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Genetics of obesity: what genetic association studies have 
taught us about the biology of obesity and its complications
Mark O Goodarzi

Genome-wide association studies (GWAS) for BMI, waist-to-hip ratio, and other adiposity traits have identified more 
than 300 single-nucleotide polymorphisms (SNPs). Although there is reason to hope that these discoveries will 
eventually lead to new preventive and therapeutic agents for obesity, this will take time because such developments 
require detailed mechanistic understanding of how an SNP influences phenotype (and this information is largely 
unavailable). Fortunately, absence of functional information has not prevented GWAS findings from providing insights 
into the biology of obesity. Genes near loci regulating total body mass are enriched for expression in the CNS, whereas 
genes for fat distribution are enriched in adipose tissue itself. Gene by environment and lifestyle interaction analyses 
have revealed that our increasingly obesogenic environment might be amplifying genetic risk for obesity, yet those at 
highest risk could mitigate this risk by increasing physical activity and possibly by avoiding specific dietary components. 
GWAS findings have also been used in mendelian randomisation analyses probing the causal association between 
obesity and its many putative complications. In supporting a causal association of obesity with diabetes, coronary heart 
disease, specific cancers, and other conditions, these analyses have clinical relevance in identifying which outcomes 
could be preventable through weight loss interventions.

Introduction
Obesity has become increasingly common across the 
globe. Worldwide, nearly 40% of adults are overweight 
and 10–15% are obese.1 Obesity arises from the 
interactions between an at-risk genetic profile and 
environmental risk factors, such as physical inactivity, 
excessive caloric intake, the intrauterine environment, 
medications, socioeconomic status, and possibly novel 
factors such as insufficient sleep, endocrine disruptors, 
and the gastrointestinal microbiome. The heritability 
(proportion of inter-individual variation attributable to 
genetic factors) of BMI has been estimated to be 
40–70%.2

Although research into the genetics of common 
obesity was catalysed by genome-wide association 
studies (GWAS), the stage was set by genetic studies in 
monogenic obesity, which highlighted the leptin–
melanocortin pathway as a key regulator of energy 
intake.3 Several genes implicated in monogenic obesity 
are in or near loci subsequently associated by GWAS 
with obesity-related traits, including MC4R, BDNF, 
PCSK1, POMC, SH2B1, LEPR, and NTRK2.4 The genetic 
risk of common obesity reflects the accumulation of 
multiple loci, each contributing a small portion of the 
total risk. Investigators pursue these susceptibility 
genes to improve our understanding of why obesity 
develops. One goal is to use this knowledge to improve 
human health, by informing the development of new 
drugs to prevent and treat obesity. Although this goal 
requires mechanistic information (which is largely 
unavailable today), genetic variants for obesity-related 
traits have been exploited to provide numerous insights 
into the biology of obesity and its complications, as 
reviewed below.

Overview of genome-wide association studies 
in common obesity
Before 2007, candidate gene approaches examined 
hundreds of genes, but few were confirmed as genetic 
risk factors for obesity. Exceptions include variants in 
MC4R and BDNF5,6 that were later identified in GWAS.7,8 
In 2007, four reports associated SNPs in the first intron 
of FTO (fat mass and obesity associated gene) with 
obesity-related traits: a GWAS for anthropometric traits,9 
a GWAS for early-onset severe obesity,10 a GWAS for 
type 2 diabetes,11 and a population stratification study that 
incidentally discovered FTO.12 FTO remains the strongest 
signal and has been detected in multiple ancestries. 
Subsequent efforts in increasingly larger sample sizes 
and in cohorts of diverse origin (appendix 1, pp 1–5) have 
increased the number of robust loci for BMI to more 
than 100 (figure 1, appendix 2). A Genetic Investigation 
of ANthropometric Traits consortium (GIANT) meta-
analysis (comprising more than 339 000 individuals) 
identified 97 loci for BMI, 56 of which were novel.13 
Genes near these loci showed expression enrichment in 
the CNS, suggesting that BMI is mainly regulated by 
processes such as hypothalamic control of energy intake. 
These 97 loci explain only 2·7% of the variance in BMI.13 
Simulation studies have suggested that SNPs account for 
around 30% of variance in BMI,14 implying that many 
more SNPs remain to be discovered. In large sample 
sizes, false positive and false negative associations with 
risk factors (eg, BMI) can arise from index event bias, 
possibly explaining paradoxical associations such as the 
diabetogenic allele at TCF7L2 being associated with 
reduced BMI.15

Numerous GWAS have focused on obesity-related 
traits other than BMI, particularly waist-to-hip ratio 
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(appendix 1, pp 1–5). A large-scale GWAS meta-analysis 
discovered 49 loci for waist-to-hip ratio adjusted for BMI 
(to focus on fat distribution rather than total fat).16 Gene 
expression enrichment for genes near these loci was 
seen in adipose tissue, suggesting that fat distribution is 
largely regulated in local fat depots. These 49 loci explain 
1·4% of the variance in waist-to-hip ratio overall (2·4% in 
women and 0·8% in men).

Although most GWAS were done in adults, the Early 
Growth Genetics (EGG) consortium and others have 
examined birthweight, BMI, and common obesity in 
children, and early-onset extreme obesity (appendix 1). 
GWAS for childhood BMI and common obesity have 
identified many of the same loci as in adult GWAS. By 
contrast, birthweight and early-onset extreme obesity are 
largely driven by unique loci, although they share some 
genetic determination with BMI and general obesity 
(figure 1, appendix 2).

Appendix 2 summarises the GWAS loci discovered for 
obesity-related traits at the genome-wide significance level 
(p<5 × 10–⁸),17 presented to facilitate future research. Figure 1 
shows these loci, grouped by families of traits. Loci for 

waist-to-hip ratio generally do not overlap with loci for BMI, 
suggesting independent regulation of fat distribution from 
total adiposity. The central roles of the FTO and MC4R loci 
are apparent in their overlap as loci for multiple adiposity 
traits. Future work to identify the mechanisms underlying 
specific loci shared among several traits (eg, PBRM1) might 
be particularly informative.

In addition to conventional GWAS, unique methods 
have been applied to discover genetic determinants of 
obesity-related traits, including consideration of parent-
of-origin effects,18 gene-based GWAS,19 SNPs associated 
with variance of BMI,20 and use of specialised fine-
mapping arrays.21–23

Necessity of functional characterisation of 
genetic associations
Before a genetic variant can be leveraged to develop new 
therapies, its function must be characterised. This involves 
identification of the gene or genes whose expression is 
affected by alleles at the variant, and the mechanism (eg, 
enhancer, repressor, epigenetic alteration) whereby the 
variant’s alleles differentially affect expression. The next 
step is elucidation of how the target gene affects the trait 
of interest. A common convention has been to use names 
of the nearest genes to assign names to SNPs found in 
GWAS. This can be misleading, as SNPs could exert their 
effect on a phenotype by affecting expression of genes at 
considerable distances. The FTO story is instructive: 
FTO encodes a 2-oxoglutarate-dependent nucleic acid 
demethylase that is ubiquitously expressed but most 
highly expressed in hypothalamic nuclei governing energy 
balance.24 A large body of research on FTO has found 
conflicting results.25,26 For example, both FTO-knockout 
and FTO-overexpressing mice show hyperphagia.27,28

FTO SNPs appear to affect the expression of other 
genes.25,26 Chromatin conformation analysis found that 
these SNPs physically contact the promoter of a distant 
gene, IRX3.29 Studies in mesenchymal adipocyte 
precursors suggested that the risk allele at the FTO SNP 
rs1421085 disrupts a binding site for the ARID5B 
repressor, leading to increased expression of IRX3 and 
IRX5, which shifts the fate of these cells from energy-
burning beige adipocytes to energy-storing white 
adipocytes.30 Other studies suggested that the obesogenic 
effects of FTO SNPs on IRX3 operate in the brain29 or the 
pancreas.31 Studies in neural cells found that the risk 
allele at the FTO SNP rs8050136 disrupts binding of the 
transcriptional activator P110 (an isoform of CUX1), 
resulting in decreased expression of FTO and RPGRIP1L 
and consequent reduced leptin signalling.32,33 The effects 
of the FTO locus on distant genes might therefore be 
tissue-specific and vary by the developmental stage of the 
tissue. Whether effects in the brain, adipose tissue, and 
pancreas all contribute to obesity or whether an effect in 
a particular tissue is the primary effect remains to be 
established. Future efforts to develop treatments (or 
prevention strategies) for obesity might require targeting 
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Figure 1: Major GWAS discoveries for adiposity traits
For clarity of presentation, findings of genome-wide association studies (GWAS), shown in appendix 2, 
are grouped into seven categories: BMI related (includes GWAS for BMI, weight, overweight or obese status in 
adulthood, childhood BMI, childhood obesity, and BMI change over time; 141 loci); body fat (includes GWAS for 
body fat percentage and body fat mass; 15 loci); birthweight (eight loci); waist-to-hip ratio or waist circumference 
adjusted for BMI (97 loci); visceral adiposity (includes GWAS for visceral fat and visceral-to-subcutaneous adipose 
tissue ratio; two loci); waist-to-hip ratio or waist circumference (includes GWAS for waist-to-hip ratio and waist 
circumference not adjusted for BMI; 26 loci); and extreme obesity (includes GWAS for extreme childhood and 
extreme adult obesity; 23 loci). PBRM1 was associated with waist-to-hip ratio adjusted for BMI mainly in 
Europeans and associated with BMI in East Asians. The COBLL1 SNP associated with waist-to-hip ratio adjusted for 
BMI and the COBLL1 SNP associated with BMI in individuals older than 50 years are in low linkage disequilibrium 
(r²=0·14 in Europeans in the 1000 Genomes Project). Appendix 2 lists GWAS results for additional categories of 
adiposity traits not depicted in the figure.
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of IRX3, IRX5, or RPGRIP1L, or a combination of these. 
Studies of other loci for obesity have not yet reached the 
level of molecular resolution achieved for FTO,34 but this 
knowledge will be realised in time. A deep understanding 
of how a locus affects phenotype is essential before 
genetic findings can be used to improve human health. 
For loci that encompass multiple genes, bioinformatics 
tools are emerging to help select the most promising 
SNPs and genes for initial functional interrogation.35,36

Gene by environment interactions in obesity
Gene by environment interaction studies are presented 
with the caveat that such analyses are susceptible to 
confounding, in part because of the heterogeneity of 
studies included in meta-analyses, bias in self-reported 
environmental data, failure to account for the distribution 
of BMI, and because genetic variants could have larger 
effects in groups of individuals with higher BMI.37 
Methodological challenges in gene by environment 
interaction studies have been extensively reviewed.38 
These challenges notwithstanding, several studies 
outlined here suggest that individuals with the greatest 
genetic predisposition to obesity are more susceptible 
when exposed to adverse environments, indicating that 
potentially harmful lifestyle factors do not affect the 
population equally. Epigenetic modifications might 
mediate the effects of the environment on genetic 
associations.38

Gene by obesogenic environment interactions
The past four decades have witnessed a substantial 
increase in obesity. Our genes have not changed in this 
timeframe; what has changed is our environment and 
lifestyle. If our environment has become more 
obesogenic than in previous decades, this raises the 
question of whether genetically predisposed individuals 
are more susceptible to obesity in this environment. 
Among 8788 adults born between 1900 and 1958, the 
association of a genetic risk score (panel 1) based on 
29 BMI SNPs with BMI was greater in magnitude in 
individuals born more recently than in those born 
earlier.41 This finding is consistent with the general 
environment having become more obesogenic than in 
previous years, interacting with genetics to magnify the 
association of genetic risk scores with BMI. In the 
Framingham Heart Study, the association of FTO with 
BMI was greater in later birth cohorts than in earlier 
cohorts, with an inflection point at the birth year 1942.42 
In around 900 individuals born between 1901 and 1986, a 
32-SNP BMI genetic risk score showed positive 
interaction by birth year for BMI, waist circumference, 
and skinfold thickness.43 Even monogenic disorders such 
as MC4R deficiency appear to be increasingly penetrant 
in recent generations.44

A GWAS meta-analysis (including more than 
320 000 individuals) of SNP by age interactions found 
15 loci (including FTO) with age-modified effects on 

BMI, of which 11 showed a greater effect on BMI in 
individuals younger than 50 years.45 Presumably some of 
these effects reflect our increasingly obesogenic 
environment, whereas others might reflect a biological 
effect of ageing or an increasing non-genetic influence 
with ageing (ie, accumulating effects of environmental 
factors). A study of more than 8000 individuals from the 
Framingham Heart Study suggested that both 
possibilities coexist.46 A longitudinal study of individuals 
born during 1 week found that a genetic risk score based 
on 11 SNPs associated with adult BMI was associated 
with weight gain in childhood but not weight gain in 
adulthood.47 A systematic review concluded that the 
genetic contribution to BMI might be greater in children 
than in adults.48

Analyses of the UK Biobank (comprising up to 
120 000 European individuals with a genetic risk score of 
69 BMI SNPs) concluded that no single environmental 
factor, of 12 examined, was singularly responsible for the 
increased association of genetic risk score with BMI in 
the obesogenic environment.37 A composite of factors 
(physical activity, sedentary time, television watching, 
and western diets) showed interaction with the genetic 
risk score on BMI.

If modernisation is obesogenic, magnified effects of 
obesity-related variants in urban versus rural settings 

Panel 1: The genetic risk score as a key tool in the use of genetic information to 
elucidate biology

BMI is affected by many loci with small effects. Looking at the first 32 loci to be identified 
for BMI,7 the effect sizes are modest, with most having an effect of 0·06–0·33 kg/m² per 
BMI-increasing allele and FTO having the largest effect (0·4 kg/m² per allele).39 To create a 
genetic tool with more power than individual variants, investigators have aggregated 
variants into genetic risk scores, which are the sum of risk-increasing alleles, often 
weighted by the effect sizes from the studies that discovered them. In the case of BMI, a 
genetic risk score is the sum of BMI-increasing alleles (0, 1, or 2) at each of the 
single-nucleotide polymorphisms (SNPs) robustly associated with BMI.

Many studies constructing genetic risk scores for BMI used the 32 SNPs reported in the 
2010 GIANT meta-analysis.7 A BMI genetic risk score based on these 32 loci was generated 
in more than 8000 individuals.39 As often observed for genetic risk scores of other traits, 
the genetic risk score values followed a bell-shaped distribution; although the possible 
range of the genetic risk score was 0 to 64, the observed range was 16 to 44. BMI was 
3 kg/m² higher for those at the top of the distribution (genetic risk score ≥38) than for 
those at the bottom (genetic risk score ≤21), with each unit increment in genetic risk 
score associated with nearly 0·2 kg/m² higher BMI.

Simulations have found that genetic risk scores have greater power than individual SNPs 
for detection of interactions with environmental factors.40 As described herein, the 
genetic risk score has proven to be an excellent tool for elucidating biology through 
genetics. Not only is the genetic risk score a more powerful construct than single variants 
from a statistical standpoint, it is also appealing because it reflects how genetics affects 
traits in individuals—each person’s genetic risk is affected by the collection of 
risk-increasing alleles inherited from their parents. Most SNPs incorporated into genetic 
risk scores were discovered in Europeans, possibly limiting their applicability to other 
populations. This Series paper focuses mainly on studies that used genetic risk scores or 
the FTO variant; studies of other loci are presented if particularly informative.
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would be expected. Nominal evidence for such gene by 
urban environment interaction has been reported for 
FTO in South Asians.49,50 Similarly, a Korean study 
suggested that an urban versus rural environment could 
modify genetic effects on abdominal adiposity.51

Gene by smoking interactions
No interaction between smoking and FTO on BMI has 
been observed.52 SNP rs1051730 in the CHRNA5–
CHRNA3–CHRNB4 gene cluster that is robustly 
associated with smoking quantity in smokers was 
associated with lower BMI only in smokers, suggesting a 
causal effect of smoking to decrease BMI.53 GWAS in a 
Pakistani cohort identified a novel SNP in the FLJ33534 
locus whose effect was modified by smoking, with the 
minor allele associated with lower BMI in current 
smokers and with higher BMI in never smokers.54 In 
another study, SNPs near MC4R and POC5 nominally 
showed interaction with smoking on adolescent BMI in 
European Americans and one SNP near TNNI3K showed 
a strong interaction in Hispanic Americans.55 For all three 
SNPs, the association with BMI was increased in 
smokers. This seems counterintuitive since smoking is 
associated with decreased BMI and people who quit 
smoking often gain weight.56 A study of 95 BMI SNPs in 
around 8000 Pakistani adults found nominal interactions 
for four SNPs, three of which amplified the association 
with BMI in smokers.57 A large-scale GWAS meta-analysis 
identified 23 novel associations accounting for smoking 
and nine loci with gene by smoking interactions on BMI, 
waist circumference, and waist-to-hip ratio.58 Genes near 
the novel loci are involved in addictive behaviour and 
oxidative stress, and the CHRNA5–CHRNA3–CHRNB4 
interaction was replicated. SNPs explained more variance 
for BMI in smokers than in non-smokers, whereas SNPs 
explained more variance for waist-to-hip ratio in non-
smokers than in non-smokers. In summary, several 
studies have reported that smoking could magnify the 
association of specific BMI-related SNPs with BMI, and 
dampen the association of waist-to-hip ratio SNPs with 
waist-to-hip ratio. These results suggest that, although 
smoking in general could have an effect on reducing 
BMI, in those at highest genetic risk for obesity smoking 
cessation might be recommended to reduce this risk.

Gene by alcohol interactions
Genetic regulation of BMI might differ in the setting of 
alcohol dependence.59 The Glu504Lys (rs671) variant in 
ALDH2 (mitochondrial) has been associated with alcohol 
intolerance in around 50% of East Asians who lack 
activity of this enzyme, resulting in uncomfortable 
symptoms after alcohol intake.60 Not surprisingly, the 
Lysine allele has been associated with reduced alcohol 
intake.61 In terms of interaction with obesity phenotypes, 
a study of 2958 Chinese individuals found that the 
Glu504Lys (rs671) variant was associated with visceral fat 
only in regular consumers of alcohol, wherein lower 

alcohol consumption in Lysine allele carriers might 
result in reduced visceral adiposity.62 In another study, 
increasingly frequent alcohol consumption dampened 
the association of FTO with BMI.52

Gene by socioeconomic status interactions
Among approximately 9000 non-Hispanic European 
individuals, persistently low socioeconomic status or 
downward mobility (decreasing socioeconomic status 
over time) nominally magnified the association of a 
29-SNP genetic risk score with BMI, whereas persistently 
high socioeconomic status or upward mobility dampened 
the association.63 Similar results for socioeconomic 
position and genetic risk score were observed in the UK 
Biobank study, where the Townsend deprivation index 
appeared to best represent the obesogenic environment.37

Other gene by environment interactions
Chronic psychosocial stress could also interact with 
genetic predisposition to affect adiposity phenotypes.64,65 
It has also been shown that increased deviation from 
mean sleep duration magnified the association of FTO 
with BMI.52 However, robust interactions were not 
observed between individual GWAS SNPs and completed 
college education66 or between a 69-SNP genetic risk 
score and years of education in terms of modifying 
association with BMI or adiposity.37 

Gene by sex interactions in obesity
The best known gene by sex interactions are the several 
loci associated with waist-related phenotypes more 
strongly (or solely) in women than in men.16,67 A large-
scale genome-wide interaction study found 44 loci for 
waist-to-hip ratio (adjusted for BMI) that exhibited sexual 
dimorphism, 28 of which had larger effects in women, 
five had larger effects in men, and 11 had opposite effects 
in women and men.45 This study found no interaction 
between sex and BMI loci. By contrast, in a large GWAS 
meta-analysis in individuals of Asian ancestry, four novel 
loci for BMI were reported, of which two (KCNQ1 and 
ALDH2) showed stronger associations in men than in 
women.68 A subsequent targeted analysis of BMI, waist 
circumference, and waist-to-hip ratio variants in 
2958 Chinese individuals found associations of MC4R 
with visceral fat area and of LYPLAL1 with subcutaneous 
fat area in women only and associations of ALDH2 with 
visceral fat area in men only.62 GWAS meta-analysis in 
individuals of African ancestry discovered three loci for 
BMI and four loci for waist-to-hip ratio showing sexual 
dimorphism.69 These studies raise the possibility that 
gene by sex interactions might depend on ancestry.

Gene by lifestyle interactions in obesity
Gene by diet interactions
Many studies have associated sugar-sweetened beverage 
intake with weight gain and related complications such as 
diabetes. Analyses in the Nurses’ Health Study 
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(6934 women) and the Health Professionals Follow-up 
Study (4423 men) with replication in the Women’s 
Genome Health Study (21 740 women) found that 
increased intake of sugar-sweetened beverages amplified 
the association of a 32-SNP genetic risk score with BMI, 
with the genetic effect approximately doubled when 
comparing the lowest with the highest sugar-sweetened 
beverage intake.70 Additionally, in those with higher 
genetic risk scores, the association of sugar-sweetened 
beverage intake with BMI was stronger than in those with 
lower genetic risk scores. Similar interaction effects 
between genetic risk score and sugar-sweetened beverage 
intake were seen for incident obesity.70 However, in a study 
of the UK Biobank, comprising around 46 000 individuals, 
no interaction between a 69-SNP BMI genetic risk score 
and so-called fizzy drink intake on BMI was observed.37

The Nurses’ Health Study, Health Professionals 
Follow-up Study, and Women’s Genome Health Study 
cohorts were used similarly to show that the association 
of the 32-SNP genetic risk score with BMI was amplified 
in those with increased fried food intake.71 Additionally, 
the effect of fried food consumption on BMI was greater 
in individuals with higher genetic risk scores than in 
those with lower genetic risk scores. This effect of fried 
food consumption was not seen in the UK Biobank.37

A large-scale analysis for gene and diet (assessed as a 
composite healthy diet score) interaction used a genetic 
risk score composed of 32 BMI-associated SNPs and a 
genetic risk score composed of 14 waist-to-hip ratio-
associated SNPs.72 In this meta-analysis,72 a significant 
genetic risk score by healthy diet score interaction was 
not seen for the BMI-associated genetic risk score with 
BMI, while nominally significant interactions were seen 
for the waist-to-hip ratio genetic risk score and healthy 
diet score with waist-to-hip ratio adjusted for BMI. In 
contrast to the studies described above,70,71 in which 
unhealthy dietary factors amplified the association of 
genetic risk score with obesity-related traits, the 
association of genetic risk score with waist-to-hip ratio in 
the meta-analysis72 was greater in magnitude with higher 
healthy diet scores. The authors raised biased self-
reporting of diet as a possible explanation for this 
counterintuitive result. If future studies substantiate an 
increased genetic effect on waist-to-hip ratio in the 
setting of healthy diet factors, this might reflect 
differential gene by diet regulation of fat distribution 
(waist-to-hip ratio) versus total adiposity (BMI). The 
composite healthy diet score might have obscured from 
detection significant gene by diet signals for individual 
diet components. Other studies looking at non-specific 
dietary factors (total energy, fat, carbohydrate, protein, or 
fibre) found no genetic risk score by diet interactions on 
adiposity measures.37,73 Although some studies on FTO 
found that its association with BMI was enhanced in 
settings of higher caloric intake,74,75 higher protein 
intake,76 higher saturated fat intake,77,78 and in those who 
add salt to their food,52 a large study (177 300 adults) 

found no interactions on BMI between FTO and total 
energy, protein, carbohydrate, or fat intake.79

Gene by physical activity interactions
In more than 20 000 individuals, physical activity 
dampened the effect of a 12-SNP genetic risk score on BMI 
and on the odds of obesity.80 Similarly, in 2444 participants, 
physical activity at the age of 36 years dampened the 
association of an 11-SNP genetic risk score with BMI at the 
same age, and physical activity at 53 years attenuated the 
association of the genetic risk score with the rate of change 
in BMI from 53 years to 63 years.81 In more than 
109 000 individuals in the UK Biobank, physical activity 
dampened the association of a 69-SNP genetic risk score 
with BMI.37 These results suggest that physical activity can 
overcome an adverse genetic profile for obesity. Those with 
the greatest genetic risk of obesity (higher genetic risk 
scores) benefited the most from physical activity, including 
low levels of activity, in all aforementioned studies.

A meta-analysis (comprising 111 421 individuals of 
European ancestry) found a nominally significant 12-SNP 
genetic risk score by physical activity interaction on BMI, 
which was primarily driven by individuals from the 
American cohorts and not seen in the European cohorts,82 
raising the possibility of population-specific interaction 
effects. In the US Framingham Heart Study, an 
attenuating effect of physical activity on the genomic 
effect on BMI was seen in individuals aged 21–50 years.46 
In a cohort of 2894 Chinese Han individuals, increased 
physical activity nominally attenuated the association of a 
28-SNP genetic risk score with BMI.83 Conversely, among 
around 8000 Pakistani individuals, a 95-SNP genetic risk 
score showed no interaction with physical activity on 
BMI.57 It is unclear why a genetic risk score by physical 
activity interaction would be present in American and 
Chinese populations but not in European or Pakistani 
populations. Because the interaction has been seen in 
some European cohorts,80 further studies are warranted 
to ensure these differences did not arise by chance.

Analysis of a 32-SNP BMI genetic risk score in the 
Nurses’ Health Study and Health Professionals Follow-
up Study also found that leisure time spent on physical 
activity attenuated the association of the genetic risk 
score with BMI.84 This study also found that the 
association of the genetic risk score with BMI was 
amplified in the setting of increased sedentary behaviour 
(measured as weekly hours of television watched). The 
interactions of genetic risk score with physical activity 
and with sedentary behaviour were independent of each 
other. This finding suggests that physical activity and 
sedentary behaviour are two distinct targets for 
management of obesity. In around 120 000 individuals in 
the UK Biobank study, sedentary time and hours spent 
watching television were separately assessed for genetic 
risk score interaction on BMI; sedentary time showed a 
strong interaction while watching television showed a 
nominal interaction.37
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Several studies have focused on the interaction between 
the FTO locus and physical activity, with conflicting 
results. The most definitive study is a meta-analysis of 
218 166 adults and 19 268 children and adolescents.85 
Interaction between FTO genotype and physical activity 
was seen only in adults, where the odds of obesity were 
1·30 per obesogenic allele in the inactive group and 
1·22 per allele in the active group, representing a 
27% reduction in risk with physical activity. In a 
prospective multiethnic cohort, of 14 BMI SNPs 
examined, physical activity attenuated the effect of only 
FTO on baseline and follow-up (median 3·3 years) BMI 
and body adiposity index.86 A genome-wide interaction 
meta-analysis of 200 452 adults (90% European) identified 
only FTO as having its effect on BMI modified by 
physical activity; no interaction effects on waist 
circumference or waist-to-hip ratio were observed.87

These studies show that physical activity can dampen 
the effect of adverse genetics on the risk of obesity. Thus, 
those at highest risk should be properly counselled to 
adopt an active lifestyle. Direct-to-consumer genetic 
profiling has made it possible for individuals to learn 
their risk on the basis of GWAS variants. However, 
without proper counselling, provision of such information 
can have unintended consequences. A meta-analysis of 
genetic risk-based counselling across multiple conditions 
found that knowledge of genetic risk generally does not 
change behaviour.88 Counselling based on genetic risk of 
obesity typically resulted in reduced self-blame and 
increased motivation to make lifestyle changes in high-
risk individuals, yet did not result in weight loss.89–91 In 
one study, those who found out that they had an increased 
genetic risk of obesity subsequently, on average, increased 
their fat intake and engaged in less leisure-time exercise 
than they did previously.92 Thus, the very people who 
stood the most to gain from an improved lifestyle 
responded in the opposite way after learning their genetic 
risk, perhaps feeling that they were doomed by their 
genetics. In the future, when personalised genomic 
profiling becomes routine, it is anticipated that high risk 
individuals, with proper counselling, would intensify 
rather than de-intensify their lifestyle. This raises the key 
question of whether adverse obesity genetics might 
impair the ability of individuals to lose weight.

Gene by weight loss intervention interactions
Studies have assessed whether genotype modifies the 
effect of diet, exercise, or drug intervention on weight 
loss. This is a different gene by lifestyle interaction (with 
the outcome being weight loss) to that described earlier 
(where the outcome was BMI or obesity). Results from 
intervention trials (typically with modest sample sizes) 
have been conflicting about the effect of FTO genotype 
on response to a weight loss intervention. A meta-
analysis93 of individual patient-level data from eight 
randomised controlled trials found no effect of FTO 
genotype on the response of BMI, weight, or waist 

circumference to diet-based, drug-based, or exercise-
based weight loss interventions. In the Diabetes 
Prevention Program,94 a 16-SNP genetic risk score had no 
interactions with treatment modality in weight loss or 
weight regain. In a Danish trial95 of intensive lifestyle 
intervention, a 30-SNP genetic risk score was associated 
with bodyweight at baseline but not with change in 
weight; no interaction between genetic risk score and 
physical activity on weight change was observed. In the 
Look AHEAD trial assessing an intensive lifestyle 
intervention in overweight and obese people with type 2 
diabetes,96 none of 13 SNPs examined was associated 
with weight loss at 1 year, although an interaction 
between FTO genotype and treatment group on weight 
regain was observed. However, in a joint analysis of the 
Diabetes Prevention Program and Look AHEAD, none of 
91 obesity SNPs were associated with weight loss or 
regain after consideration of multiple testing.97 In the 
DIOGENES study of 651 SNPs in 69 genes, including 
FTO, no association of the SNPs with weight regain after 
a low-calorie diet was found.98 Overall, these studies 
suggest that BMI SNPs should not interfere with the 
success of lifestyle-based weight loss interventions, 
especially intensive efforts, representing another 
important message for genetic counselling.

For bariatric surgery, the few available studies have 
been too small to provide conclusive evidence of gene by 
intervention interactions. The largest interaction study 
to date found one SNP in FTO, rs16945088, that 
modulated weight loss after gastric banding but not 
gastric bypass; this SNP is not in linkage disequilibrium 
with FTO SNPs identified in GWAS for obesity-related 
traits and the GWAS-discovered FTO SNPs were not 
associated with weight loss after surgery.99 Additional 
and larger studies are needed of gene by surgery 
interactions on weight loss.

Genetic variants in obesity used as tools to 
assess causality
In addition to elucidating the biology of obesity itself, 
GWAS loci (typically FTO or genetic risk score) have 
provided useful tools to examine causal associations 
between obesity and conditions for which epidemiological 
studies suggest that obesity is a risk factor. In observational 
studies, obesity has been linked to numerous 
complications; however, association does not prove 
causality. The association might reflect reverse causation 
or be mediated by other (sometimes unmeasured or 
unknown) factors that influence both obesity and the 
complication. In mendelian randomisation or instrument 
variable analysis, the risk factor (in this case, obesity) is 
replaced by genetic loci for that risk factor and analysed 
for its ability to predict the outcome or complication. As 
genetic variants are not altered by confounding 
phenotypes or reverse causality, this analysis allows 
assessment of whether the risk factor has a causal 
association with the outcome. For this approach to 
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succeed, the instrument variable must also be a valid 
representation of the predictor variable. Additionally, the 
genetic variants for the risk factor must not associate with 
potential confounders or be in linkage disequilibrium 
with SNPs associated with other risk factors (pleiotropy). 
Whether FTO and BMI genetic risk scores are sufficiently 
free of pleiotropy is still under debate.100 Population 
stratification (chance genetic differences between cases 
and controls, often arising from unrecognised ancestral 
differences) can also bias mendelian randomisation 
analyses. The most robust mendelian randomisation 
analyses address all of the above issues explicitly.101

Formal analyses integrate epidemiological association 
with genetic association to calculate the causal association 
between the risk factor and the outcome (ie, the effect of 
genetically increased BMI on the outcome). Less formal 
analyses examine only the association between genetic 
loci for the risk factor and the outcome, or they examine 
loci that associate with both the risk factor and the 

outcome (eg, overlapping loci from GWAS for both). 
This Series paper focuses mainly on studies that used 
formal mendelian randomisation analyses to explore 
mediation between obesity and other traits. Other 
models, such as pleiotropy and moderation, which might 
apply to obesity loci, are not discussed. Although not 
absolutely definitive, mendelian randomisation has been 
highly informative about the causality of obesity for 
many traits.

Cardiometabolic risk factors and events
Mendelian randomisation analyses in this setting have 
generally produced expected causal associations of 
BMI with metabolic traits (table 1; appendix 1, p 6). 
Evidence for causality of BMI has been mixed for fasting 
glucose and LDL cholesterol. Repeated causal 
associations of BMI with type 2 diabetes and fasting 
insulin are consistent with the prevailing view that 
obesity can cause diabetes by exacerbating insulin 

Timpson et al 
(2009)102

Fall et al 
(2013)103

Afzal et al 
(2014)104

Holmes et al 
(2014)105

Fall et al 
(2015)106

Millard et al 
(2015)107

Wang et al 
(2016)108

Sample size 37 027 >198 000 96 423 34 538 67 553 8121 2884

Instrument FTO, MC4R SNPs FTO SNP FTO, MC4R, and 
TMEM18 SNPs

GRS of 14 BMI 
SNPs

GRS of 32 
BMI SNPs

GRS of 31 BMI 
SNPs

GRS of 38 BMI 
SNPs; GRS of  
13 WHR SNPs

Type 2 diabetes ·· + + + ·· ·· ··

Fasting glucose ·· NS ·· + ·· + ··

2 h glucose ·· + ·· ·· ·· ·· ··

Fasting insulin ·· + ·· + + + ··

HbA1c ·· NS ·· ·· ·· ·· ··

Insulin secretion ·· ·· ·· ·· ·· ·· + (BMI)

Insulin resistance ·· ·· ·· ·· ·· ·· + (WHR)

Systolic blood pressure + + ·· + + + ··

Diastolic blood pressure + + ·· ·· + ·· ··

Hypertension ·· + ·· ·· ·· ·· ··

Total cholesterol ·· NS ·· ·· ·· NS ··

LDL cholesterol ·· NS ·· – ·· NS ··

HDL cholesterol ·· – ·· – – – (Bonf) ··

Triglycerides ·· + ·· ·· + + (permut) ··

VLDL cholesterol ·· ·· ·· ·· ·· + (permut) ··

Apolipoprotein A-I ·· ·· ·· ·· ·· + (permut) ··

Apolipoprotein B ·· ·· ·· ·· ·· + (permut) ··

C-reactive protein ·· + ·· ·· + + ··

Interleukin 6 ·· NS ·· + + + (permut) ··

Leptin ·· ·· ·· ·· ·· + ··

Adiponectin ·· ·· ·· ·· ·· NS ··

Alanine aminotransferase ·· + ·· ·· ·· ·· ··

γ-glutamyltransferase ·· + ·· ·· ·· ·· ··

Metabolic syndrome ·· + ·· ·· ·· ·· ··

SNP=single-nucleotide polymorphism. GRS=genetic risk score. WHR=waist-to-hip ratio. NS=no causal association of BMI with the trait was observed. Bonf=association was 
significant with Bonferroni correction for multiple testing. permut=association was significant in permutation testing. + indicates that a positive causal association of BMI for 
the trait was observed. – indicates that an inverse causal association of BMI for the trait was observed. Empty cells (indicated by “..”) indicate traits that were not tested in a 
particular study.

Table 1: Mendelian randomisation studies assessing causality of obesity for cardiometabolic traits



8	 www.thelancet.com/diabetes-endocrinology   Published online September 14, 2017   http://dx.doi.org/10.1016/S2213-8587(17)30200-0

Series

resistance. Mendelian randomisation and simple 
association studies have suggested that total adiposity 
(BMI) mainly influences insulin secretion, whereas fat 
distribution (waist-to-hip ratio) influences insulin 
resistance;108,109 increases in both insulin secretion and 
insulin resistance should result in increased fasting 

insulin. The consistent causal associations of BMI with 
other components of the metabolic syndrome (blood 
pressure, triglycerides, and HDL cholesterol) suggest 
that obesity might be the root cause of the syndrome.

The association of obesity with numerous cardiovascular 
risk factors raises the question of whether obesity is causal 

Cohort Instrument Conclusion

Nordestgaard et al (2012)112 11 056 coronary heart disease events in  
75 627 individuals

GRS of three BMI SNPs 
(FTO, MC4R, TMEM18)

BMI is causal for coronary heart disease: 52% increased odds of coronary heart 
disease with every genetic increase in BMI of 4 kg/m²

Klovaite et al (2015)113 87 574 Danish adults, 2158 with deep vein 
thrombosis and 299 with deep vein thrombosis in 
the setting of pulmonary embolism

FTO (rs9939609) Increased BMI is not causal for deep vein thrombosis without pulmonary 
embolism and might be causal for deep vein thrombosis with pulmonary 
embolism

Hagg et al (2015)111 Up to 22 193 individuals with 3062 incident 
cardiovascular events

GRS of 32 BMI SNPs Increased BMI is causal for incident heart failure, ischaemic stroke, and coronary 
heart disease (coronary heart disease required additional samples from 
CARDIoGRAMplusC4D)

Cole et al (2016)110 5831 cases of early onset coronary artery disease 
and 3832 controls

GRS of 35 BMI SNPs Increased BMI is causal for early coronary artery disease

Chatterjee et al (2017)114 51 646 individuals of European origin from seven 
prospective cohorts, with 4178 incident cases of 
atrial fibrillation

FTO and a GRS of 
39 BMI SNPs

Causal association observed for BMI, with each unit increase in the GRS increasing 
the hazard ratio for atrial fibrillation by 11%

Huang et al (2016)115 11 477 Chinese adults with measures of 
ankle-brachial index

GRS of 14 BMI SNPs BMI is causal for peripheral arterial disease

GRS=genetic risk score. SNP=single-nucleotide polymorphism.

Table 2: Mendelian randomisation studies primarily assessing causality of obesity on cardiovascular events

Cohort Instrument Conclusion

Guo et al 
(2016)117

62 328 individuals with breast cancer, 83 817 controls 
(from two cohorts)

GRS based on 84 BMI variants Increased BMI reduces breast cancer risk in premenopausal and 
postmenopausal women 

Gao et al 
(2016)118

Genetic Associations and Mechanisms in Oncology 
(GAME-ON) Consortium (51 537 individuals with 
cancer and 61 600 controls)

GRS of seven SNPs for birthweight; GRS of 
15 SNPs for childhood BMI; GRS of 77 SNPs 
for adult BMI; 14 SNPs for adult WHR

Increased BMI (childhood or adult) reduces breast cancer risk; 
increased adult BMI is causal for lung, ovarian, and colorectal cancer; 
BMI is not causal for prostate cancer 

Benn et al 
(2016)119

108 812 individuals (Danish general population), 
median 4·7-year follow-up, multiple cancers

GRS of five BMI SNPs BMI is not causal for lung, breast, prostate, colon, kidney, skin, or any 
other cancer (limited power for several cancers)

Carreras-Torres 
et al (2016)120

16 572 individuals with lung cancer, 21 480 controls GRS of up to 96 BMI SNPs Increased BMI is causal for squamous-cell and small-cell carcinoma, 
but not for adenocarcinoma 

Dixon et al 
(2016)121

Ovarian Cancer Association Consortium (39 studies; 
14 047 individuals, 23 003 controls)

GRS of 87 BMI SNPs Increased BMI is causal for non-high grade serous ovarian cancers but 
not for high grade serous ovarian cancer 

Jarvis et al 
(2016)122

Up to 18 190 individuals with colorectal cancer and 
27 617 controls (of European ancestry)

GRS of 76 BMI SNPs; GRS of 14 WHR SNPs; 
GRS of nine SNPs for childhood obesity; GRS 
of seven SNPs for birthweight

BMI, WHR, and childhood obesity are causal for colorectal cancer 

Thrift et al 
(2015)123

10 226 individuals with colorectal cancer, 
10 286 controls (of European ancestry)

GRS of 77 BMI SNPs Causal association of increased BMI for colorectal cancer, only in 
women in sex-stratified analysis

Davies et al 
(2015)124

20 848 individuals with prostate cancer and 
20 214 controls

GRS of 32 BMI variants Increased BMI is not causal for incidence of prostate cancer, but is 
associated with increased all-cause mortality among men with low 
grade disease

Thrift et al 
(2014)125

999 patients with oesophageal adenocarcinoma, 
2061 patients with Barrett’s oesophagus, and 
2169 population controls

GRS of 29 BMI variants Increased BMI is causal for oesophageal cancer and its precursor 
Barrett’s oesophagus 

Nead et al 
(2015)126

1287 individuals with endometrial cancer and 
8273 controls

GRS of 32 BMI variants Increased BMI is causal for endometrial cancer 

Painter et al 
(2016)127

6609 individuals with endometrial cancer and 
37 926 controls

GRS for BMI (77 SNPs) and WHR (47 SNPs) Increased BMI, but not WHR, is causal for endometrial cancer 

Carreras-Torres 
et al (2017)128

7110 individuals with pancreatic cancer and 
7264 controls

GRS of 95 BMI SNPs Increased BMI is causal for pancreatic cancer 

GRS=genetic risk score. SNP=single-nucleotide polymorphism. WHR=waist-to-hip ratio.

Table 3: Mendelian randomisation studies assessing causality of obesity for cancer
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for cardiovascular disease events directly (acting via body 
mass) or indirectly (eg, given its association with lipids). 
For coronary heart disease, the balance of evidence110–112 
supports BMI as a causal factor (table 2). In two studies103,105 
that did not find BMI to be causal for coronary heart 
disease, coronary heart disease was one of many traits 
examined; also, one of the studies103 used only FTO as the 
instrument variable and the other105 showed some 
suggestion of causality. A mediation analysis suggested 
that a portion of the effect of obesity on coronary heart 
disease is mediated by LDL cholesterol, remnant 
cholesterol, and systolic blood pressure (7–8% each), with 
no mediating effect of decreased HDL cholesterol or 
raised C-reactive protein.116 Evidence is mixed for stroke, 
whereas mendelian randomisation studies have concluded 
that obesity is causal for heart failure, atrial fibrillation, 
and peripheral arterial disease (table 2; appendix 1, p 6). 
Studies of genetic risk scores are needed to assess whether 
obesity is causal for cardiovascular or all-cause mortality.

Cancer
A potential causal role of obesity has been long recognised 
for various forms of cancer. Breast cancer is unique in its 
inverse association with BMI. For most other cancers 
examined (table 3), increased BMI is causal for increased 
risk of cancer, with the notable exception of prostate cancer. 
This body of work helps to firmly establish obesity as a risk 
factor for several cancers and rules it out for others, 
providing the basis for mechanistic research into the role 
of obesity in neoplasia and strong evidence for weight loss 
as a preventive measure for specific cancer types.

Psychiatric and neurological traits and disorders
Genetics has been used to interrogate the potential causal 
role of obesity in several neuropsychiatric traits and 
disorders (appendix 1, p 7). Reverse causality is a 
particular concern in several of these states; for example, 
people with depression or schizophrenia might adopt 
lifestyles or take medications (eg, atypical antipsychotics) 
that promote weight gain. Mendelian randomisation 
studies support a causal role of obesity in multiple 
sclerosis and have ruled it out for Alzheimer’s disease, 
bipolar disorder, and schizophrenia. Current evidence 
does not support a causal role for obesity in depression. 
A seemingly paradoxical effect of increased BMI on 
reduced psychological distress awaits confirmation.129

Reproductive traits and disorders
Obesity influences reproductive health; mendelian 
randomisation has been applied to explore causality 
(appendix 1, p 8). Studies have suggested a shared genetic 
basis between obesity and timing of puberty.130 Age of 
menarche has become progressively lower in 
approximately the past 50 years, possibly linked to the 
concurrent obesity epidemic. Among 8156 women, 
mendelian randomisation analysis suggested that BMI 
in childhood was causal for menarche occurring before 

the age of 12 years.131 However, in 556 children, a 42-SNP 
genetic risk score for age of menarche was associated 
with BMI, raising the possibility of bidirectional 
causality.132

In polycystic ovary syndrome, the role of obesity as a 
causal factor versus only as an exacerbating factor has 
long been debated. Mendelian randomisation analysis of 
32 SNPs suggests a causal association of BMI with 
polycystic ovary syndrome.133

Other traits and conditions
Although an association between obesity and bone-
density-related phenotypes has long been recognised, 
mendelian randomisation studies of bone phenotypes 
have been done in relatively small sample sizes and 
yielded mixed results (appendix 1, p 9). Obesity is linked 
to numerous additional conditions, many of which have 
been interrogated in mendelian randomisation analyses 
(figure 2; appendix 1, p 10). In addition to the analyses 
that examined multiple cancers118,119,134 and multiple 
cardiometabolic phenotypes,103,106 other studies have used 
mendelian randomisation to examine the causality of 
obesity simultaneously for multiple traits (a phenome-
wide approach).107,135 Importantly, these studies accounted 
for multiple testing.

Although epidemiological and genetic correlation has 
been documented between BMI and sleep-related 
phenotypes, such as a person’s chronotype (morning or 
evening type), under-sleeping, oversleeping, or excessive 
daytime sleepiness, large-scale mendelian randomisation 
analyses have not been able to establish causality.136–138 

Cancer
•  Breast cancer
•  Squamous cell lung cancer
•  Small-cell lung cancer
•  Lung adenocarcinoma
•  Non-high grade serous ovarian
    cancer
•  High grade serous ovarian cancer
•  Colorectal cancer
•  Prostate cancer
•  Oesophageal carcinoma
•  Barrett’s oesophagus
•  Endometrial cancer
•  Pancreatic cancer

Miscellaneous
•  Wheezing
•  Knee osteoarthritis
•  Hip osteoarthritis
•  Periodontitis
•  Short telomeres
•  Chronotype, sleep duration
•  Fetuin-A levels
•  25-hydroxyvitamin D levels
•  Uric acid levels
•  Diabetic nephropathy
•  Deprivation in women
•  Annual income in women

Cardiometabolic*
•  Type 2 diabetes
•  Fasting insulin
•  Blood pressure
•  HDL cholesterol
•  Triglycerides
•  C-reactive protein
•  Total cholesterol
•  Interleukin 6

Reproductive
•  Polycystic ovary syndrome
•  Age of menarche
•  Offspring birthweight
•  Offspring fat mass in childhood

Neuropsychiatric
•  Alzheimer’s disease
•  Bipolar disorder
•  Multiple sclerosis
•  Psychological distress
•  Schizophrenia

Cardiovascular events
•  Coronary heart disease
•  Early coronary artery disease
•  Heart failure
•  Atrial fibrillation
•  Peripheral arterial disease
•  Deep vein thrombosis without
    pulmonary embolism

Obesity

Figure 2: Inferences of causality of obesity derived from mendelian randomisation studies
Traits and diseases shown in green are those for which obesity appears to have a positive causal association. 
Traits and diseases shown in red are those for which obesity has an inverse causal association. Black indicates traits 
and diseases for which mendelian randomisation studies have argued against a causal association of obesity. Traits 
for which evidence is mixed, available from only small studies, or observed with borderline significance are not 
included. *Since many cardiometabolic traits have been tested (table 1), only those with the most consistent 
evidence across studies are shown.
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Mendelian randomisation analyses have produced 
conflicting results on whether obesity is causal for asthma 
(appendix 1, p 10).139,140 Obesity appears to be causal for 
features of diabetic kidney disease in type 1 diabetes.141

The associations of several biomarkers with BMI have 
been informatively clarified in a series of bidirectional 
mendelian randomisation analyses, wherein investigators 

tested a genetic instrument variable for BMI for causality 
with the biomarker, and tested a genetic instrument 
variable for the biomarker for causality with BMI 
(appendix, p 11). As chronic low grade inflammation is a 
risk factor for cardiometabolic disease, these findings 
clarifying the association between adiposity and markers 
of inflammation, such as C-reactive protein, are clinically 
relevant.142

Conclusion
GWAS for obesity-related traits have provided new 
insights into the biology of obesity. Given the low 
proportion of heritability explained by available SNPs for 
obesity, it is not surprising that these SNPs are not 
clinically useful as tools to predict who could develop 
obesity.39 Although the mechanism of the FTO locus is 
being described at the molecular level, the functions of 
the majority of loci, most of which map to non-coding 
sequences, will require extensive investigation to identify 
the responsible gene at each locus, which might not be 
the nearest gene. This mechanistic information, and 
consequent elucidation of the pathophysiology of obesity, 
will allow development of new treatments, which could 
ultimately be the main benefit of these genetic discoveries 
(panel 2).

Fortunately, lack of mechanistic knowledge has not 
prevented the fruitful use of SNPs or genetic risk scores 
as tools to shed light on the interactions of obesity 
genetics with environmental and lifestyle factors. 
Noting that obesity gene by environment studies might 
be biased by imprecision in the measurement of diet 
and physical activity,38 these studies suggest that an 
adverse lifestyle could amplify the genetic risk of obesity. 
Further studies are needed to solidify this notion and 
clarify the particular dietary components (eg, sugar-
sweetened beverages) that interact with genetic variants. 
This research could eventually lead to personalised 
obesity prevention and treatment measures (pending 
confirmation in clinical trials of genetic-risk-guided 
interventions). Obesity genetics has provided the tools 
to explore causal associations between obesity and its 
multiple potential complications. However, because 
most of the studies described above were done in 
individuals of European ancestry, additional studies are 
needed in minority ethnic groups that are at high risk of 
obesity to elucidate the contributions of genetics, the 
environment, and interactions thereof that might 
explain their increased risk.
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