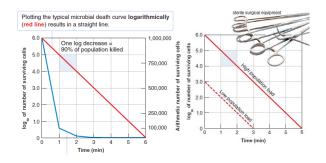
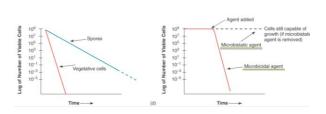
Controle do Crescimento por Agentes Físicos e Químicos

Taxa de Morte Celular


Afeta a Efetividade do Agente:

- Tempo de Exposição
- Tipo de Microorganismo (Biofilme, endosporo,


Características das Membramas)

- · Concentração do Agente
- · Presença de outros Compostos Orgânicos, pH e temperatura.

Taxa de Morte Celular

Ação dos Agentes Antimicrobianos

Três tipos de ação de agentes antimicrobianos

Bacteriostatic count

Viable cell count

Time

Bacteriolytic

(b)

Bacteriolytic

Time

Anti-séptico: agente antimicrobiano suficientemente atóxico para ser aplicado em tecidos vivos

CMI: concentração mínima inibitória

Desinfecção: processo de eliminação de praticamente todos os patógenos.

Desinfetante: agente antimicrobiano usado em objetos inanimados

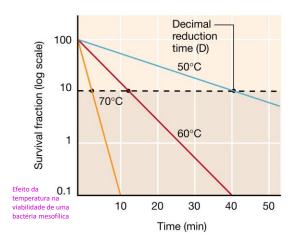
Esterilização: processo de remoção ou morte de todos os organismos vivos e vírus.

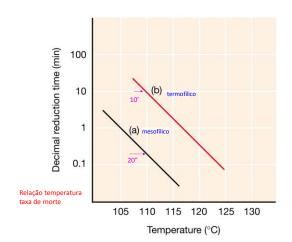
Sepsia/séptico: contaminação bacteriana

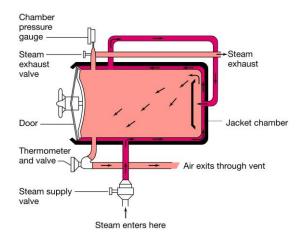
Assépsia: sem contaminação

Septicemia: estado infeccioso

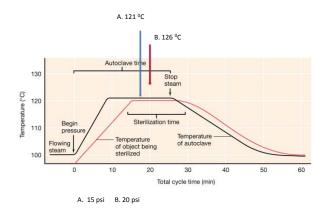
generalizado


Esterilização é o processo que promove completa eliminação ou destruição de todas as formas de microrganismos presentes :


vírus, bactérias, fungos, protozoários, esporos, para um aceitável nível de segurança.


O processo de esterilização pode ser físico, químico, físico- químico

MÉTODOS DE ESTERILIZAÇÃO	Alternativas
Métodos físicos	vapor saturado/autoclaves calor seco Raios Gama/Cobalto/UV
Métodos químicos	Glutaraldeído Formaldeído Ácido peracético
Métodos físico químicos	Esterilizadoras a Óxido de Etileno (ETO) Plasma de Peróxido de Hidrogênio Plasma de gases (vapor de ácido peracético e peróxido de hidrogênio; oxigênio, hidrogênio e gás argonio) Vapor de Formaldeído


Esterilização pelo Calor

MÉTODOS FÍSICOS

Autoclaves

Ectufa

A esterilização por métodos físicos pode ser realizada pelos seguintes processos em estabelecimentos de saúde.

ESTERILIZAÇÃO POR VAPOR SATURADO/ autoclaves

gravitacional

alto vácuo ciclo Flash

A esterilização a vapor é realizada em autoclaves, cujo processo possui fases de remoção do ar, penetração do vapor e secagem. A remoção do ar diferencia os tipos de autoclaves.

Úm ciclo de esterilização do tipo "Flash" pode ser realizado em autoclave com qualquer tipo de remoção do ar

TIPOS DE AUTOCLAVE

GRAVITACIONAL

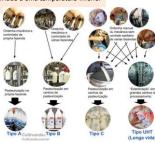
O vapor é injetado forçando a saída do ar. A fase de secagem é limitada uma vez que não possui capacidade para completa remoção do vapor.

Desvantagem: pode apresentar umidade ao final pela dificuldade de remoção do ar.

As autoclaves verticais são mais indicadas para laboratórios. Venturi - O ar é removido através de uma bomba. A fase de secagem é limitada uma vez que não possui capacidade para completa remoção do vapor.

Desvantagem: pode apresentar umidade pelas próprias limitações do equipamento de remoção do ar.

ALTO VÁCUO


Introduz vapor na câmara interna sob alta pressão com ambiente em vácuo. É mais seguro que o gravitacional devido a alta capacidade de sucção do ar realizada pela bomba de vácuo.

Vácuo único O ar é removido de uma única vez em pequeno espaço de tempo. Desvantagem: pode haver formação de bolsas de ar.

Vácuo fracionado (por pulso ou escalonado) remoção do ar em períodos intermitentes, com injeção simultânea de vapor. Também funciona por gravidade. A formação de bolsas de ar é menos provável.

<u>Pasteurização</u>

63 °C por 30 minutos 73 °C por 15 minutos 140 °C por 1 segundo O leite <u>UHT</u> (*Ultra High Temperature*), também conhecido como Longa Vida, é obtido pelo processo de Temperatura Ultra Alta de Pasteurização. O Leite é homogeneizado e submetido a uma temperatura de 130 a 150%, entre 2 e 4 segundos, e imediatamente resfriado a uma temperatura inferior a 32°C

Exemplos de parâmetros para esterilização a vapor Exemplos de tempos mais comuns de exposição

Tipo de autoclave	Temperatura	Tempo do ciclo
Gravitacional	121 a 123°.C 132 a135°.C	15 a 30 min 10 a 25 min
Pré vácuo	132 a 135°.C 141 a 144°.C	3 a 4 min
Vácuo fracionado	121 a 123°.C 132 a 135°.C 141 a 144°.C	20min 3 a 4 min

Calor Seco. Estufa. Temperatura e tempo

Temperatura	Tempo
171°.C	60 minutos
160°.C	120 minutos
149°.C	150 minutos
141°.C	180 minutos
121°.C	12horas

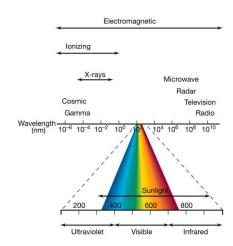
	Calor seco	Calor transferência rápida
Temperatura	· 160°.C ou 170°.C	· 190°.C
Tempo do ciclo	•1 a duas horas	ninutos para pacotes minutos para material não coberto
Tipo de material	Não deve ser isolante de calor Deve ser termo resistente a temperatura utilizada Tubos de polifilme plástico alguns tipos de papel Folhas de alumínio	Não deve ser isolante de calor Deve ser termo resistente a temperatura utilizada Tubos de polifilme plástico alguns tipos de papel Folhas de alumínio
Vantagens	Seguro para metais e espelhos (ex.odontologia) Não danífica instrumentos de corte Não forma ferrugem	Menor ciclo Seguro para metais e espelhos (ex.odontologia) Não danifica instrumentos de corte Não forma ferrugem
Desvantagens	Ciclo longo, exceto se o ar é forçado Pequena penetração em materiais mais densos Não esteriliza líquidos Destroi materiais sensíveis ao calor	Instrumentos devem estar secos antes de serem empacotados Não esteriliza líquidos Destrói materiais sensíveis ao calor

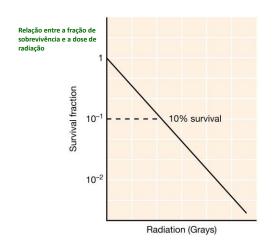
MÉTODOS FÍSICO- QUÍMICOS (BAIXA TEMPERATURA)

- •<u>Óxido de etileno</u> •<u>Plasma de Peróxido de Hidrogênio</u>
- Ácido Peracético líquido
- •Plasma de Ácido peracético
- •Formaldeído e vapor de formaldeído

De forma geral os métodos físico- químicos são processos que realizados a baixas temperaturas. A esterilização a baixa temperatura é requerida para materiais termo sensíveis e/ou sensíveis à umidade. O método ideal não existe e todas as tecnologias têm limitações.

Características de um esterilizante ideal para baixa temperatura


Alta eficácia	deve ser viruscida, bactericida, tuberculicida, fungida e esporicida
Ação rápida	esterilizar rápidamente
Grande penetração	penetrar pacotes de materiais comuns e penetrar lumens
Compatibilidade com materiais	as alterações devem ser imperceptíveis tanto na aparência quanto na função dos materiais, mesmo após repetidas esterilizações.
Não tóxico	não devem apresentar riscos à saúde do operador, do paciente e não poluir o ambiente.
Resistente à matéria orgânica	deve ter eficácia na presença de quantidade razoável de matéria orgânica.
Adaptabilidade	deve ser adequada para grandes ou pequenos locais de instalação e ponto de uso.
Capacidade de monitorização	deve ser monitorado de forma fácil e acurada com indicadores físicos, químicos e biológicos.
Custo-efetivo	deve ter custo razoável de instalação e de operação.


	Controles químicos
Externos- indicam que o vapor entrou em contato com a superfície exposta.	 Fitas ou etiquetas adesivas- impregnadas com substância química termosensivel especifica ao vapor que ao ser retirada da autoclave deverá apresentar mudança de coloração
Devem ser colocadas em todos os pacotes em todos os processos.	 Impresso- tinta indicativa termosensível impressa diretamente na embalagem que ao ser retirada da autoclave deverá apresentar mudança de coloração.
Interno- indicam que o vapor penetrou o interior da embalagem.	 Tiras de papel - impregnadas com tinta em concentração graduada com substância químicas termosensíveis específicas ao vapor. Ao ser retirada da autoclave deverá apresentar coloração de marrom a preto
	 Integrador químico- reagente químico liberado gradativamente a medida em que ocorre a combinação dos parâmetros de temperatura, umidade e tempo de exposição. Indicada a colocação em pacotes de difícil acesso do vapor.
	- Bowie Dick ⁴ - pode ser elaborado com diversas fitas teste sobrepostas cruzadas ou em forma de papel já industrializado, permeável ao vapor com impressão de um desenho característico concêntrico. Sua utilidade é detectar ar residual em autoclaves a vácuo (não se aplica a autoclaves gravitacionais).

QUAIS E QUANDO UTILIZAR OS DIFERENTES INDICADORES

Controle da carga	Cada carga para Óxido de Etileno, Plasma de Peróxido Diariamente ou semanal para autoclaves a vapor com ciclos maiores (ou definido pela instituição se outros parâmentros estiverem controlados)	Indicador Biológico de Leitura Rápida ou Indicador Biológico Convencional (48h)
Controle do pacote	Cada pacote	Indicador químico multiparamétrico ou integradores químicos
Controle do equipamento	Remoção do ar- no início do dia Após grandes reparos Validação do equipamento Monitorização mecânica- cada carga	Teste de Bowie e Dick Registro dos indicadores mecânicos do equipamento
Controle da exposição	Cada pacote	Fitas indicadoras de processos
Manutenção dos registros	Cada pacote	Livro registro que permita a rastreabilidade do pacote

Esterilização por radiação

Sensibilidade de microrganismos e funções biológicas à radiação

Espécie/ função	Microrganismo	Dao (Gy) grays
Clostridium botulinum	G+, anaérobia, 3300 esporulante	
Clostridum tetani	G+, anaérobia, esporulante	2400
Bacillus subtilis	G+, aeróbia, esporulante	600
Salmonella typhimurium	G-	200
Lactobacillus brevis	G+	1200
Deinococcus radiodurans	G-	2200
Aspergillus niger	Fungo	500
Sacharomyces cereviseae	Levedura	500
Febre aftosa	virus	13000
Inativação enzimática		20000-50000
Desinfestação insetos		1000-5000

Esterilização por radiação consiste em expor os produtos a uma fonte radioativa de Co-60.

A radiação gamma mata os microrganismos por meio da ruptura da estrutura do seu DNA, não afetando o produto em si.

A radiação tem alto poder de penetração na matéria (o seu comprimento de onda é da ordem de 10/8 cm), o processo pode ser executado com os produtos já na sua embalagem final, e pode ser usado imediatamente após o processo.

Item Consideração

Mecanismo de esterilização Radiação ionizante - raios gamma

Sem restrições. Os raios gamma penetram em todas as porções do produto. Os irradiadores MDS Nordion são projetados de modo a se ter boa uniformidade de dose no processo. Estrutura do produto

Compatível com a maioria dos materiais utilizados para artigos médico-hospitalares Embalagem

Sem restrições. O alto poder de penetração da radiação permite a esterilização em qualquer tipo de embalagem.A radiação não exerce danos aos materiais e selos.

Parâmetros a serem controlados durante o processo Unicamente o tempo.

Confiabilidade e reprodutibilidade do Excelente

Testes microbiológicos pós esterilização

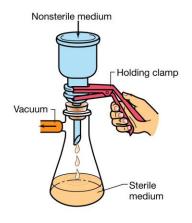
Período de quarentena Tratamento pós esterilização

Possibilidade de monitoração do processo

Resíduos Fconomia

Podem ser eliminados

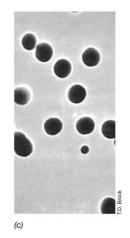
Não há. Os produtos podem ser imediatamente utilizados após a esterilização


Nenhum necessário

Qualitativa e quantitativa, com o uso de selos radiossensíveis e dosímetros calibrados

Excelente em grandes e nequenas

Esterilização por filtração



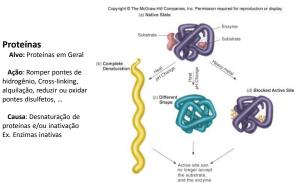
Filtro de profundidade

Filtro nucleopore Poro= 5 μm

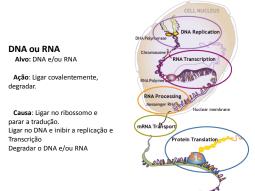
Agentes químicos

Parede Celular e membrana: Alvo: Proteinas/Camada fosfolipidica/ Lipopolisacarideos/ peptidioglicano Ação: Afeta a permeabilidade Sintese, rompimento, favorecimento da lise celular Causa: Afeta o crescimento celular e pode levar a morte. Ex. Pode afetar as purinas.

Alvo Dos Agentes Químicos


Exemplo:
Surfactantes

Cytoplasm


Membrane lipids

Surfactant molecules

Alvo Dos Agentes Químicos

Alvo Dos Agentes Químicos

Agente	Uso	Modo de ação
Anti-sépticos Álcool etanol ou isopropanol 60-85%	Pele	Solvente de lipídeos e desnaturante de proteínas
Composto com fenol (hexaclorofeno, triclosan, clorexidina)	Sabões, loções, cosméticos, desodorantes	Rompem a membrana celular
Detergentes catiônicos, quaternários de amônia (cloreto de benzalcônio)	Sabões, loções	Interagem com fosfolipídeos de membrana
Peróxido de hidrogênio 3%	Pele	Agente oxidante
lodóforos, iodo em solução	Pele	lonidam resíduos de tirosina das proteínas, oxidantes
Nitrato de prata	Olhos recém-nascidos Neisseria gonorrhoeae	Precipitação proteínas

Desinfetantes e esterilizantes Álcool (etanol ou isopropanol 60-85%)	Desinfetante e esterilizantes instrumentos médicos, superfícies	Solvente de lipídeos e desnaturante proteínas
Detergentes catiônicos (quaternários de amônio)	Desinfetante instrumentos médicos e industriais	Interagem com fosfolipídeos
Cloro gasoso	Desinfetante redes distribuidoras de água	Agente oxidante
Compostos de cloro (cloraminas, hipoclorito de sódio, dióxido de cloro)	Desinfetante equipamentos industriais, redes de água	Agente oxidante
Sulfato de cobre	Algicida em piscinas, redes de água	Precipitação proteínas
Óxido de etileno (gás)	Esterilizante de material de laboratório (plásticos)	Agente alquilante
Formaldeído	Sol. 3-8% desinfetante superfícies; 37% (formalina) esterilizante	Agente alquilante

Glutaraldeído	Desinfetante ou esterilizante sol. 2%.	Agente alquilante
Peróxido de hidrogênio	Vapor esterilizante	Agente oxidante
Compostos de iodóforos contendo iodo	Desinfetantes instrumentos médicos e superíicies	lodinação resíduos de tirosina
Dicloreto mercúrico	Desinfetante superfícies	Combinação com grupos -SH
Ozônio	Desinfetante de água potável	Forte agente oxidante
Ácido peracético	Desifetante ou estrilizante de alto nível sol. 0.2%	Forte agente oxidante
Compostos fenólicos	Desinfetante superfícies	Desnaturante proteínas

Avaliar o Efeito do Agente Químico.

Teste de Diluição:

Material Complementar para estudo

Metódo de Difusão do Disco

Mecanismo de Ação

Johnson's baby sabouste

Ammonium ion

Composição:

Benzalkonium chloride

1- aqua e alguns possíveis sinergéticos como EDTA

Aqua: Compostos quartenários de Amônio

$$\begin{array}{c} \textbf{Zephiran} & \textbf{Cepacol} \\ \textbf{H} & \textbf{CH}_3 \\ \textbf{H} - \textbf{N}^+ - \textbf{H} \\ \textbf{H} & \textbf{CH}_3 \\ \textbf{I} & \textbf{H} & \textbf{CH}_3 \\ \textbf{C} & \textbf{N}^+ - \textbf{C}_{18} \textbf{H}_{37} \\ \textbf{H} & \textbf{CH}_3 \\ \end{array} \right] \\ \textbf{C1} \\ \textbf{C1} \\ \textbf{C2} \\ \textbf{C3} \\ \textbf{C4} \\ \textbf{C4} \\ \textbf{C5} \\ \textbf{C6} \\ \textbf{C7} \\ \textbf{C7} \\ \textbf{C8} \\ \textbf{C8} \\ \textbf{C8} \\ \textbf{C9} \\ \textbf{C9} \\ \textbf{C9} \\ \textbf{C1} \\ \textbf{C9} \\ \textbf{C1} \\ \textbf{C9} \\ \textbf{C9} \\ \textbf{C1} \\ \textbf{C9} \\ \textbf{C9} \\ \textbf{C9} \\ \textbf{C1} \\ \textbf{C9} \\ \textbf{C9$$

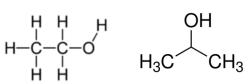
Mecanismo de Ação: Aqua

Bactericida para G+ menos eficiênte G-


Ação: Afeta a Membrana Plasmática (M.I), afetando a permeabilidade.

Perda de constituentes de M.I como K⁺

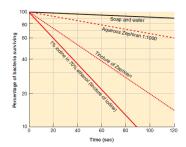
Encontra: Listerine, Colgate, Pasta de dente Oral-B,......


Surfactantes - Sanitisantes

Diminue a tensão Superficial Pouco efetivo como Antiséptico

 $_{0}$ C - CH₂- CH₂

Álcool: Etanol e Isopropanol Antisséptico e Desinfetante


- Mata bactérias e fungos, mas não endosporos
- Desnatura Proteínas
- Dissolve membrana
- Dissolve vários Lipídios

70% Álcool

Biocidal Action of Various Concentrations of Ethanol in Aqueous Solution against
TABLE 7.6 Streptococcus pyogenes

	Time of Exposure (sec)				
Concentration of Ethanol (%)	10	20	30	40	50
100	G	G	G	G	G _
95	NG	NG	NG	NG	NG
90	NG	NG	NG	NG	NG
80	NG	NG	NG	NG	NG
70	NG	NG	NG	NG	NG
60	NG	NG	NG	NG	NG
50	G	G	NG	NG	NG
40	G	G	G	G	G
Note: G = growth NG = no growth					

Álcool como Sinergético para outros Agentes Químicos

Fenol e Fenólicos

Fenol e Fenólicos

- Usado no controle de infeção em mesas cirúrgicas
- 1% fenol tem ação antibacteriano forte
- Age na Membrana plasmática ocasionando o vasamento do centeúdo celular Morte celular.
- Estável e não afetado por comp. orgânicos
 - Desinfecção de pus, saliva, feses.
- Raramente usado como antiséptico ou desinfectante
- Irritante para a pele
- Odor

Bisfenol

Ol Bisfenol - Ação

- Triclosan : Enzima Fabl, biossíntese de ácidos graxos (lipídios)
- · Afeta a integridade da membrana plasmática
- Ótimo para G+, mas age bem G- e fungos
- P. aeruginosa é resistente

- Amplo Espectro. Mais efetivo G+
- Clorexidina: Usado em mucosa e na pele
 - Clorexidina + Detergente ou álcool: Usado preparação da pele (pre-operatório), lavagem das mãos
- Bactericida: Age na Membrana Plasmatica Morte
- · Baixa toxicidade.

Halógenos

Halógeno	Molécula	Estructura	Modelo	d(X-X) / pm (fase gaseosa)	d(X-X) / pm (fase sólida)
Flúor	F ₂	F-F		143	149
Cloro	CI ₂	CI—CI		199	198
Bromo	Br ₂	Br—Br		228	227
Yodo	l ₂	<u> </u>		266	272

- Alta Eletronegatividade: Rouba e-, principalmente o fluor
- Agentes Oxidantes

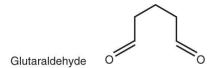
Halógenos

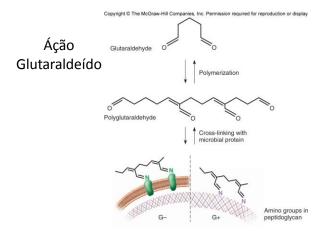
- Iodo, Antiséptico da pele
- · Candica Desinfetante
- Cloro Seu efeito é na forma Cl_{2(g)} Mata endosporos e bactéria do anthrax

(1)
Cl₂ + H₂O
$$\rightleftharpoons$$
 H⁺ + Cl⁻ + HOCl
Chlorine Water Hydrogen Chloride Hypochlorous acid
(2)
HOCl \rightleftharpoons H⁺ + OCl⁻ Um dos mais potentes
Hypochlorous Hydrogen Hypochlorite ion ion

Aldeídos

- É um dos mais efetivos
- Inativa Proteínas Cross-linking


Formaldeído & Glutaraldeído


- Formaldeído gás ótimo desinfetante
- Comum Formalin: 37% formaldeído

Aldeídos

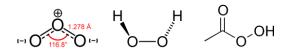
- Glutaraldeído Pode ser considerado **Agente Esterilizante**
 - Mais efetivo e menos irritante
 - Usado como desinfetante:
 - · Instrumentos hospitalares
 - 2% bactericida, tuberculocida e virucida em 10 min, esporocida em 3-10h.

Metais Pesados

- Podem ser Biocidas ou Antisépticos
- Hg (metiolate antigamente)
- Cu
- Ag

Gases Quimio-esterilizantes

- Esterilizam em cameras
 - Óxido de Etileno


– Ação Bactericida 4-18h:

Desnaturação de Proteínas

 Os hidrogenios labeis (Cys, D, E, S, Y) são trocados por grupos alquilas (-CH₃)

Agentes Oxidantes - Peróxidos

- Agentes Oxidantes:
 - Desnaturação de Proteínas e Morte celular
 - O₃ Desinfetante
 - H₂O₂ Antiséptico
 - Ácido Peracético Esterilizante

