploit i '
mpbie s : ploit it to her advantage.
9 ChOOSiack ; ['a pattern means that, after any history of choices, the pro Ifability
i ng L or CC on the next turn is the same as it always was. If a run of
“due"aoiufﬁesswe DLs happens by chance, there is no sense in which CC is now
. S ; ?}tla:t tllltrn. In pilactice, many people mistakenly think otherwise,
y alternate their choices too much co i I
random sequence of choices w i B s i
ould require; they produce too f i
cal successive choices. Howev ing. . S
5 e1, detecting a pattern from ob. i i
tricky statistical exercise that th. Weioretrmri
' e opponents may not be able t fi i
playing the game. As we will see i i g ol
3 in Section 7, analysis of data fi
tennis finals found that serve , b
ers alternated their serves too
: much, but recei
wer(;_I not able to detect this departure from true randomization , e
oW :
Joumon gv:rt, to1 makedsure that your opponent cannot exploit your mixed strategy,
ruly random pattern of actions on ea :
ch play of the
S y game. For ex-
berls) f(;ryou n}ay want.to rely on a computer’s ability to generate random num-
o Coy;gg,u trom which you can determine your appropriate choice of action.
er generates numbers between 1 and 100 :
o . : ‘ and you want to mix
gom nt::;:;gle; A and B in a 60-40 split, you may decide to play A for any ran-
. e;‘ e'tween 1 and 60 and to play B for any random number between
s pmVid. dlr.nllarly, you. could employ a device such as the color-coded spin-
eich o ef in n}any children’s games. For the same 60-40 mixture, you would
ol :;o the cnifcle on the spinner in blue, for example, and 40% in red; the
egrees of the circle would be blue, tl in ’
i . .u , the remaining 144 red. Then you
. YoupC g he spinner arrow and play A if it landed in blue hut B if it landezl, in
n use the second hand on a watch as the same type of device, but it is
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: s
important that your watch not be so accurate and synchronized lh:t your opp!
nent can use the same watch and figute out what you are going u-: o}.{m s
The importance of avoidinga predictable system of randon:za:;!ame“icany
est i ongoing interactions of a zero-sum nature. Because of t‘ e|w:, e
i in such games, your opponent :
opposed interests of the players i ; W
rrf:?u exploiting your choice of action to the greatesit cllcgni.e 1:;06::)]:03!\:1'% o
i t other on a regular basis, she g
ou play the same game against eac i ‘ ¢
:(m t:1e l:::nkoul for ways to break the code that you art: using loﬁra‘lidf?::::f ;ﬁ:s
e ] s a chance to improve her payolls i
moves. If she can do so, she hasac < —_
ixing is still jus in single-meet (sometimes ca L
of the game. Mixing is still justified ' . s C ;
?ero-mgnm games because the Dbenefit of tactical surprise ren;zms; m1pnrt.1fnli; i
ki i and accept the fact that the use Ol mIxe
Finally, players must understanc rthe .
slr‘\tegicqygtr:ard:s you against exploitation, and gives 1hej best possnbk:l ?pe;wi
payoff against an opponent who is making her best choices, but that it s::)r:r ix‘,
probabilistic average. On particular occasions, you ca:n get poor n:lmr:l:es.dcrense
ample, the long pass on third down with a yard 10 go. mtlencilcd mt ee|i3 s
' i casi : egyina
: -ific occasion. If you use a mixed stra
honest, may fail on any spect s ———
i i higher authority, therefore, you may
in which you are responsibletoa st
ili ay need to justify your use of such a strategy
ahead for this possibility. You may ne e —"
“0uc boss, for example. They need to und )
of time to your coach or your . ¢ b
have adopted your mixture and why you expect it 1o yu,zid you the 'mzs;f ]::;swe“
payofl on average, even though it might yield an on:casmn::l low pflyﬂ ipai h.
Even such advance planning may not work to protect your “reputation, gh,

and you should prepare yourself for criticism in the face of a bad outcome.

7 EVIDENCE ON MIXING

A. Zero-Sum Games

i ismis-
Early researchers who performed laboratory experiments wlere Iierllte1:‘asllyb(ji;sc o
i u
i i i Douglas Davis and Chatles Holt,
sive of mixed strategies. To quote D . prk il o
i i if e observed fipping coins, and when :
experiments are rarely (if ever) ! ‘ e
ilibri domization, subjects have exp
that the equilibrium involves ran . X] prse
and skepticism.”" When the predicted equilibrium entails rmxmj1 two orp o
gics, subyj i rou o
i | results do show some subjects in the g
ure strategies, experimenta B
]:umg one of the pure strategies and others pursuing another, but this do

0, " . ive
S i omics (Princeton: Princeton Univer-
9pouglas D. Davis and Charles A. Holt, Experlmen[al Econ

sity Press, 1993), p. 99,
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constitute true mixing by an individual player. When subjects play zero-sum
games repeatedly, individual players often choose different pure strategies
over time. But they seem to mistake alternation for randomization, that is, they
switch their choices more often than true randomization would require.

Later research has found somewhat better evidence for mixing in zero-sum
games. When laboratory subjects are allowed to acquire a lot of experience, they
do appear to learn mixing in zero-sum games. However, departures from equi-
librium predictions remain significant. To quote Camerer, “The overall picture is
that mixed equilibria do not provide bad guesses about how people behave, on
average.”!!

An instance of randomization in practice comes from Malaya in the late
1940s.'2 The British army escorted convoys of food trucks to protect the trucks
from communist terrorist attacks. The terrorists could either launch a large-scale
attack or create a smaller sniping incident intended to frighten the truck drivers
and keep them from serving again. The British escort could be either concen-
trated or dispersed throughout the convoy. For the army, concentration was bet-
ter to counter a full-scale attack, and dispersal was better against sniping. For
the terrorists, a full-scale attack was better if the army escort was dispersed, and
sniping was better if the escort was concentrated. This zero-sum game has only
a mixed-strategy equilibrium. The escort commander, who had never heard of
game theory, made his decision as follows. Each morning, as the convoy was
forming, he took a blade of grass and concealed it in one of his hands, holding

both hands behind his back. Then he asked one of his troops to guess which
hand held the blade, and he chose the form of the convoy according to whether
the man guessed correctly. Although the precise payoff numbers are difficult to
judge and therefore we cannot say whether 50-50 was the right mixture, the of-
ficer had correctly figured out the need for true randomization and the impor-
tance of using a fresh randomization procedure every day to avoid falling into a
pattern or making too much alternation between the choices

The best evidence in support of mixed strategies in zero-sum games comes
from sports, especially from professional sports, in which players accumulate a
great deal of experience of such games, and their intrinsic desire to win is but-
tressed by large financial gains from winning.

Mark Walker and John Wooders examined the serve-and-return play of top-
level players at Wimbledon.”® They model this interaction as a game with two
players, the server and the receiver, in which each player has two pure strategies.

"'For a detailed account and discussion see Chapter 3 of Colin E Camerer, Behvioral Game Theory
(Princeton; Princeton University Press, 2003). The quote is from p. 468 of this book.

RS Beresford and M, H. Peston, “A Mixed Strategy in Action,” Operations Research, vol. 6, no. 4
(December 1955), P 173-176,

"Mark Walker and John Wooders, “Minimax Play at Wimbledon,” American Economic Review,
vol. 91, no. § (December 2001), pp. 1521-1538.
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The server can serve to the receivers forehand or backhand, and the receiver
can guess to which side the serve will go and move that way. Because serves are
so fast at the top levels of men's singles, the recelver cannot reacl after observing
the actual direction of the serve; rather, the receiver must move in anticipation
of the serve’s direction. Thus, this game has simultaneous moves. Further, be-
cause the receiver wants to guess correctly and the server wants to wrong-foot
the receiver, this interaction has a mixed-strategy equilibrium.

if the tennis players are using their equilibrium mixtures
the server should win the point with the same
the receiver's forehand or backhand. An actual
d or more points played by the same two play-
lication holds. Walker and

in the

serve-and-return game,
probability whether he serves to
tennis match contains a hundre
ers; thus there is enough data to test whether this imp
Wooders tabulated the results of serves in 10 matches. Each match contains four
kinds of serve-and-return combinations: A serving to B and vice versa, com-
bined with service from the right or the left side of the court (Deuce ot Ad side).
Thus they had data on 40 serving situations and found that in 39 of them the
server's success rates with forehand and backhand serves were equal to within
acceptable limits of statistical errot.

The top-level players must have had enough general experience playing the
game, as well as particular experience playing against the specific opponents, to
have learned the general principle of mixing and the correct proportions to mix
against the specific opponents. However, in oné respect the servers’ chaices de-
parted from true mixing. To achieve the necessary unpredictability, there should
be no pattern of any kind in a sequence of serves: the choice of side for each
serve should be independent of what has gone before. As we said in reference
to the practice of mixed strategies, players can alternate too much, not realiz-
ing that alternation is a pattern just as much as repeating the same action a few
times would be a pattern. And indeed, the data show that the tennis servers al-
ternated too much. But the data also indicate that this departure from true mix-
ing was not enough for the opponents to pick up and exploit.

Penalty kicks in soccer are another good context in which to study mixed
strategies. Two such studies find firm support for predictions of the theory.

Kickers usually kick with the inside of the foot. Therefore the natural direction
of kicking for a right-footed kicker is to the goalie’s right; fora lefi-footed kicker
it is to the goalie’s left. For simplicity of writing we will refer to the natural side as
“Right.” So the choices are Left and Right for each player. When the goalie chooses
Right, it means covering the kicker's natural side. Using a large data set from pro-
fessional soccet leagues in Europe, Ignacio Palacios-Huerta constructed the pay-
off table of the kicker’s average success probabilities shown in Figure 7.9."

ligee “Professionals Play Minimax," by Ignacio Palacios-Huerta, Review of Economics Studies:

vol. 70, no. 20 (2003), pp. 395-415.
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GOALIE
Left Right
Left 5
KICKER - 2
Right 93 70

FIGURE 7.9 Soccer Penalty Kick Success Probabilities in European Major Leagues

mixT;l_lS game is 31.n.11]:?r to th(? tennis-point game and similarly has only a
ed-strategy equilibrium. Using the opponent’s indifference property, it i
easy to calculate that the kicker should choose Left 38.3% of the timepanfiy‘R' Ills
61.7% of the time. This mixture achieves a success rate of 79.6% no matter lﬁ t
;l:f:tg:atliieR(':hsoses. The goalie should choose the probabilities of coverin;v h:;
nd Ri; i i
Lo and I Ec éets(: :;:;77 ;2; .58.3 respectively; this mixture holds the kicker
What actually happens? Kickers choose Left 40.0% of times, and li
choose Ijeft 41.3% of the times. These values are startlingly close to’ the thgoal le's
ca.l pred}ctions. The chosen mixtures are almost exploitation proof. The k?ol:eu-'
mix .a(:'hle.ves a success rate of 79.0% against the goalie's Left and 80‘.70 agai Ct‘:;S
goalie’s Right. The goalies’ mix holds kickers down to 79.3% if the hg =7
and 79.7% if they choose Right. ' v choose Lek
In :‘m earlier paper, Pierre-Andre Chiappori, Timothy Groseclose, and St
ven Levitt used similar data and found similar results.”® They also aneil zed t}T_
whole sequence of choices of each kicker and goalie and did not even};md t N
much alternation. Thus these findings suggest that behavior in soccer pena:)t(})r

B. Non-Zero-Sum Games

;:z::l;(;gd (Zie;rlments on games with mixed strategies in non-zero-sum
i Rgre. negative l‘e.SL.lltS than experiments involving mixing in
- ea;:h 1ls is r’wt su.r%)rn.;mg. A.s we have seen, in such games the
el e ptayers. eq.ulhmem mixture keeps her opponent indiffer-
ot p 're strategies is a logu.:al property of the equilibrium. Unlike in

games, in general each player in a non-zero-sum game has no positive or

“Plerre- i i, Ti
librin WhenAPnl:;irCslhlapgon, Timothy Groseclose, and Steven Levitt, “Testing Mixed Strategy Equi
) are Heterogeneous: The C i i :
iz B e Case of Penalty Kicks in . i i
tew, vol. 92, no. 4 (September 2002), pp. 1138-1151. Y I
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p the other players indifferent. Then the reasoning un-

purposive reason 1o kee
ayers 1o comprehend

derlying the mixture caleulations is more difficult for pl
and learn. This shows up in their behavior.

Ina group of experimental subjects playing a non-zero-sum game, we may
see some pursuing one pure strategy and others pursuing another. This type of
mixing in the population, although it does not fit the theory of mixed-strategy
equilibria, does have an interesting evolutionary interpretation, which we ex-
amine in Chapter 13.

Other experimental issues concera subjects who play the game man
When collecting evidence on play in non-zero-sum games, it is important to
rotate or randomize each subject’s opponents (o avoid tacit cooperation in re-
peated interactions. In such experiments, players change their actions from
ane play to the next. But cach player's mixture probabilities should be gener-
ated using the other players indifference conditon; therefore these probabili-
{ies should not change when 4 player’s own payoffs change. (You will find more
on this in Chapter 8, Section 6.B.) But in fact they do."” Thus the changes of ac-
tion from one play to the next may not be true mixing, but some other kind of

y times.

experimentation.
The overall conclusion is that you should interpret and use mixed-strategy

equilibria in non-zero-sum games with, at best, considerable caution.

SUMMARY

Zero-sum games in which one player prefers a coincidence of actions and the

other prefers the opposite often have no Nash equilibrium in pure strategies. In
these games, each player wants to be unpredictable and thus uses a mixed strat-
egy that specifies a probability distribution over her set of pure strategies. Each
player’s equilibrium mixture probabilities are calculated using the opponent’s
indifference property, namely that the opponent should get equal expected
payoffs from all her pure strategies when facing the first player’s equilibrium
mix. In zero-sum games each player wants to keep the other indifferent in this
way, since any clear advantage for the opponent would only work to the first
player's disadvantage.

Non-zero-sum games can also have
calculated from the opponent’s indifference property. But here the motivation

mixed-strategy equilibria that can be

18)ack Ochs, “Games with Unique Mixed-Strategy Equilibria: An Experimental Study,” Games and

Economic Behavior, vol. 10, no. 1 (July 1995), pp- 202-217.
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ff)r Feepmg the opponent indifferent is weaker or missing; therefore such equi-
libria have less appeal and are often unstable. !
o Wl;en }1s1r?g mixed strategies, players should remember that their system
ran omllzatlon should not be predictable in any way. Most important, the
should avoid excessive alternation of actions. e
mati\/lu«z;il strgtegies are a special case of continuous strategies but have additional
ers that deserve separate study. Mixed-strat ilibri
8 - egy equilibria can be interpreted
as outcomes in which each player has i i
. correct beliefs about the probabiliti
with which the other pla; e
yer chooses from among her underlyi i
gy i lying pure actions.
ad rfrfm;ed strategy equilibria may have some counterintuitive properties when
fh yoffs c;r p.layers change. Laboratory experiments show only weak support for
me use of mixed s.trate'gles,. But mixed-strategy equilibria give good predictions in
any zero-sum situations in sports played by experienced professionals.

KEY TERMS

expected payoff (215) opponent’s indifference property (222)

SOLVED EXERCISES

S1. WITPjn ? two-by-two game has a mixed-strategy equilibrium, a player’
equilibrium mixture is designed to yield her the same expec,tedp : of?f
when'used against each of the other player’s pure strategies.” True orpfa)lrs ?
Explain and give an example of a game that illustrates your answer. °

$2. Consider the following game:

COLUMN
Safe Risky
Safe 4,4
ROW a1
Risky | 1.4 66

(a) Which game does thi 3 i
Explaif s this most resemble: tennis, assurance, or chicken?
(b) Find all of this game’s Nash equilibria.
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s3. The following table illustrates the money p

$4.

S5.
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ayoffs associated with a two-

person simultaneous-play game.

COLUMN
Left Right
Up 1,16 4,6
row Down 2,20 3,40

(a) Find the Nash equilibrium in mixed sl.rfllegi.es for ‘tt‘lis gan';e.

(b) What are the players' expected payoffs in this equilibrium? e Do

(¢) The two players jointly get the most money when Row p :y o ;)
However, in the equilibrium, Row does not always play Down. "w
not? Can you think of ways in which a more cooperative outcome can

be sustained?

Recall Exercise $6 from Chapter 4, about an old lady looking for help tfnt)ss-
ing the street. Only one person is needed to help her; r.nf)r.e are okay 1}11 1110
better than one. You and I are the two people in the vicinity who can‘“e p;
each has to choose simultaneously whether to do so. Each of us wi geh
pleasure worth 3 from her success (no matter w.ho helps her). But e.ac
one who goes to help will bear a cost of 1, this being the value ofdour\:l:nitz
taken up in helping. You were asked to set this up as ‘a game an T;u ue
the payoff table in Exetcise $6 of Chapter 4. l!‘ you did that exercise, :{ i
also found all of the pure-strategy Nash equilibria of the game. Now fin
the mixed-strategy equilibrium of this game.

Revisit the tennis game in Section 2.A of this che'ipter. Recall that t.he
mixed-strategy Nash equilibrium found in that sectlo.n had Eve‘rlt. pl:y(;ng
DL with probability 0.7, while Navratilova played DL with probability l. X
Later in the match Evert injures herself, so her DL shots'are much s O\t/)vler.
and easier for Navratilova to defend. The payoffs are now given by the table:

NAVRATILOVA

DL cC
DL 30 60

VERT
£ \ cC 90 20

(a) Relative to the game before her injury (see Figure 7.1), Evert’s payoffs

are reduced when she plays DL and Navratilova plays either DL o; COCl;
Overall, DL seems much less attractive to Evert than before. YVoul v
expect Evert to play DL more or less, or stay the same? Explain.

S6.
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(b) Find each player’s equilibrium mixture for the game above. What is the
expected value of the game to Evert?

(c) How do the equilibrium mixtures found in part (b) compare with those
of the original game? Explain why each has changed or hasn't changed.

Undeterred by their experiences wih chicken so far (see Section 4.B), James
and Dean decide to increase the excitement (and the stakes) by starting
their cars farther apart. This way they can keep the crowd in suspense lon-
ger, and they'll be able to accelerate to even higher speeds before they may
or may not be involved in a much more serious collision. The new game
table thus has a higher penalty for collision:

DEAN
Swerve | Straight
Swerve 0,0 1,1
JAMES
Straight 1,1 -10,-10

(a) What is the mixed-strategy Nash equilibrium for this more dangerous
version of chicken? Do James and Dean play Straight more or less often
than the game shown in Figure 7.7?

(b) What is the expected payoff to each player in the mixed-strategy equi-

librium found in part (a)?

James and Dean decide to play the chicken game repeatedly (say, in

front of different crowds of reckless youths). Moreover, because they

don't want to collide, they collude. They alternate between the two
pure-strategy equilibria, so that half the time they play (Swerve,

Straight) and half the time they play (Straight, Swerve). Assuming they

play an even number of games, what is the average payoff to each of

them when they alternate between the two pure-strategy equilibria? Is
this better or worse than they can expect from playing the mixed-strategy
equilibrium? Why?

After several weeks of not playing chicken as in part (c),James and Dean

agree to play again. However, it has been so long since their last meet-

ing that each of them has entirely forgotten which pure-strategy Nash
equilibrium they played last time. Worse still, they don't realize this
until they're revving their engines moments before starting the game,
and—sadly—they live decades before the advent of cell phones. Instead
of playing the mixed-strategy Nash equilibrium, each of them tosses

a separate coin to decide which strategy to play. What is the expected

payoff to James and Dean when each mixes 50-50 in this game? How

does this compare with their expected payoff when they play their

<

(c

d
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equilibrium mixtures? Explain why these payoffs are the same or dif-

ferent from those found in part {(c).

§7. Consider the following game:

58.

$9.

COLUMN
Left Right
Up 2,1 -1,4
Row Down 0,3 3,2

(a) Show that this game has no pure-strategy .[\fnsh equilihr_ilum. i

(b) Find the unigue mixed-strategy Nash equilibrium to this gamr..ld o

(@) If the payofis for the cell (Up, Left) were changed to (4, l): wm; civs{s
equilibriunt p-mixture increase, decrease, or remain the same? Explain

=

our answer.
(d) z,Nhat would happen to the equilibrium if the payoffs for the (Up, Left)

cell were instead changed to (-1, 1)?

e S7 in Chapter 6 introduced a simplified version of baseball, and

Exercis (
aneous-move game has no Nash equi-

part (e} pointed out that the simult sh 6
librium in pure strategies. This is because pitchers and batters have con-
flicting goals. Pitchers want to get the ball past batters, but batters want 10

connect with pitched balls, The game table is as follows:

PITCHER

Throw fastball | Throw curve

Anticipate fastball 0.30 0.20

BATTER

Anticipate curve 0.15 0.35

(a) Find the mixed-strategy Nash equilibrium to this simplified baseball game.
(b) What is each player's expected payoff for the game?

the pitcher wants to improve his expecte‘d
payoff in the mixed-strategy equilibrium of this game by slowing down ?115
fastball, thereby making it more similar to a curve ha!I: Ass?j me l}: at sln.wing
down the pitched fastball changes the payolfto the ]‘lll.lcl: in thllz anticipate
fastball/throw fastball” cell from 0.30 to 0.25, and the pltclwrs, payoff ad(;
justs accordingly. Can this modification improve tht.? pitcher’s expectee
payoff as desired? Explain carefully how you determine the answer hert
and show your work. Also, explain why slowing the fastball can or canno

improve the pitcher’s expected payoff in the game.

Extending Exercise S8,
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$10. In the last minute of a football game, the home team is down by 5 points.

The home team has the ball, and it’s third down and goal from the rival
team’s 20-yard line. The home team thus has two chances (third down and
fourth down) to move the ball a total of 20 yards and win the game, If it
fails, the rival team will win. For each team, the payoff for winning the foot-
ball game is 1, and the payoff for losing is 0.

On each down the home team can choose to run either a 10-yard play or
a 20-yard play. For its part, the rival team can anticipate (and prepare for)
either the 10-yard play or the 20-yard play. The success rate of the home
team’s play given each team’s strategy is as follows:

RIVAL TEAM
Anticipate 10-yard play | Anticipate 20-yard play
10-yard play 80% 100%
HOME TEAM
20-yard play 100% 50%

The success of a particular play is all or nothing. If it succeeds, it yields
exactly the number of yards intended, but if it fails, the home team gains 0
yards.

As in Chapter 6, this game combines simultaneous and sequential
moves. There are three possible outcomes on third down: the home team
can gain 0 yards if its play fails, it can gain 10 yards if a 10-yard play suc-
ceeds, or it can gain 20 yards and win the game if a 20-yard play succeeds.
On fourth down (if necessary), the home team will thus either have 10 more
yards or 20 more yards to go. To solve the larger two-down game, we use
rollback and start with the fourth down.

(a) Suppose the home team’s third-down play failed, so that there are still
20 yards to go on fourth down. What strategy must the home team play
in this situation? Given that, what's the rival team's best response?

(b) Given your answer in part (a), what is the home team'’s expected payoff
when there are 20 yards to go on fourth down?

(c) Suppose the home team ran a successful 10-yard play on third down,

so that there are 10 yards to go on fourth down. Since the end zone is 10

yards deep, note that the home team has both strategies available. What

is the mixed-strategy Nash equilibrium on fourth down in this situation?

Given your answer in part (c), what is the home tearmn’s expected payoff

when there are 10 yards to go on fourth down?

Using the expected payoffs for fourth down with 20 yards to go and
fourth down with 10 yards to go as calculated above, we now roll back
and look at what the home team might do on third down. We construct
a table for the simultaneous-move game at third down and 20.

(d

=
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(e) What are the expected payoffs for each team when the home team runs
the 20-yard play on third down while the rival team anticipates the
20-yard play? (Use your answer to part (b) and remember that there is
2 50% success rate for the 20-yard play when the rival team anticipates
the 20-yard play.)

(fy What are the expected payoffs to each team when the home team

runs the 10-yard play on third down and the rival team anticipates the

10-yard play on that down? (Use your answer in part (d) and remem-
ber that there is an 80% success rate for the 10-yard play when the rival
team anticipates the 10-yard play.)

What are the expected payoffs to each team when the home team runs

the 10-yard play on third down while the rival team anticipates the

20-yard play?

(h) Now construct the game table for third down with 20 yards to go. (Use
your answers from parts (e), (), and (g).

(i) What are the equilibrium p-mix and g-mix for each team on third

L5y

(8

down?

(j) Whatis the expected payoff to the home team for the overall two-stage

game?

The recalcitrant James and Dean are playing their more dangerous vari-
ant of chicken again (see Exercise S6). They've noticed that their payoff
for being perceived as “tough” varies with the size of the crowd. The larger
the crowd on hand, the more glory and praise each receives from driving
straight when his opponent swerves. Smaller crowds, of course, have the
opposite effect. Let k> 0 be the payoff for appearing “tough.” The game
may now be represented as:

DEAN

Swerve | Straight

Swerve 0,0 -1,k

JAMES
Straight k -1 -10,-10

(a) Expressed in terms of k, with what probability does each driver play
Swerve in the mixed-strategy Nash equilibrium? Do James and Dean
play Swerve more or less often as k increases?

(b) In terms of k, what is the expected value of the game to each player
when both are playing the mixed-strategy Nash equilibrium found in
part (a)?

(¢) At what value of k do both James and Dean mix 50-50 in the

mixed-strategy equilibrium?
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(d) How l?rge must k be for the average payoff to be positive under the al-
ternating scheme discussed in part (c) of Exercise $62

$12. Consider the following zero-sum game:

$13.

COLUMN
Left Right
Up 0 A
ROW
Down B C

The entries are the Row player's payoffs, and the numbers A, B, and C are

all positive. What other relations among these numbers (for exar;lple A<B

< C) must be valid for each of the following cases to arise? ,

(a) Atleast one of the players has a dominant strategy.

(b) Neither player has a dominant strategy, but there is a Nash equilibrium
in pure strategies.

(c) There is no Nash equilibrium in pure strategies, but there is one in
mixed strategies.

(d) .Given that case (c) holds, write a formula for Row’s probability of choos-
ing Up. Call this probability p, and write it as a function of A, B, and C.

_(OpFional) Return to the game between Evert and Navratilova as shown
in Figure 7.1. Suppose that Evert is risk-averse, as discussed in Appendix
2 to this chapter, so that she dislikes uncertainty in outcomes. In particu-
¥ar, suppose that Evert has a square-root utility function, so that her util-
ity equals the square root of the payoff listed in the table, and suppose that
Navratilova remains risk neutral, so that her utility equals her payoff. Sup-
pose that the players know each other’s utility functions, and each 'la ir
wishes to maximize her expected utility. ' o
(a) Find the mixed-strategy Nash equilibrium of this game.
(b) H(.)v‘{ did the two players’ mixing proportions change, relative to the
or}glnal case where both players were risk neutral? Explain why this
might have happened.
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UNSOLVED EXERCISES
Ul. Find the Nash equilibria in mixed strategies for the following games.
@ COLUMN
e —
Left Right
Up 4 -1
ROW
Down 1 2
(b)
COLUMN
Left Right
Up 3 2
ROW
Down 1 4

U2. Exercise S11 in Chapter 4 introduced the game Evens or Odds, Wl"li‘Ch .has
no Nash equilibrium in pure strategies. There is, however, an equilibrium
in mixed strategies. . N
(a) If Anne plays 1 (that is, she puts in one finger) w1'th probablllt?: » whzlit

is the expected payoff to Bruce from playing 1, in terms of p? What is
ing 22
his expected payoff from playing 22 .
(b) What level of p will make Bruce indifferent between playing 1 and
playing 27 . o
(¢) If Bruce plays 1 with probability g, what level of ¢ will make Anne indif
ferent between playing 1 and playing 22 . e e
(d) Write the mixed-strategy equilibrium of this game. What is the e
pected payoff of the game to each player?

U3. In football the offense can either run the ball or pass the t?a%l, wherezs tl;e_
defense can either anticipate (and prepare for) arun or anticipate (an prds
pare for) a pass. The defense wants to guess corfectly to reduce the yal;n_
gained by the offense, whereas the offense wants its opponents to guessoffs
correctly so that it can gain more yards. Assume that the ex;?ecte pay!

(in yards) for the two teams on any given down are as follows:

U4.

Us.
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DEFENSE
Anticipate Run Anticipate Pass
Run 1 5
OFFENSE
Pass 9 -3

(a) Show that this game has no pure-strategy Nash equilibrium.

(b) Find the unique mixed-strategy Nash equilibrium to this game.

(c) Explain why the mixture used by the offense is different from the mix-
ture used by the defense.

(d) How many yards is the offense expected to gain per down in equilibrium?

On the eve of a problem-set due date, a professor receives an e-mail from one
of her students, who claims to be stuck on one of the problems after working
on it for more than an hour. The professor would rather help the student if he
has sincerely been working at the problem, but she would rather not render aid
if the student is just fishing for hints. Given the timing of the request, she could
simply pretend not to have read the e-mail until later. Obviously, the student
would rather receive help whether or not he has been working on the problen.
But if help isn't coming, he would rather be working instead of slacking, since
the problem set is due the next day. Assume the payoffs are as follows:

STUDENT
Work and ask for help | Slack and fish for hints
Help student 3,3 -1,4
PROFESSOR
Ignore e-mail -2,1 0,0

(a) What is the mixed-strategy Nash equilibrium to this game?
(b) What is the expected payoff to each of the players?

Return again to the tennis rivals Evert and Navratilova, discussed in Section
2.A. Months later, they meet again in a new tournament. Evert has healed
from her injury (see Exercise $5), but during that same time Navratilova has
worked very hard on improving her defense against DL serves. The payoffs
of the game are now given by the table:
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NAVRATILOVA

DL cC
DL 25 g

EVERT
cC 90 20

(a) Find each player's equilibrium mixture for the game above.

(b) What happened to Evert's p-mixture compared t0 the game presented
in Section 2.A? Why?

(c) What is the expected value of the game 1o Evert? Why is it different
from the expected value of the original game in Section 2.A?

U6. Section 4.A of this chapter discussed mixing in the battle of the sexes game
between Harry and Sally.

(a) What do you expect to happen to the equilibrium values of p and g
found in the chaptet if Sally decides she really likes Local Latte a lot
more than Starbucks, so that the payoffs in the Local Latte, Local Latte
cell are now 1, 32 Explain your reasoning.

(b) Now find the new mixed-strategy equilibrium. What are the new equilib-
rium values of p and g2 How do they compare with those of the original
game?

(c) What is the expected payoft to each player in the new mixed-strategy
equitibrium?

(d) Do you think Harry and Sally might play the mixed-strategy equilib-
rium in this new version of the game? Explain why or why not.

U7. Consider the following variant of chicken, in which James's payoff from
being “tough” when Dean is “chicken” is 2, rather than 1.

DEAN

Swerve | Straight

Iiﬂewe 0,0 -1,1
JAMES

Straight 2,-1 -2, =2
(a) Find the mixed-strategy equilibrium in this game, including the ex-
pected payofts for the players.

Compare the results with those of the original game in Section 4.8 of this
chapter. Is Dean's probability of playing Straight (being tough) higher
now than before? What about James's probability of playing Straight?
Whathas happened to the two players’ expected payolfs?Are these differ-
ences in the equilibrium outcomes paradoxical inlight of the new payofl
structure? Explain how your findings can be understood in light of the
opponent's-indifference principle.

b

=

<

(c
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U8. Lucy offers to play the following game with Charlie: “Let us show penni
to each other, each choosing either heads or tails. If we both show Eea:iue?
pay you $3. If we both show tails, I pay you $1. If the two don’t match .
pa.y me :$2." Charlie reasons as follows. “The probability of both heads‘ i}slolu
4, in which case I get $3. The probability of both tails is 1-4, in which I
get $1. The probability of no match is 1-2, and in that case ’I pay $2 Sf)aisteis

a fair game. "Is he Iighﬁ. If not, (a) Why ot, and (b) what is
» not, y'
: (b) 18 Lucys expected

U9. Consider the following game:

COLUMN
Yes No
Yes X, X
ROW !
No 1,0 1,1

a) Fi i
(a) ‘Ac.’)}l; av;l?satth\;lzgi i(l)ifb fiﬂfne; this game have a unique Nash equilibrium?
(b) Ifor.what values of x does this game have a mixed-strategy Nash equi
librium? With what probability, expressed in terms of x, does ecallul};
player play Yes in this mixed-strategy equilibrium? ‘ ’
(c) For the values of x found in part (b), is the game an example of an as-
surance game, a game of chicken, or a game similar to tennis? Explain.

U10. Consider the following game:

COLUMN
L R
u 3,1
ROW L
D 0,2 2,3

(z) Find and describe all pure-strategy Nash equilibria.

(b) If ljiow plays U with probability p and Column plays L with probability
q., emonstrate that p = 0.75, g = 0 is a mixed-strategy Nash equilib-
rium for this game. !

(©) Is p = 0.4, ¢ = 0 a mixed-strai itibri

4, -strategy equilib i i
e gy equilibrium for this game? Explain
(d) Is p=1, g = 0.5 a mixed ili
i i -strategy equilibri i i
o= gy equilibrium for this game? Explain
(e) How many mixed-strategy equilibria does this game have? Explain.
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U11.Consider another simplified version of baseball. The pitcher can throw ei-
ther a fastball or a curveball; the batter can either swing at the pitch or take
(not swing). These choices are simultaneous for each pitch. On the first
pitch, if the batter swings at a curveball or takes a fastball, he strikes out
and gets a 0. If the batter swings at a fastball, he has a probability of 0.75 of
hitting a home run and gettinga 1,and a probability of hitting a fly ball and
getting a 0. If the batter takes a curveball, there is a second pitch.

On the second pitch, the first three combinations (swing at a curveball,
take a fastball, and swing at a fastball) work as before; if the batter takes a
curveball on the second pitch, he walks and earns 0.25.

This is a zero-sum game; the batter tries to maximize his expected score

(his probability-weighted average payoff), and the pitcher tries to mini-
Note that the two pitches constitute a

mize the batter’s expected score.
sequential-move game, whereas each individual pitch is a simultaneous-

move game.

(a) Use the techniques of Chapter 6 to draw a game tree to represent this
two-stage game.

Solve this game using rollback; construct a table of payoffs for the second
pitch, and use them to determine the table of payoffs for the first pitch.
Show that on the first pitch, the batter should take with a probability of 0.8.
(c) What is the pitcher’s strategy in the subgame-perfect equilibrium?

(d) What is the batter’s expected score in this equilibrium?

(e) Explain intuitively why the batter's probability of swinging is so small.

(b

U12. (Optional) Exercises S5 and U5 demonstrate that in zero-sum games such
as the Evert-Navratilova tennis rivalry, changes in a player's payoffs can
sometimes lead to unexpected or unintuitive changes to her equilibrium
mixture. But what happens to the expected value of the game? Consider
the following general form of a two-player zero-sum game:

COLUMN
L R
U a b
ROW
D 4 d

Assurne that there is no Nash equilibrium in pure strategies, and assume
that a, b, ¢, and d are all greater than or equal to zero, Can an increase inany
one of a, b, ¢, or dlead to a lower expected value of the game for Row? If not,

prove why not. If so, provide an example.

U13. (Optional) Return to the game in Exercise $3. Suppose that both players
are risk averse, as discussed in Appendix 2 of this chapter. In particular,
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;T:;osif that e;ch player has a square-root utility function, and that each
r knows the other’s utility function. E ' imi
. ty n. Each player wants to maximize his
EZ)) ;ind télle mixed-strategy Nash equilibrium of this game.

ow did the two players’ mixing proportions change relative to Exer-

cise §3, where both players were ri i
el \Z re risk neutral? Explain why this might

|
Appendix: Probability
and Expected Utility

To c i
o ;tl::lj:: ;hz (:xp;cted payoffs and mixed-strategy equilibria of games in this
3 ad to do some simple manipulation of probabiliti
bilities. S i
rules govern calculations involvi ili o e
ving probabilities. Many of ili
with them, but we give a bri : LR o st
N ef statement and explanation of i
' the basics here b
way of reminder or remediation, a i : e
, as appropriate. We also stat
expected values of random numerical values, ¢ how o cslete
We al i lity
— Wshoe nc?}?:lde: the ex;;ected utility approach to calculating expected
X outcomes of your action in a particul i
e bettms o e p ular game are not certain,
pponent is mixing strategies or be
S sty S cause of some uncer-
y not want to maximize your expected
as we have generally assumed in i i
our analysis to this point; rath
to give some attention to the riski e e i
riskiness of the payoffs. As i i
ter 2, such situations can be h; i A ey e
y andled by using the expected i
probability-weighted avera, i S earareseaing 3t i
ges) of an appropriate nonline i
P : ar rescaling of the
or;{etary payoffs. We offer here a brief discussion of how this can be dorgle
oy o(;‘l}ts?}?u:)d certainly read this material, but to get real knowledge and. mas
it, the best thing to do is to use it. The _
. chapters to come i
. g to , especially Chap-
8,9, 13, and 14, will give you plenty of opportunity for practice. e

I THE BASIC ALGEBRA OF PROBABILITIES

Th g
thee fl;::li mtultlor;1 about the probability of an event comes from thinking about
ency with which this event occurs by ch
e y chance among a larger set of
! ly any one element of this I is j i
Bl ! s larger set is just as likely to occur
nce as any other, so finding the probability of the event in whi};h we are
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interested is simply a matter of counting the elements corresponding to that
event and dividing by the total number of elements in the whole large set.!

In any standard deck of 52 playing cards, for instance, there are four suits
(clubs, diamonds, hearts, and spades) and 13 cards in each suit (ace through 10
and the face cards—jack, queen, king). We can ask a variety of questions about
the likelihood that a card of a particular suit or value—or suit and value—might
be drawn from this deck of cards: How likely are we to draw a spade? How likely
are we to draw a black card? How likely are we to draw a 107 How likely are we to
draw the queen of spades? and so on. We would need to know something about
the calculation and manipulation of probabilities to answer such questions. If
we had two decks of cards, one with blue backs and one with green backs, we
could ask even more complex questions (“How likely are we to draw one card
from each deck and have them both be the jack of diamonds?”), but we would
still use the algebra of probabilities to answer them.

In general, a probability measures the likelihood of a particular event or
set of events occurring. The likelihood that you draw a spade from a deck of
cards is just the probability of the event “drawing a spade.” Here the large set
has 52 elements—the total number of equally likely possibilities—and the
event “drawing a spade” corresponds to a subset of 13 particular elements.
Thus you have 13 chances out of the 52 to get a spade, which makes the prob-
ability of gettinga spade in a single draw equal to 13/52 = 1/4 = 25%. To see
this another way, consider the fact that there are four suits of 13 cards each,
so your chance of drawing a card from any particular suit is one out of four,
or 25%. If you made a large number of such draws (each time from a com-
plete deck), then out of 52 times you will not always draw exactly 13 spades;
by chance you may draw @ few more or a few less. Bul the chance averages out
over dilferent such occasions—aover different sets of 52 draws, Then the prob-
ability of 25% is the average of the frequencies of spades drawn ina large num-

ber of observations.

IWhen we say by chance,” we simply mean that a systematic order cannot e detected in the
outcome or that it cannot be determined by using avallable scientific methads of prediction and cal-
culation. Actually, the motions of cains and dice are fully determined by laws of physics, and highly
skilled people can manipuiate decks of cards but, for all practical purposes, coin tosses, rolls of dice,
or card shuffles are devices of chance thit can be used 10 g i 1
randomuess can be harder to achieve than you think For example, a perfeer shufile, where adeckof
cards ks divided exactly in half and then interleaved by dropping cards one at & time alternately from
each, may seem a good way 0 destroy the inirial order of the deck. But Comell mathematickan Prersi
Dinconis has shown that, after eight of the shulfles, the original oxder is fully restored. For slightly

imperfect shuffles that people carry out in reality, he firids that some onder persists through six, but
delenly apy on the I Sew “How to Win at Poker, and Other Selenco Les:
see Deborah .

I
sons,” The Economist, Octoher 12, 1996. For an interesting discussion of such topics,
Bennett, Randomness (Camhridge: Harvard University Press, 1998), chaps. 6-9.

*Bennett, Randamess, chaps. 4 and 5, offers several examples of such calculations of probabilities
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T e

ond o};,ia?:ie?;f nﬁf[;):(zﬁablhtles simply develops such ideas in general terms
to do the thinking fro g Y'O ey ‘apply mechanically instead of having
of these Pmlﬂbils fi - SCla.t ch every time. We will organize our discussion
i dra;vin ¥ i':il'lnl.ﬂah around the types of questions that one might
backed).” This mc?hcill s"flru:n @ standard deck (or two: blue backed and green
las for you to use i'lte: \‘f allow us to provide both specific and general formu-
out other («luestin;m .h p— .m’.: card-drawing analogy to help you reason
One other point to noatefjlul I’T;b«’lbllines that you encounter in other contexs.
tles as porcontagos bm.t }rll or1 inary langflage, it is customary to write probabili-
B , e algebra requires that they be written as fractions or

; thus instead of 25% the mathematics works with 13/52 or 0.25. We will

use one or the oth ep ndi O € 1 a y n
se er, depe n n the occasion; be e mean the
g S H aware that the € t!

A. The Addition Rule

’g::kfi}rls(: Vglllii:w:: that we ask are: If we were to draw one card from the blue
ey SpZde ?e Vv\}/e t;) draw a spade? And how likely are we to draw a card
b de.t e fi ready know. that the probability of drawing a spade is
e e;n;mgd that earlier. But what is the probability of drawing a
it dsp())a; e? It is the same likelihood of drawing a club or a diamond
et : spade. It sk?ouFd. be clear that the probability in question
in i che proablty s 13/52 e + 15153 (et 15198 oy
iy . . : iamonds) + 13/52 (hearts) =
at?ii t;l;k;est;l; 1:1 gl;revzj)dael (;nttsrzgitanon of the question is the clue that(the p:())b-
drav‘v/\ifng a card from any of thise f}?ret;escjiltlss.e S
o geﬂ(izt]:) tm(;fi easily hav(? found our answer to the second question by
B o gf dr:g.a sgade is what ilzlippens the other 75% of the time. Thus
v 1/\S11n§t not a spade 1§ 75% (100% — 25%) or, more formally,
o, .o bt.ained }(1) enbthe cas? with probability calculations, the same
e e tefre y t.wo different routes, entailing different ways of
gt e fnh.or Wth.h we ‘are trying to find the probability. We will

i differenpt)m oh this later in tk‘ns Appendix, where it will become clear
emom e :st ods of calculatlon_can sometimes require vastly different

togmrette S.hor t};(:lltlsdlel\lr(il;: H(i)ézert{ence, you will discover and remember

; n
ferent routes, when correctly followed, lela[g: 't: ‘:h‘:’ ;Zfzzt:iiat?:;:;(:; .

fyou want a more detailed expasition of the following addition and multiplication rules, as well
detail pasition fi ng iti p.
)

practice these rules, we recomm. i
g f + end David Freema isani
3rd ed. (New York: Norton, 1998), chaps. 13 and 14 B

2 i
PS more exercises ti
urves, Statistics,
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To generalize our preceding calculation, we note that, if you divide the set

of events, X, in which you are interested into some number of subsets, Y.Z .. .
none of which overlap {in mathematical terminology: such subsets are said to
be disjoint), then the probabilities of each subset occurring must sum to the
probability of the full set of events; if that full set of events includes all possible
outcomes, then its probability is 1. In other words, if the occurrence of Xrequires
the occurrence of any one of several disjoint ¥, Z .« then the probability of X
is the sum of the separate probabilities of Y, Z,... Using Prob(X) to denote the
probability that X occurs and remembering the caveals on X (that it requires any
oneof ¥, Z...) and on Y, Z,... (that they must be disjoint), we can write the
addition rule in mathematical notation as Prob(X) = Prob(Y) + Prob(Z) + .

e the addition rule to find the probability of drawing two

Exprcise  Us
ds have identical faces.

cards, one from each deck, such that the two car

8. The Modified Addition Rule

Our analysis in Section A of this appendix covered only situ
set of events could be broken down into disjoint, nonoverlapping subsets.
But suppose we ask, What is the likelihood, if we draw one card from the blue
deck, that the card is either a spade oran ace? The orin the question suggests,
as before, that we should be adding probabilities, but in this case the two
categories “spade” and “ace” are not mutually exclusive, because one card,
the ace of spades, is in both subsets. Thus *spade” and “qce” are not disjoint
subsets of the full deck. So if we were to sum only the probabilities of drawing
a spade (13/52) and of drawing an ace (4/52), we would get 17/52. This would
suggest that we had 17 different ways of finding either an ace or 2 spade
when in fact we have only 16—there are 13 spades (including the ace) and
three additional aces from the other suits. The incorrect answen, 17/52, comes
from counting the ace of spades twice. To get the correct probability in the
nondisjoint case, then, we must subtract the probability associated with the
overlap of the two subsets. The probability of drawing an aceora spade is the
probability of drawing an ace plus the probability of drawing a spade minus
the probability of drawing the overlap, the ace of spades; that is, 13/52 + 4/52 —

1/52 = 16/52 = 0.31.

To make this more general, if you divide the set of events, X, in which you are
interested into some number of subsets ¥, Z, .. > which may overlap, then the
sum of the probabilities of each subset occurring minus the probability of the
overlap vields the probability of the full set of events, More formally, the modi-
fied addition rule states that, if the occurrence of X requires the occurrence of
any one of the nondisjoint yand Z then the probability of X is the sum of the
separate probabilities of Yand Zminus the probability that both ¥ and Zoceur:

Prob(X) = Prob(¥) + Prob(2) — Prob(Yand 2).

ations in which a
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Exenrcise Use the mod
ified addition rule to fi ep ility of drawi g
nd the probabil
two cards, one from each deck, and getting at least one face card

(. The Multiplication Rule

Now we ask, What is the likeli
o ikelihood that whe
ek : : n we draw two cards, on
e aonf ;hem will be spades? This event occurs if we draw a spafitfarg'gl ea}Clh
— ofa slf)ade from the green deck. The switch from orto and in o t :
e ad‘\i/s;t.at we are looking for indicates a switch in mathernatica(l)l(;r o
ion to multiplication. Thus th ili e
: M g s the probability of two spad
5 product of the probabiliti i rom each
el B i« ilities of drawing a spade fi
deck les(s H{(S;) t>< (13/52) = 1/16 = 0.0625, or 6.25%. Not surpI;isinglr;I\r/lv:aCh
s ty o glezt two spades than we were in Section A to get on' Zfe
(Alw: ck to make sure that your cal i i i PN
et brireseriie Outcome.)y culations accord in this way with your
In much the same wa; i
y as the addition rule requi
i sy : quires events t isjoi
evl;:gh;a.non rules requires them to be independent; if we bre(;l]:fidm]mm‘ e
e 0,Cc,umto some number of subsets Y, Z, .. ., those subsets are irtl)zm o
dspade s :::?ﬁe gf one does not affect the probability of the other. Oureg .
e eng lue‘deck .and a spade from the green deck—sati.sfy thisv :cr)lrtlsd_
o gmb :;Tiet;, t(l)lfat 1Z.drawing a spade from the blue deck does nothin;
. getting a spade from th.
e e green deck. If wi -
(wgith A prcoa;:; .11°.r0m the same deck, however, then after we had er\‘/lvvrir: dra‘g
oager be 13/512 1t'y of 13/ ?2), the probability of drawing another spade wojlrt’ia ;
onger be (in fact, it would be 12/51); drawing one spade and th B
T}p:a fe from the same deck are not independent events femasee
e formal :
e Oerequi:te:tfl?ler-lt of the multiplication rule tells us that, if the occur-
o S Etz) s;nllultaneous occurrence of all the several independent
V2, probability of Xis the prod.
e el bl g i : ! uct of the separate probabilities of

EXERCISE ipli i
se Use the multlphcatlon rule to find the probablhty of drawi
wing

two cards, one from each de
N ck, and getti
e, getting a red card from the blue deck and

D. The Modified Multiplication Rule

What if we are asking about the ili
o probability of an event tha
likelihgzze;iir:ﬂ :);curreélces? For instance, suppose that W(te ::E,e\rll\itlilsa? Iils XZ
o eboct: ;);rea raw we get a card that is both a spade and an ace? If
e tust he eebabily of d;rlor.nent, we realize that the probability of this eve'nt
B awing a spade and the probability that our card i

is a spade. The probability of drawing a spade is 13/52 = 317:
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given that we have a spade, is 1/13.

and the probability of drawing an ace,
the product of these two probabilities:

The and in our question tells us to take
(13/52)(1/13) = 1/52.

We could have gotten the same answer by realizing that our question was
the same as asking, What is the likelihood of drawing the ace of spades? The cal-
culation of that probability is straightforward; only 1 of the 52 cards is the ace of
spades, so the probability of drawing it must be 1/52. As you see, how you waord
the question affects how you go about looking for an answer.

In the technical language of probabilities, the probability of a particular
event occurring (such as getting an ace), given that another event has already
occurred (such as getting a spade) is called the conditional probability of draw-
ing an ace, for example, conditioned on having drawna spade. Then the formal
statement of the modified multiplication rule is that, if the oceurrence of Xre-

quires the occutrence of both Yand Z, then the probability of X equals the prod-
et of two things: (1) the probability that v alone occurs, and (2) the probability
that # oceurs given that Yhas already oceuried, or the conditional probability of
7 conditioned on ¥ having already occurred: prab(X) = Prob(Y alone) X Prob
(Zgiven Y).

A third way would be to say that the probability of drawing an ace is 4/52,

and the conditional probability of the suit being a spade, given that the card is
an ace, is 1/4; so the overall probability of getting an ace of spades is (4/52) X 1/4,
More genetally, using the terminology just introduced, we have Prob(X) =

Prob(Z) Prob(Y given Z).

odified multiplication rule to find the probability that,

ExercisE  Usethem
d card is the jack of hearts.

when you draw two cards from a deck, the secon

E. The Combination Rule

We could also ask questions of an even more complex nature than we have tried

so far, in which it becomes necessary {o usé both the addition (or muodified ad-
dition) and the multiplication (o1 modified multiplication) rules simultane-
ously. We could ask, What is the likelihood, if we draw one card from each deck
that we draw af least one spade? As usual, we could approach the calculation
of the necessary probability from several angles, but suppose that we come at
it first by considering all of the different ways in which we could draw at least
one spade when drawing one ¢ard from each deck. There are three possibilities:
either we could get one spade from the blue deck and none from the green deck
(“spade and none") or we could get no spade from the blue deck and a spade
from the green deck (‘none and spade”) orwe could get a spade from each deck
(“spade and spade"); our event requires that one of these three possibilities 0t
curs, each of which entails the oceurrence of both of two independent events.
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It should b i i
Hoould ! : obvml;ls 1.1<?w, by using the ors and ands as guides, how to calculat
—— gettrii/] pr(; 1ablllty. We find the probability of each of the three possible
AN agn Z . east lime spade (which entails three products of two probae
um these probabiliti : ]
e T e es together: (1/4 X 3/4) + (3/4 X 1/4) +
The second approach entai
tails recognizing that
o o at least one spade” “
o g/pll'::)b aesiliare ?}’SJOIDI events; together they constitute a sure ﬂrl)ing Tilr:gefnm
= Andttyh of “at le:ist one spade” is just 1 minus the probability <.)f “not :Iie
g an;i . l-ee event .not any spades” occurs only if the blue card is not a s ady
= pmbabi]gityenfiaidl is not a spade 3/4; so its probability is 3/4 X 3/4 = g/ 16e
of “at least one spade” is t - = . ‘
e 3] is then 1 — 9/16 = 7/16, as we found in
Finally,
occurrenc}; :/)vfe ;(:an folrmally state the combination rule for probabilities: if th
- N requires the occurrence of exactly one of a number of d isjoil y
» ooy i ;
= thi occurrence of Y requires that of all of a number of inde e:zjt; il
: Zz. - ando;:curren}(l:e of Z requires that of all of a number of indeiend:j::zf
v Zoy i, o on, then the probability of X i
i . is the sum of th iliti
Z, ..., which are the products of the probabilities ¥;, ¥, Z eszrObabllmes ”
Y. 02,2, . tor

Prob(X) = Prob(Y) + Prob(Z) + - - -
= Prob(¥}) X Prob(¥,) X - - - + Prob(Z;) X Prob(Z) X - -+ + - - -

EXxERC
ISE  Suppose we now have a thitd (orange) deck of cards. Find the

probablhty ofdrawmg at least one spade when you dr aw one card fror ch
P y a eas

F. Expected Values

If a numeri i
e anl(';ctz;ll :):;imtude (such as money winnings or rainfall) is subject to
e on any one of n possible val

e values X), X, ..., X, with re-

nghmdpa ‘(I)erzblhtlfesl ;?1, Do B0 P then the expected value is deﬁnned as trk‘:e

N ;g{e of all its possible values using the probabilities as weights; that

o COi; S, . fi,v] 4 -; 5 + p X 'For example, suppose you bet on the toss o,f tv;1

ek Ia“; ou nr:) th-lf b?l-tg chs come up heads, $1 if one shows heads and thz

; ing if both come up tails. Usi

Nrnieem, ! i $. Using the rules for mani i

gt :Iiiles discussed earlier in this section, you can see that the :Ztl;pltl)]'zli'n‘ng

i vents are, respectively, 0.25, 0.50, and 0,25, Therefore op o
: ngs are (0.25 X $5) + (0,50 X $1) + (0.25 % $0) = §1,75 your expected
n game t i it we nee

wayan egpayoélseory, the m{merlcal magnitudes that we need to average in thi

NN d., mees.u.red in numerical ratings, or money, or, as we will see | .

appropriapt)eln flx, utilities. We will refer to the expected values in each ¢ e

y, for example, as expected payoffs or expected utilities e
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2 ATTITUDES TOWARD RISK AND EXPECTED UTILITY

ed out a difficulty about using probal.:iﬁties to c.:l:::::ztrz
d payoff for players in a game. (Znnstdef a g:m;:l o
in or lose money, and suppose We measure !)uyt?ﬁs sm;g q: i
e [-'f“ ' | ; ¢ has a 75% chance of getting nothing and a o e
3'““_:2‘:-1gua 51::|elhe expected payoff is i:ak:ulmeedd:::f a pr::l:;l;’:{f:f?:r::“ﬁ lhc
O i the \ age of the differen ’ .
“W"“g"_-' ’“_‘3 mtc‘pc'cf:da‘:):ry::;it; ‘ll.lnet;::r: :;gse. we have $0 wi.lh a pmbat;ill;il'y :;t;
P‘-’Obabllflles " ;: :1 ?fv‘ % 0 = 0 on average, added to $100 with a pmbaﬁ i '
. Whi_Ch Yi‘eld 62‘5 % 100 = 25 on average. That i the same payﬂl .as i
B e qI'mm a simple nonrandom outcome that guaranteed him o
L f\’OUid glzlt ed. People who are indifferent between two altcmatj\.r:slw o
i 1'Tr: o m;nelary value but different amounts of risk are Smh‘] clhe
the same average ']. example, one prospect is riskless (525 for sure}: while e
risk‘“f“t}'“l- ]“_ (:I:in either $0 with a probability of 0.75 or $100 with a pjrle__
Ug}:f Ii};l;i;.); Yfr:r lhegsame average of $25. In contrast are rlsk-s:::;ze n]::i(l.:‘;maw
a6 st g i i y with the same avi
e gi\"!“fa F::l;:si:"i[s‘:;:u::;:??s‘uur example; they \'\.fuuld mlthlcr -it
o ?rcc the risky $100-or-nothing prospect and, swen the ¢ 1(I.llw(;
iy sflm m?“ ? rospect. Such risk-averse behavior is qu1te‘ com}r:lt:r:;kes
\‘:GUitlidF::::r;]f:r: ;:vz a theory of decision making under uncertainty tha
shou

it into account.

In Chapter 2, we point
the average or expecte

Payoff
scale

10

25

: 2‘5 100  Doflars
6.25
FIGURE7A.1  Concave Scale: Risk Aversion
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We also said in Chapter 2 that a very simple modification of our payoff cal-
culation can get us around this difficulty. We said that we could measure payoffs
not in money sums but by using a nonlinear rescaling of the dollar amounts.
Here we show explicitly how that rescaling can be done and why it solves our
problem for us.

Suppose that, when a person gets D dollars, we define the payoff to be
something other than just D, perhaps VD. Then the payoff number associated
with $0 is 0, and that for $100 is 10. This transformation does not change the way
in which the person rates the two payoffs of $0 and $100; it simply rescales the
payoff numbers in a particular way.

Now consider the risky prospect of getting $100 with probability 0.25 and
nothing otherwise. After our rescaling, the expected payoff (which is the average
of the two payoffs with the probabilities as weights) is (0.75 X 0) + (0.25 X 10) =
2.5. This expected payoff is equivalent to the person’s getting the dollar amount
whose square root is 2.5; because 2.5 = V6.25, a person getting $6.25 for
sure would also receive a payoff of 2.5, In other words, the person with our
square-root payoff scale would be just as happy getting $6.25 for sure as he would
getting a 25% chance at $100. This indifference between a guaranteed $6.25 and a
1 in 4 chance of $100 indicates quite a strong aversion to risk; this person is

willing to give up the difference between $25 and $6.25 to avoid facing the risk.
Figure 7A.1 shows this nonlinear scale (the square root), the expected payoff,
and the person's indifference between the sure prospect and the gamble.
What if the nonlinear scale that we use to rescale dollar payoffs is the cube
root instead of the square root? Then the payoff from $100 is 4.64, and the

Payoff
scale

10,000 -

2,500 | === e

|
; 3 |
% =Y 100 Dollars

FIGURE7A.2  Convex Scale: Risk Loving
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expected payoff from the gamble is (0.75 X 0) + (0.25 X 4.64) = 1.16, which is
the cube root of 1.56. Therefore a person with this payoft scale would accept
only $1.56 for sure instead of a gamble that has a money value of $25 on average;
such a person is extremely risk-averse indeed. (Compare a graph of the cube
root of x with a graph of the squate root of x (o see why this should be so.)

And what if the rescaling of payoffs from x dollars is done by using the
function x2 Then the expected payoff from the gamble is (0.75 < 0) + 025 %
10,000) = 2,500, which is the square of 50. Therefore a person with this payoff
scale would be indifferent between getting $50 for sure and the gamble with an
expected money value of only $25. This person must be a risk lover because he
is not willing to give up any money o get a reduction in risk; on the contrary,
he must be given an extra $25 in compensation for the loss of risk. Figure 7A.2
shows the nonlinear scale associated with a function such as X

So by using different nonlinear scales instead of pure money payoffs, we can
capture different degrees of risk-averse or risk-loving behavior. A concave scale
like that of Figure 7A.1 corresponds to risk aversion, and a convex scale like that
of Figure 7A.2 1o risk-loving behavior, You can experiment with different simple
nonlinear scales—for example, logarithms, exponentials, and other roots and
powers—to see what they imply about attitudes toward risk.*

This method of evaluating risky prospects has a long tradition in decision
theory; it is called the expected utility approach. The nonlinear scale that gives
payoffs as functions of money values is called the utility function; the square
root, cube root, and square functions referred to earlier are simple examples.
Then the mathematical expectation, or probability-weighted average, of the
utility values of the different money sums in & random prospect is called the ex-
pected utility of that prospect. And different random prospects are compared
with one another in terms of their expected utilities; prospects with higher ex-
pected utility are judged to be better than those with lower expected utility.

Almost all of game theory is based on the expected utility approach, and it
is indeed very useful, although is not without flaws. We will adopt it in this book,
leaving more detailed discussions to advanced treatises,” However, we will indi-
cate the difficulties that it leaves unresolved by means of a simple example in
Chapter 8.

1additional information on the use of expected utility and risk attitudes of players can be found
in many intermediate microeconomic texts; for example, Hal Varian, {nter I i
7th ed. (New York: Norton, 2006), ch. 12; Walter Nicholson and Christopher Snyder, Micrascanomic
Theory, 10th ed, (New York: Dryden Press, 2008}, ch. 7.

“See Tt Dunean Luce and Howard Ruiffa, Gannes and Decisions (New York: Wiley, 1957), chap. 2
and app. 1, for an exposition; and Mark M Iityit, "Choice Under Uncertainty: Problems Solved and
Unsolved,” Journal of E Perspectives, vol. 1, no. | (Summer 1987), pp. 121-154, for a critique
and alternatives. Although decision theory based on these alternatives has made considerable prog-
ress, it has not yet influenced game theory to any significant extent.

Microee
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SUMMARY

The probability of an event is the likelihood of its occurrence by chance from
among a larger set of possibilities. Probabilities can be combined by using some
rules. The addition rule says that the probability of any one of a number of dis-
Joint events occurring is the sum of the probabilities of these events; the modi-
fied addition rule generalizes the addition rule to overlapping events. According
to the multiplication rule, the probability that all of a number of independent
events will occur is the product of the probabilities of these events; the modified
multiplication rule generalizes the multiplication rule to allow for lack of inde-
pendence, by using conditional probabilities.

Judging consequences by taking expected monetary payoffs assumes risk-
neutral behavior. Risk aversion can be allowed, by using the expected- utility ap-
proach, which requires the use of a utility function, which is a concave rescaling

of monetary payoffs, and taking its probability-weighted average as the measure
of expected payoff.

KEY TERMS
addition rule (254) modified addition rule (254)
combination rule (257) modified multiplication rule (256)
conditional probability (256) multiplication rule (255)
disjoint (254) probability (252)
expected utility (257) risk-averse (258)
expected value (257) risk-neutral (258)
independent events (255) utility function (260)




