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Arboviruses such  as West Nile, Zika, chikungunya, dengue, and yellow fever

viruses  have become highly signi cantfi  global pathogens through unexpected,

explosive outbreaks. While the rapid progression  and frequency of recent

arbovirus outbreaks is associated with long-term  changes in human behavior

(globalization, urbanization, climate change), there are direct mosquito virus–

interactions  which drive shifts in host range and alter virus transmission. This

review  summarizes  how virus mosquito–
 interactions  are critical for these

viruses  to  become global  pathogens at molecular,  physiological, evolutionary,

and epidemiological scales.  Integrated  proactive approaches  are required  in

order to effectively manage the emergence of mosquito-borne  arboviruses,

which  appears likely  to continue  into  the inde nitefi  future.

Mosquito-Borne  Viruses as the New Global Pathogens

Viral pathogens are  major  causes of morbidity  and mortality among humans and  animals.

Ef cientfi  transmission  of viruses  between susceptible hosts is required in order  for these  agents

to persist  in nature  and ultimately cause disease.  Several mechanisms for this exist, and include

direct contact, aerosol and sexual  transmission, among others. A subset  of viruses, termed

arthropod-borne  viruses (arboviruses) requires hematophagous arthropods, mainly mosqui-

toes and ticks, for transmission between  vertebrates.  In general, perpetuation of arboviruses

requires vertebrate viremia  so  that  arthropods acquire  infectious virus along with nutrient-

containing blood during feeding. Transmission of virus to a new  host  by an arthropod  infected in

this manner requires that this arthropod be a  competent vector. In public health  entomology,

the term  ‘vector competence’ refers to the inherent ability of  a particular arthropod to transmit a

particular virus. In competent  vectors, virus is acquired  during  feeding, undergoes replication  in

gut tissue, disseminates  to secondary sites  of replication,  including the salivary glands and is

ultimately  released  into  the arthropod s’  salivary secretions, where it  may be  inoculated into the

skin and cutaneous  vasculature of the host during  subsequent feeding  (Figure 1). Arboviruses,

therefore, are  those viruses  that  have evolved an intimate association with both  a vertebrate  and

arthropod host in order to perpetuate in nature.

M o s q u i t o e s a r e  t h e m o s t i m p o r t a n t  v e c t o r s o f  a r b o v i r u s e s [ 1 ] , a l t h o u g h  m a n y a r e m a i n -

t a i n e d  b y t i c k s [ 2 ] , p h l e b o t o m i n e s [ 3 ] , a n d o t h e r a r t h r o p o d s  [ 4 ] .  T h e  g l o b a l h e a l t h  b u r d e n o f

m o s q u i t o - b o r n e v i r u s e s i s i m m e n s e .  I t i s  c o m m o n l y e s t i m a t e d t h a t  b e t w e e n 5 0 a n d 1 0 0

m i l l i o n c a s e s o f i n f e c t i o n b y d e n g u e v i r u s ( D E N V ) s e r o t y p  e s  1 4–  o c c u r p e r y e a r . R e c e n t

e s t i m a t e s p l a c e d t h e b u r d e n  o f  D E N V a t  1 . 1 4  m i l l i o n d i s a b i l i t y - a d j u s t e d l i f e - y e a r s i n  2 0 1 3

[ 5 ] . M o s t o f  t h e  i n d i v i d u a l s  w h o a r e a t r i s k  o f D E N V i n f e c t i o n a r e  a t  r i s k o f o t h e r  a r b o v i r u s e s ,

i n c l u d i n g y e l l o w  f e v e r v i r u s ( Y F V ) , c h i k u n g u n y a v i r u s ( C H I K V ) ,  a n d Z i k a v i r u s ( Z I K V )  w h i c h

s h a r e t h e s a m e  m o s q u i t o v e c t o r , A e d e s  a e g y p t i [ 6 ] . A d d i t i o n a l  a r b o v i r u s e s  t h a t b u r d e n t h e

h e a l t h  o f i n d i v i d u a l s l i v i n g i n , o r t r a v e l i n g t o , t h e t r o p i c s i n c l u d e J a p a n e s e e n c e p h a l i t i s  v i r u s

( J E V ) ,  V e n e z u e l a n e q u i n e e n c e p h a l i t i s v i r u s ( V E E V ) , M a y a r o v i r u s ( M A Y V ) , o’n y o n g n y o n g
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Glossary

Antigenemia: describes  levels  of

antigen in  the blood.  In the particular

case of increased  NS1  antigenemia

mentioned here, it  means that  the

more recent isolates of  ZIKV result in

increased NS1 levels in  the blood of

infected individuals.

E1 and E2  glycoproteins: structural

proteins incorporated  into the

envelope of the  alphaviruses, such

as CHIKV. E1 and E2 are important

for attachment, entry, and fusion

events of the virus.

Enzootic transmission cycle:

describes the natural transmission

cycle of a  pathogen between wild

animals. The term ‘ ’enzootic  is

equivalent to the term  ‘ ’endemic  as

used for human diseases.

Epizootic transmission  cycle:

refers to disease  outbreaks among

animal populations. The term

‘ ’epizootic  is  equivalent to the term

‘ ’epidemic  as used for  human

diseases.

Vector competence: describes the

ability of a  particular  arthropod to

transmit a  speci cfi  pathogen.

Vectorial capacity: describes  the

basic reproductive rate  of a  vector-

borne  pathogen by a particular

vector species/population.

v i r u s ( O N N V ) , a n d m a n y  o t h e r s . T e m p e r a t e r e g i o n s a l s o e x p e r i e n c e  s e a s o n a l  e p i d e m i c s  o f

a r b o v i r a l  d i s e a s e c a u s e d b y W e s t N i l e v i r u s ( W N V ) ,  L a C r o s s e v i r u s ( L A C V ) ,  e a s t e r n e q u i n e

e n c e p h a l i t i s  v i r u s ( E E E V ) ,  J a m e s t o w n C a n y o n  v i r u s ( J C V ) a n d r e l a t e d  v i r u s e s . A l t h o u g h

q u a n t i t a t i v e e s t i m a t e s o f t h e  c o l l e c t i v e  b u r d e n  o f  m o s q u i t o - b o r n e a r b o v i r u s e s o n h u m a n

h e a l t h  w o r l d w i d e d o  n o t c u r r e n t l y  e x i s t , i t  i s c l e a r t h a t t h e i r b u r d e n i s e n o r m o u s , a n d

i n c r e a s i n g [ 5 , 7 , 8 ] .

T h e  g e o g r a p h i c d i s t r i b u t i o n o f m a n y arbovi ruse s h a s  expan ded  in  r e c e n t decad es [6,9] ,

resul ting  i n infec tion  o f  n a ï v e p o p u l a t i o n s and  provi ding  o p p o r t u n i t i e s f o r n e w  h o s t–viru s

relat ionsh ips t o d e v e l o p . F o r  examp le, after  incur sions i n t o E u r o p e in t h e 1 9 9 0 s , W N V  (genu s

Flav iv irus )  w a s intro duced i n t o the A m e r i c a s i n 1 9 9 9  and r a p i d l y sprea d  f r o m  a  smal l focus

n e a r  New  Y o r k City  t h r o u g h o u t t h e  New World . S i m i l ar l y , C H I K V  ( g e n u s Alphav irus ) sprea d

f r o m an  A f r i c a n focus  into A s i a d u r i n g t h e m i d - 2 0 0 0 s  and was intro duced into  t h e Carib bean

r e g i o n  in 2 0 1 3 [ 1 0 , 1 1 ] . CHIK V  i s n o w endem ic  i n t h e Amer icas  and has  cause d o v e r o n e

m i l l i o n  infec tions, m a n y o f whic h  r e s u l t in d e b i l i t a t in g a r t h r a l gi a [10]. ZIKV  (genu s F l a v i v i r u s )

h a s a l s o emerg ed  in  r e c e n t years [12].  F o l l o w i n g an  expa nsion f r o m an A f r i c a n focus i n t o  t h e

P a c ific i s l a n d s,  t h e virus w a s  i n t r o d u c e d i n t o S o u t h  Americ a and  h a s sprea d t h r o u g h o u t most

o f  t h e r a n g e o f its A e . aegyp ti vecto r [8]. ZIKV h a s  caus ed n o t a b l e  d i s e a s e among  develo ping

fetuse s and  u n e x p e c t e d  n e u r o l o g i c a l d i s e a s e a m o n g  adult s [13]. W N V , CHIKV ,  and Z I K V ,

alon g with D E N V and  Y F V , u n d e r s c o r e t h e  emerg ence o f m o s q u i t o - b o r n e viruse s  as  t r u l y

g l o b a l p a t h o g e n s .  T h e comb in ation  o f  incre ased t r a v e l and t r a d e h a s r e s u l t e d  i n f r e q u e n t

exch ange  o f  p a t h o g e n s and  vecto rs across contin ents,  such t h a t t h e n o t i o n o f  ‘g e o g r a p h i c

dise ases’  is increa sing ly irrel evant .  Coupl ed with t h e r a p i d g r o w t h o f  tropic al  m e g a c i t ie s ,

these  excha nges contin ue t o r e s u l t in explo sive epidem ics o f patho g ens  t r a n s m i t t e d b y

m o s q u i t o v e c t o r s t h a t requir e  t h e h u m a n f o o t p r i n t o n  t h e  envir onment i n o r d e r t o survi ve –

v e c t o r s such  as Ae.  aegyp ti  and  Culex  quinq uefasci atus . T h e o n g o i n g emerg ence o f m o s -

q u i t o - b o r n e viruse s  i s occu rring  o n a scal e  (geog raphic , e c o n o m i c , and  h u m a n ) t h a t is with out

preced ent  in h u m a n h i s t o r y [7,8, 14].

How, then, do mosquito virus–  relationships  lead  to the  emergence  of  these  global  pathogens

(Figure 2, Key Figure)?  This  review examines the ways that mosquitoes in uencefl  the emer-

gence of mosquito-borne viruses in order  to provide perspectives on the  history and future of

this phenomenon.  The first section examines two central concepts  in public  health  entomology

– vector competence and vectorial  capacity  – which outline basic  mosquito virus–  interactions

and  are key in understanding how  mosquitoes impact virus emergence. These concepts are

also required  for readers to develop  a basic understanding  of  the  biology and epidemiology of

arboviruses.  The second  section  deals with new knowledge of the evolutionary relationships

between viruses and their  arthropod hosts. This section illuminates  the complexities of

arthropod host–  interactions  and how these can  in uencefl  virus population biology  and  phe-

notype,  sometimes leading to  emergence.  The  third  section provides a historical  perspective  on

how mosquitoes in uencefl  arbovirus  emergence by examining  the cases of WNV,  CHIKV, and

ZIKV.  Finally, we provide perspectives on the future  emergence of mosquito-borne viruses,

highlighting emerging mosquito-borne viruses that have yet  to  capture  the attention of the

general population.

Understanding Vector Competence and  Vectorial Capacity

Arbovirus emergence is driven  by the hematophagous  behavior  of their  arthropod vectors. This

unique mode of transmission has important consequences for the ecology  of arboviruses.

There are two  concepts that  are central to our  understanding  of arbovirus  transmission  and

epidemiology: vector  competence  (see  Glossary)  and vectorial capacity.
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As described above,  vector  competence de nesfi  the ability of  a  particular  arthropod to transmit

a given virus. Vector competence has  been studied extensively in  mosquitoes,  and it  is

determined by both  genetic and  nongenetic (e.g., environmental)  factors. It  may vary depend-

ing  on  mosquito species, local  mosquito populations,  and even individual mosquitoes.  Impor-

tantly, vector competence is a quantitative rather than a qualitative quantity:  rarely do all

mosquitoes of a  given species  or population  transmit a given virus. Thus,  vector competence is

usually expressed  as a proportion  (e.g.,  34% of Culex  tarsalis  mosquitoes transmit WNV  after

10 days  incubation). Vector competence of  a  speci cfi  mosquito population is  also dependent

on the virus,  and even different isolates  of the  same  virus species may result  in  changes  in

vector competence of a mosquito population [15,16]. Generally, there are  four  major  barriers

that  the virus must cross within the mosquito in  order  to be transmitted (reviewed in [17]). First,

when  a  mosquito ingests an infectious  bloodmeal, the  virus must successfully  infect and

replicate in the midgut epithelial  cells  (Figure 1).  The midgut is the first tissue in which  virus–

mosquito  cell  interactions occur  that can shape  the outcome of  infection. Mosquitoes  in  which

the virus cannot  establish an infection  have  a  midgut infection barrier (MIB). This can occur due

to genetic factors,  such as lacking expression of receptors  on the cell surface,  or nongenetic

determinants  such as microbiome  density and composition  [18 20]– . However,  once a virus has

established midgut  infection  it must  cross the basal lamina  surrounding the midgut epithelium in

order to disseminate throughout the rest of  the mosquito (Figure 1). When virus replication  is

limited to the midgut and dissemination  does not occur, mosquitoes are said to have a strong

midgut escape barrier (MEB).  The basal lamina  of  the midgut presents  a  physical  barrier for the

virus, and the thickness of the basal  lamina has previously been linked to decreased dissemi-

nation of DENV-1 in different Aedes albopictus populations [21]. Furthermore, it has  been

shown  that  smaller, nutritionally  deprived  Aedes  triseriatus  mosquitoes have increased LACV

Figure 1.  Different Tissue Barriers Determine Vector Competence in Mosquitoes.  An arbovirus is taken  up by  the mosquito  during  an  infectious  blood meal.

The  virus  infects the midgut epithelium and replicates  before it passes  the  basal  lamina into the  hemolymph  and disseminates throughout the mosquito's  body. In  order

to be transmitted to the next host, the virus  has to infect the salivary  glands  from where it can be released  into the saliva  and  transmitted to the next host. Virus population

genetic diversity is reduced stochastically as viruses pass through  anatomical barriers to transmission,  such as  midgut infection and escape  barriers, and  salivary gland

infection and escape barriers.  Potential changes  in virus populations  that have  passed through such bottlenecks are depicted as a  change in color (increasingly dark

blue). Through this genetic  drift, as well as positive  selection in the  mosquito, new genotypes may  emerge.
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dissemination  rates  compared to larger mosquitoes reared on  a normal or rich larval diet

[22,23], which may also correlate  with the development of  a  thick  basal  lamina.  However,  it has

recently  been shown that  the uptake  of a bloodmeal alters expression of  speci cfi  enzymes in the

mosquito  midgut,  including collagenases,  which results in  transient  degradation and increased

permissibility of the basal lamina, allowing  CHIKV to  disseminate [24,25]. Viruses with slower

replication rates,  such as  DENV,  may not bene tfi  as  much from early transient degradation  of

the basal lamina following  a bloodmeal. Another possible midgut escape  route for arboviruses

may be  via tracheal or  neuronal cells. Dong and  colleagues [24]  recently  showed that  CHIKV

can  infect tracheal cells connected  to Ae. aegypti midguts. When  the virus  has disseminated

from the midgut it  replicates in other  mosquito  tissues, including the fat body,  hemocytes, nerve

tissue, and  muscle tissue (depending on  the virus) ultimately reaching the salivary glands,  the

next crucial anatomical barrier to infection, the  ‘salivary gland infection barrier’ (SGIB). Upon

salivary gland  infection,  the virus replicates  and is  deposited  in the apical cavities  of  acinar cells

in order  to be expectorated with  saliva (Figure 1). However, not  all mosquitoes will be able  to

expectorate virus (for  reasons yet unknown) and thus have a ‘salivary gland escape barrier’

(SGEB).

Other important mechanisms to limit  virus replication throughout  the mosquito body are

mosquito  antiviral immune responses (reviewed in [26,27]).  The most speci cfi  and potent

mosquito  antiviral  defense is RNA interference (RNAi). During infection  of a  mosquito cell, viral

dsRNA intermediates  are recognized  by the endonuclease Dicer2 and cleaved  into  21 nt virus-

derived small RNAs. These small RNAs  are  integrated into the RNA-induced silencing complex

(RISC)  and can target  viral RNA for  degradation. This  sequence-speci cfi  response  can be very

ef cientfi  at controlling viral replication,  and many viruses have evolved  mechanisms to

Key  Figure

Summary of Factors  Influencing Arbovirus  Emergence

Figure 2. Cellular  and  molecular interactions,  such as RNAi, drive  virus diversi cationfi  in the mosquito. Differences  in  mosquito vector  competence,  and bottlenecks

that  the virus encounters during dissemination within a  mosquito,  can result in further divergence of the  virus population and  drive  virus evolution and emergence. Due to

urbanization and deforestation, humans  and livestock are frequently in close proximity to mosquito vectors  and  to  vertebrate hosts maintaining viruses in sylvatic/

enzootic  transmission  cycles. Human  settlements may  also bring along  anthropophagic  mosquitoes such as  Aedes aegypti and  Aedes albopictus, which  may

encounter viremic  reservoir  hosts, such  as  primates. Interactions between new vector mosquitoes and  vertebrate  hosts can drive  arbovirus evolution and  emergence.

Due to intense  travel, and  ubiquitous distribution of Aedes spp. mosquitoes, such spillover  events  may  easily lead to the outbreak  of  a  new global pathogen.
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antagonize or  evade the RNAi response [28]. All mosquito  antiviral responses may pose

selective pressures on the virus, but RNAi is unique  in its  sequence speci city,fi  which poses

a direct  evolutionary pressure on  the viral genome. Mosquito barriers and antiviral responses

together contribute to the overall phenotype of  vector competence.

Vectorial capacity  is  a second critical  concept that  describes the basic reproductive rate of a

vector-borne pathogen by a particular  vector species/population (Figure 3),  and highlights the

power  of mosquitoes  as  drivers  of virus emergence. Factors  which  in uencefl  vectorial capacity

are vector density with respect to host (m), the daily probability of the host being fed upon (a),

vector competence  (VC), the probability of  daily survival ( )P  and the extrinsic incubation period

(n). The factors that  in uencefl  vectorial capacity,  and  lead to arbovirus  emergence,  have  been

reviewed and discussed extensively  [29,30]. Brie y,fl  the  most in uentialfl  variables in the formula

are the probability of daily mosquito  survival and  the extrinsic incubation period  (EIP). The EIP

refers to the amount of time  that  it  takes for a virus to infect  the midgut and  disseminate to the

saliva  (i.e.,  the  time between  uptake of virus and ability to transmit). If  the probability of  mosquito

daily survival is  low and  the EIP long, the likelihood of transmission is low.  Extensive mosquito-

control  programs  that  shorten the lifespan can  thus ef cientlyfi  reduce transmission. However,

the EIP  is affected by  environmental conditions,  such as  temperature [31 33]– ,  as well as genetic

factors  [34 36]–  in uencingfl  vector competence of the mosquito population.  Viruses may adapt

to faster dissemination in susceptible mosquito  species and thus shorten the  EIP [37].

Another important variable  is the probability of a particular host being fed upon, or the  degree of

host  focus.  This variable, ‘ ’a  in the vectorial capacity equation, is a proportion  (e.g., 80%, or 0.8

of mosquito X bloodmeals are taken  from host Y) and is raised to the second power to re ectfl

the need for  susceptible hosts  to be  bitten  twice  in order  for  perpetuation to  occur.  Different

mosquito  species  vary in their blood-feeding behavior and  host preference. The mosquito

species Ae. aegypti,  for example,  has  adapted to life around humans,  in particular urban areas

of the tropics and subtropics, and mosquitoes of this species  feed  almost exclusively  on  human

Figure 3. Vectorial Capacity. The vectorial capacity formula  describes the  total number of  future infectious  bites  arising from mosquitoes  biting an individual

infectious host on a single day. It  consists of five  factors: vector density with respect to host (m),  the  daily  probability of the host being  fed upon (a), vector competence of

the mosquito  population (VC),  the probability of  daily survival ( )P  and  the  extrinsic incubation period  (n). None of  these factors are constants, but variables which  depend

on both  environmental  in uencesfl  as  well as speci cfi  virus mosquito–  interactions  as  indicated.
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hosts  and frequently feed indoors  [38]. This behavior makes  them extremely ef cientfi  vectors for

viruses such as DENV, CHIKV, and  ZIKV, which  replicate to high titers  in  human  hosts. In

contrast, Ae. albopictus, which can also serve as a vector for DENV, CHIKV,  and ZIKV, is more

likely  to feed outside, and while it is still anthropophilic,  it is more  of an  opportunistic  feeder [39].

Other mosquitoes,  such as  several species within the genus Culex, may feed on  a human  host,

but tend  to prefer birds [40].  This makes them ef cientfi  vectors for WNV  and other  zoonotic

arboviruses.  WNV infection  of human or horse  hosts is incidental  and  results in a ‘dead end’ for

the virus due to inef cientfi  replication and  consequent low viremia. Thus, the  competence of a

given mosquito  vector for an arbovirus may  be  irrelevant if that mosquito feeds  only infrequently

on susceptible vertebrate  hosts.

Virus adaptation to  new mosquito vectors clearly shapes the patterns  and dynamics of

arbovirus emergence. Generally,  viruses with an  Ae. aegypti-driven urban life cycle emerged

from enzootic  progenitors that  circulated  between nonhuman primates  and sylvatic mosquito

species such  as Aedes africanus or  Aedes  furcifer [8,41].  Adaptation to  transmission  by Ae.

aegypti mosquitoes provided  access  to a  new and abundant  vertebrate host, humans.  This  has

resulted in explosive outbreaks as seen  before for ZIKV,  which originated in a  sylvatic cycle  in

Africa.  Similarly, there  are likely  numerous viruses  in current sylvatic viruses that  may cause

disease outbreaks in the future, some  of  which  we already know, many  of which  we may be

unaware of.

Mosquitoes  as Sources  of Virus Genetic Diversity

Arbo virus  t r a n s m i ss i o n  requir es  acti ve  virus repl icatio n b o t h in  t h e  arthro pod v e c t o r and t h e

v e r t e b r at e host. Arbov iruse s  are thus subje ct  t o selec tive  pressu res f r o m t w o evolu tiona ri ly

dist ant  h o s t s .  I n  verteb rates , where  p u r i f y i n g select ion is stron g [ 4 2 , 4 3 ] , these pressu res

incl u de  innat e and  adapt ive  i m m u n e r e s p o n s e s .  Mosq u itoes l a c k a  clas si c adapt ive i m m u n e

syst em and d o n o t  produ ce inter feron.  Howe ve r, J a k / S T A T signal ing and  o t h e r  sign aling

pathwa ys, such as  T o l l , h a v e  been  ident i edfi  as antiv iral respo nses agai nst DENV  [ 4 4 , 4 5 ] ,

W N V  [ 4 6 ] , S e m l i k i F o r e s t virus [47],  and ONNV [18]. RNAi is t h e m a i n  antiv iral  d e f e n s e in

mosq u itoes [ 2 7 ] , whic h  h a s d i r e c t c o n s e q u e n c e s f o r viru s intrah ost evolu tion  in mosq u itoes

( w h i c h can s i g n ific an t l y impac t  viru s emerg ence). V i r u s - d e r i v e d small R N A s i n h i b i t v i r u s

repl icatio n and t r a n s l a t io n b y dire ctly bindin g t o comp le mentar y  viral RNA  [27]. T h e  g e n e r a -

t i o n  and p e r p e t u a t i o n o f  n o v e l  sequen ces o f vira l RNA ( i . e . ,  c o n t a in i n g muta ti ons) m a y t h u s  b e

b e n eficial  f o r the  virus with in t h e m o s q u i t o b e c a u se  s m a l l  R N A s will n o t  m a t c h with  perfec t

comp le mentar ity. Experi ment al  evolu t ion s t u d i e s h a v e confir m e d t h e hypot hesis t h a t R N A i

target ing b y t h e a r t h r o p o d v e c t o r l e a d s  to dive rsi cat ionfi  o f arbovi rus g e n o m e s [48 50– ] . Rapid

evolu tion and  g e n e r a t i o n o f a compl ex v i r u s p o p u l a t i o n  could  b e  part ic ular ly b e n eficial f o r  t h e

v i r u s  in o r d e r t o r e d u c e comp le mentar y b i n d i n g , and b e c a u s e small RNAs h a v e b e e n  shown

t o spread  f r o m cell  t o cell  and  m a y t h u s p r e p a r e  n e i g h b o r i n g cells f o r i m m i n e n t virus infec tion

[ 5 1 ] .  Howe ve r, these  r a p i d l y g e n e r a t e d  compl ex  viral p o p u l a t i o n s encou nter b o t t l e n ec k s

w i t h i n  the m o s q u i t o w h e n cross ing t h e M E B , the S G I B , and  d u r i n g t r a n s m i s s i o n o f  saliva  itself

[ 5 2 , 5 3 ] .  T h e s e bottle necks vary  in their  size  b e t w e e n  differ ent mosqu i to spec ies  and most

l i k e l y v i r u s–vector combi nation s. In C x . q u i n q u e f a s c ia t u s , f o r examp le, WNV  dive rsi cat ionfi  is

h i g h , p u r i f y i n g select ion  is r e l a t i v e l y w e a k , and  b o t t l e n e c k s are  s i g n ific an t ,  result ing in  h i g h

dive rgence o f  W N V p o p u l a t i o n s in t h e saliv a comp ar ed t o t h e  virus  contai ned in  t h e  b l o o d -

m e a l [52].  Diffe rent m o s q u i t o specie s m a y t h u s  alter t h e  viru s p o p u l a t i o n t h a t  is u l t i m a t e l y

t r a n s m i t t ed . Addi t ionall y, it  h a s been s h o w n  that  Culex mosq u itoes m a y  t r a n s m i t u n i q u e WNV

p o p u l a t i o n s d u r i n g each  f e e d i n g e p i s o d e [54],  which  is a  f u r t h e r examp le  o f h o w  mosq u ito

infec tion  p r o m o t e s  virus d i v e r s ificati o n. Howe ve r, it is n o t  know n  i f  t h e  same  phenom enon

o c c u r s  with o t h e r virus es and m o s q u i t o  specie s.
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Rapid  intrahost evolution of  a  mosquito-borne  virus in the mosquito may result in the emer-

gence of a  new variant  with a  replication  advantage in  the vertebrate  host or a  new  tissue

tropism resulting in increased  disease severity. For instance, VEEV emerges frequently from

enzootic  to  epizootic transmission cycles,  with horses  serving  as amplifying hosts  causing

large outbreaks in both humans and  horses. These  epizootic  strains appear to have only a few

amino acid changes in the envelope glycoprotein E2 in common compared to the enzootic

strains  [55]. There are many VEEV  strains currently  being  transmitted in enzootic cycles, posing

a constant threat in South  and Central America  [56].

While  virus adaptation to replication in mosquitoes  may reduce  the ability  of  the  virus  to replicate

to high titers  in the mammalian host, such adaptations can  also affect pathogenesis  in

undesirable  ways. This  can  be seen in EEEV,  for example, which does  not  reach  high viremia

in humans, but can  cause  severe to fatal encephalitis.  It  has  recently been  shown  that  the virus

cannot  replicate  in myeloid  cells of mice due to a miRNA  target site in the 3 UTR for miRNA 142-

3p, a  myeloid cell-speci cfi  miRNA [57]. However, while mutating this target sequence led  to an

increase in  viremia and replication in peripheral tissues  in mice, it resulted in a decrease in

replication in  mosquito cells and in infectivity of  mosquitoes, suggesting that  this sequence is

important for replication in mosquitoes. This is one example of how adaptation  to the vector

may interfere with replication in a mammalian host.

Conversely, insect-speci cfi  viruses may  have at  some point developed mechanisms  to inhibit

mosquito  antiviral defenses,  which may also help the virus replicate ef cientlyfi  in  mammalian

cells.  One such  mechanism is the generation of subgenomic  flaviviral RNA (sfRNA)  during

replication. Flaviviruses  have  complex secondary structures in the 3 UTR, which stall  the 3 5

exonuclease  XRN1, resulting in the generation of  sfRNAs. These sfRNAs inhibit  mRNA  degra-

dation by sequestering XRN1, both  in mosquito and mammalian  cells.  sfRNAs  also  suppress

interferon  signaling in vertebrate cells  and are  important  for cytopathicity as  well as  pathoge-

nicity  in mice [58]. Production of sfRNAs  is also important  for  replication and dissemination of

flaviviruses  in mosquitoes [59,60], which  may be  due to both repression of XRN1 and their other

function as  suppressors of  the mosquito  RNAi  machinery [61,62]. However, it has  recently been

shown  that  DENV sfRNA patterns  differ when virus is passaged  in mosquito cells compared to

mammalian  cells  [63], suggesting that  while sfRNA generation  is important in both  cell types it is

not optimized for  one over the other. Overall, sfRNAs  may have  evolved in mosquitoes  (similar

yet  less complex  3 UTR  structures exist in insect-speci cfi  flaviviruses),  but  have an important

role  in vertebrate cells that is related to,  but distinct  from, its role  in mosquitoes.

Virus Mosquito–
 Interactions Have Previously Shaped Virus Emergence

I n  r e c e n t d e c a d es , WNV, CHIKV , and  Z I K V h a v e  emerg ed as  g l o b a l p a t h o g e n s i n expl osive

o u t b r e a k s t h a t h a v e c a u s e d sign i cantfi  h u m a n morb idity and m o r t a l i t y . T h e g e n e r a l  pheno m-

enon  o f f o r m e r l y geogr aphical ly  r e s t r i c t e d arbov iruses emerg ing o n a  g l o b a l scal e h a s

b e c o m e c o m m o n e n o u g h , and it is p e r h a p s b e s t consi dered a  n e w statu s q u o . Sever al

fact ors t h a t  h a v e led  t o this  pheno menon h a v e b e e n exten sively discu ssed,  inclu ding  in t h i s

r e v i e w . These inclu de g l o b a l increa ses in travel and trade, the r i s e  o f  t r o p i c a l m e g a c i t ie s , and

t h e d e c l i n e  o f p u b l i c h e a l t h p r o g r a m s t o manag e  v e c t o r  mosq u itoes [ 9 , 6 4 , 6 5 ] . F u r t h e r , as  we

h a v e seen  above , arbovi ruse s h a v e  t h e c a p a c it y f o r explo sive o u t b r e a k s  d u e t o their

coada ptati on  to mosq u itoes , which c a r r y thes e agent s  b e t w e e n indi viduals with  direc tion

( i . e . , a s  a vecto r).  Howe ve r,  i n each  case (WNV,  C H I K V , and ZIKV) the virus adapt ed t o local

c o n d i t i o n s d u r i n g global  s p r e a d , which  maxim ized transm issio n  potent ial  ( a n d  h e a l t h burden ).

Thes e chang es h i g h l i g h t t h e ways  t h a t  t h e  associ ation o f viru ses with  mosqu i toes  can  lead to

thei r  emerg ence.
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WNV  was introduced into the Americas  in  1999, most  likely from  the Middle East  [66].  Molecular

epidemiologic studies con rmedfi  that  the  virus remained fairly homogeneous until approxi-

mately  2001, when a  new virus genotype  emerged in central  USA.  During the next  2 years, this

genotype  (somewhat erroneously called the ‘ ’WN02  lineage because  it  was first  recognized

during  2002)  outcompeted the introduced ‘ ’NY99  genotype to the extent  that  the NY99

genotype  seems to have become  extinct. The  most notable difference  between this genotype

and the introduced genotype  was a  mutation that resulted in a  conservative valine to alanine

change on  the exposed surface of  the WNV envelope glycoprotein  [67,68].  This  mutation

conferred faster transmission  by Culex pipiens mosquitoes,  important vectors  of WNV in North

America  [37]. The reduced EIP  of  the WN02 genotype  enhances  vectorial capacity  (see above)

because  mortality  has  less time to act on  WN02-infected mosquitoes  before they can transmit

virus to a new host. This enhanced vectorial capacity  of  the WN02  genotype coincided  with a

massive WNV outbreak  in North  America in 2002. Thus,  speci cfi  virus mosquito–  interactions

between WNV and  Cx. pipiens  led  to epidemiological  changes (via  vectorial capacity) that

contributed  to a  signi cantfi  and,  at the time, unprecedented arbovirus outbreak in the USA.

I n  c o n t r a s t , CHIKV  p r o v i d e s  evid ence o f h o w  an arbovi rus can  acquir e  the capac ity f o r

ef ci entfi  t r a n s m i ss i o n  b y a  n e w vecto r mosqu i to speci es w i t h d i s a s t r o u s conse quenc es. T h e

c u r r e n t g l o b a l CHIKV e p i d e mi c  b e g a n when the virus  emerg ed i n  coast al K e n y a a r o u n d 2 0 0 4 .

F r o m there,  it sprea d  t h r o u g h o u t t h e India n Ocean r e g i o n . D u r i n g t h i s p r o c e s s o f emerg ence,

t h e v i r u s acquir ed a  m u t a t i o n t o t h e codin g sequen ce o f  t h e envelope glycoprotein  E1 that

r e s u l t e d in t h e  subst itutio n o f a valin e f o r  an alan ine  at p o s i t i o n 2 2 6  ( A 2 2 6 V ) o f  t h e prot ein [69].

T h i s  m u t a t i o n  render ed t h e virus  m o r e t r a ns m i s s ib l e  b y t h e h i g h l y  abund ant A e .  a l b o p i c t u s

m o s q u i t o [70]  (i.e. , incre ased  t h e comp et ence o f A e .  albop ictus ). S i n c e t h e  comp et ence  o f

any g i v e n v e c t o r ( a g a i n,  see a b o v e ) clea rl y impac ts t h e r e p r o d u c t i v e r a t e o f t h e virus,  t h e

acqui sitio n o f  t h e A 2 2 6 V m u t a t i o n confer red an adva ntage  a n d sprea d  r a p i d l y [70] . Init ial

adapt ation t o Ae. albo pictus later  allow ed f o r  m u t a t i o n s in CHIKV E 2  t o d e v e l o p ,  whic h  f u r t h e r

e n h a n c e d infec tion  o f t h e A e .  albop ictus midgu t [ 7 1 ] . Inter esting ly,  t h e  CHIKV  t h a t was

i n t r o d u c e d into t h e Cari bb ean in  2 0 1 3 l a c k e d t h e A 2 2 6 V muta ti on,  and t h i s m u t a t i o n h a s n o t

y e t b e e n d e t ec t e d in C H I K V  f r o m t h e  Amer icas.

Most  recently,  ZIKV  has emerged  as  a global pathogen  in a  manner similar  to that of  WNV and

CHIKV before it.  The consequences  of ZIKV infection were not fully understood prior to this

emergence, and are now  notorious: microcephaly  in developing  fetuses and Guillain Barré–

syndrome in some infected adults  [13]. Further, it is now  clear that ZIKV  may be  transmitted

sexually [72,73]. Several mutations have  been  described in the literature that impact the ZIKV

phenotype in potentially signi cantfi  ways. A  mutation that changes  an alanine at position 188 of

the ZIKV  NS1 protein to  a  valine  has  been  associated with enhanced infectivity  to  Ae. aegypti

mosquitoes via increased NS1 antigenemia [74]. Similarly, the serine to asparagine mutation

at amino  acid 139 (S139N) of the prM  protein, that appears to have arisen around 2013, has

been  shown  to contribute to pathogenesis  in developing fetuses  [75]. It  is  not  yet clear  what

speci cfi  interactions could have  produced  either of  these  changes  and how  they may impact

other  important ZIKV  phenotypes.  This promises to be a fruitful  area for future  research.

Future  Arbovirus Threats

The recent history of mosquito-borne  virus  emergence, coupled  with  what we know  about the

molecular  and ecological interactions  that facilitate  their transmission, indicate that  new

explosive outbreaks  of arbovirus disease are likely  to occur in the future. Several  arboviruses

(Table 1) currently circulate  at low levels in geographically limited settings  that  result in few

human  cases. While  all of  these  viruses have  the (theoretical)  capacity  to spread rapidly and
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cause outbreaks,  some of them  seem  more likely  than others  to cause large-scale  epidemics  in

the near future.

O n e o f t h e s e v i r u s e s i s  M A Y V ,  w h i c h  h a s b e e n c i r c u l a t i n g i n p a r t s o f S o u t h a n d C e n t r a l

A m e r i c a s i n c e a t  l e a s t  1 9 5 4  w h e n i t w a s fir s t i s o l a t e d i n T r i n i d a d [ 7 6 ] .  D i s e a s e  s y m p t o m s

a r e s i m i l a r t o  t h o s e o f C H I K V  i n f e c t i o n ,  i n c l u d i n g f e v e r ,  r a s h , m y a l g i a , a n d a r t h r a l g i a . M A Y V

i s s u s p e c t e d o f b e i n g t r a n s m i t t e d b e t w e e n n o n h u m a n p r i m a t e s b y v e c t o r  m o s q u i t o e s o f  t h e

g e n u s  H a e m a g o g u s ; h o w e v e r , A e .  a e g y p t i a n d  A e . a l b o p i c t u s  a r e c a p a b l e o f  t r a n s m  i s s  i o n

i n  a n e x p e r i m e n t a l s e t t i n g [ 7 7 , 7 8 ] . W h i l e f e w  h u m a n i n f e c t i o n s  h a v e  b e e n r e p o r t e d o v e r a l l ,  a

r e l a t i v e l y l a r g e o u t b r e a k  o f 7 7 c a s e s  o c c u r r e d i n 2 0 1 0 i n V e n e z u e l a [ 7 9 ] , a n d M A Y V

r e c e i v e d  s o m e m e d i a a t t e n t i o n  d u e t o a h u m a n  c a s e i n H a i t i  i n 2 0 1 5  [ 8 0 ] . H i s t o r i c a l l y ,

M A Y V i n f e c t i o n s o c c u r r e d  p r e d o m i n a n t l y i n n o r t h e r n S o u t h A m e r i c a ,  i n  r e g i o n s  b o r d e r i n g

t h e A m a z o n  b a s i n [ 8 1 ] . S i n c e  t h e r e w a s n o h i s t o r y o f  t r a v e l i n t h e  H a i t i a n c a s e , i n f e c t i o n

p r o b a b l y o c c u r r e d t h r o u g h l o c a l m o s q u i t o t r a n s m i s s i o n . T h e p a t i e n t  w a s a l s o c o i n f e c t e d

w i t h D E N V - 1 , p o s s i b l y s u g g e s  t i n g t h a t  i n f e c t i o n o c c u r r e d  t h r o u g h t h e b i t e o f a n  A e . a e g y p t i

m o s q u i t o . S i n c e  t h e r e  a r e  n o n o n h u m a n p r i m a t e s o n H i s p a n i o l a ,  t h i s m a y i n d i c a t e t h e

p r e s e n c e o f  a l o c a l  h u m a n–m o s q u i t o t r a n s m i s s i o n c y c l e . H o w e v e r , M A Y V w a s  p r e v i o u s l y

i s o l a t e d f r o m a  m i g r a t i n g b i r d i n C o l o r a d o  [ 8 2 ] ,  s u g g e s t i n g a n o t h e r p o t e n t i a l r o u t e o f M A Y V

i n t r o d u c t i o n i n t o H a i t i ( a n d a s o u r c e o f i n f e c t i o n o f  l o c a l m o s q u i t o e s ) .  W h e t h e r c o n t i n u o u s

l o c a l  t r a n s m i s s i o n w a s e s t a b l i s h e d  r e m a i n s u n k n o w n .  W h i l e r e p o r t s o f p o t e n t i a l r e c e n t

r e c o m b i n a n t M A Y V s t r a i n s [ 8 3 ] a r e  o f s o m e c o n c e r n , r e c o m b i n a t i o n o f  a l p h a v i r u s e s i s  l i k e l y

a r a r e e v e n t . T h e  o n l y r e c o m b i n a n t a l p h a v i r u s e s d e s c r i b e d a r e  t h e  t h r e e m e m b e r s o f t h e

W e s t e r n e q u i n e  e n c e p h a l i t i s  v i r u s  s e r o c o m p l e x , w h i c h  a r e r e c o m b i n a n t s  o f a s t r a i n  o f E E E V

a n d a S i n d b i s - l i k e v i r u s [ 8 4 ] . H o w e v e r , w i t h a m u l t i t u d e o f a l p h a v i r u s e s c i r c u l a t i n g i n S o u t h

a n d C e n t r a l A m e r i c a , a n d t h e  r e c e n t a d d i t i o n o f C H I K V ,  a  s m a l l c h a n c e o f r e c o m b i n a t i o n

e v e n t s r e m a i n s . T h i s c o u l d r e s u l t  i n r a p i d e m e r g e n c e  o f  n e w  v i r u s e s w i t h a l t e r e d  t r a n s m i s -

s i o n p h e n o t y p e s a n d p a t h o g e n e s i s . T h e r i s k  o f  M A Y V e m e r g e n c e h a s b e e n d i s c u s s e d i n

d e t a i l i n s e v e r a l r e c e n t r e v i e w s [ 8 5 8 7– ]  .

Table 1. Selected  Arboviruses with Currently  Limited Geographic Distribution  and Disease Incidence

Genus Virus  Suspected mosquito vector  Geographic distribution Disease

Alphavirus Mayaro virus (MAYV) Haemagogus spp. South and  Central  America  Febrile illness,  arthralgia,  myalgia

Una virus  (UNAV) Psorophora spp. South America Febrile illness,  arthralgia,  myalgia

Pixuna virus (PIXV) Unclear South America Febrile illness,  encephalitis

Rio  Negro virus (RNV)  Unclear South America Febrile illness,  myalgia

Tonate virus (TONV)  Unknown French Guiana  Febrile illness,  encephalitis

Everglades virus (EVEV)  Culex cedecei Florida Fever,  headache,  myalgia

Mucambo virus (MUCV) Culex spp. South America Febrile illness,  arthralgia,  myalgia

Trocara  virus (TROCV) Aedes serratus South America Unknown

O nyong’  nyong virus  (ONNV) Anopheles spp. Sub-Saharan  Africa Febrile illness,  arthralgia,  myalgia

Flavivirus Spondweni virus (SPONV) Aedes circumluteolus Sub-Saharan  Africa Febrile illness,  arthralgia,  myalgia

Dengue virus type  5  (DENV-5) Aedes spp. South East Asia High fever,  arthralgia,  myalgia

Rocio virus (ROCV) Aedes spp., Psorophora  spp. South America Febrile illness,  encephalitis

Orthobunyavirus Oropouche  virus (OROV) Mainly Culicoides biting midgesa South America High fever,  arthralgia,  myalgia

Phlebovirus Rift  Valley fever virus (RVFV) 40 species of mosquitoes Sub-Saharan  Africa Febrile illness,  arthralgia,  myalgia

a Oropouche virus is  possibly  also transmitted by Aedes spp. and Coquillettidia  spp. mosquitoes.
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In  addition, a  little-known flavivirus of some concern  is Spondweni virus (SPONV). SPONV is

currently circulating solely in sub-Saharan Africa in sylvatic cycles involving  zoophilic Aedes

mosquitoes.  Peri-domestic mosquitoes,  such  as Ae. aegypti, Ae. albopictus, and  Cx.  quin-

quefasciatus, do not appear to be  competent vectors  [88]. However, as previously discussed,

adaptation to an urban transmission  cycle may  be  achieved by only one or  a few mutations in

the virus genome that  increase the infection  potential  for  Ae. aegypti or  Ae. albopictus

mosquitoes.  Current research  on SPONV is limited,  but recent evidence shows its potential

to be  sexually transmitted among mice, albeit  inef cientlyfi  [89]. Our  current lack of  understand-

ing  of  SPONV pathogenesis and transmission warrants further investigation.  The zoonotic

potential  of  arboviruses currently circulating in Africa has  been  reviewed elsewhere  [90].

Concluding Remarks

Over  recent  decades, arboviruses have truly emerged  as global  pathogens. Viruses previously

existing only in local transmission  cycles in rural tropical  settings  are now  distributed  worldwide,

causing  devastating disease outbreaks. This is largely due to  the now  global distribution of

mosquito  species with high  vector  potential, such  as  Ae. aegypti and Ae. albopictus, as well as

human  travel and population density in tropical  megacities. Virus mosquito–  interactions and

mosquito  adaptation to humans contribute signi cantlyfi  to arboviral  emergence. Future

research  should be aimed at increasing  our  understanding of neglected  arboviruses,  novel

surveillance  methods, and  implementation  of surveillance programs to recognize  spillover

events  and arbovirus outbreaks  early  on (see  Outstanding  Questions). Surveillance for arbo-

viruses and also invasive  mosquito species can help  with implementation of rapid vector-

control  responses. As with  all arboviruses, vector control will be  crucial for the prevention and

containment of  future  arbovirus emergence. The development of  simple  inexpensive diagnostic

tests for a large  selection  of pathogens may also  help to identify and contain an outbreak.

Moreover,  the mosquito virus–  interaction  has facilitated  the rapid emergence of several

arboviruses,  a  pattern that  is likely  to continue, requiring an integrated approach  to outbreak

management.
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