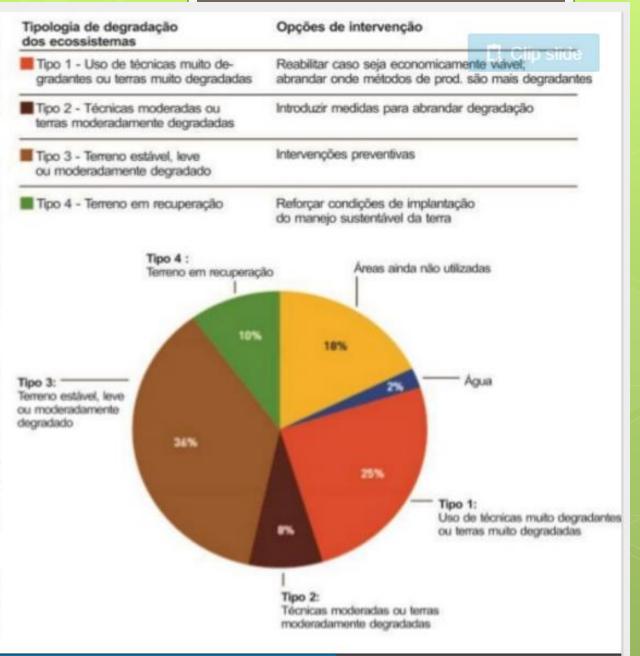


Desmatamento e Degradação do solo

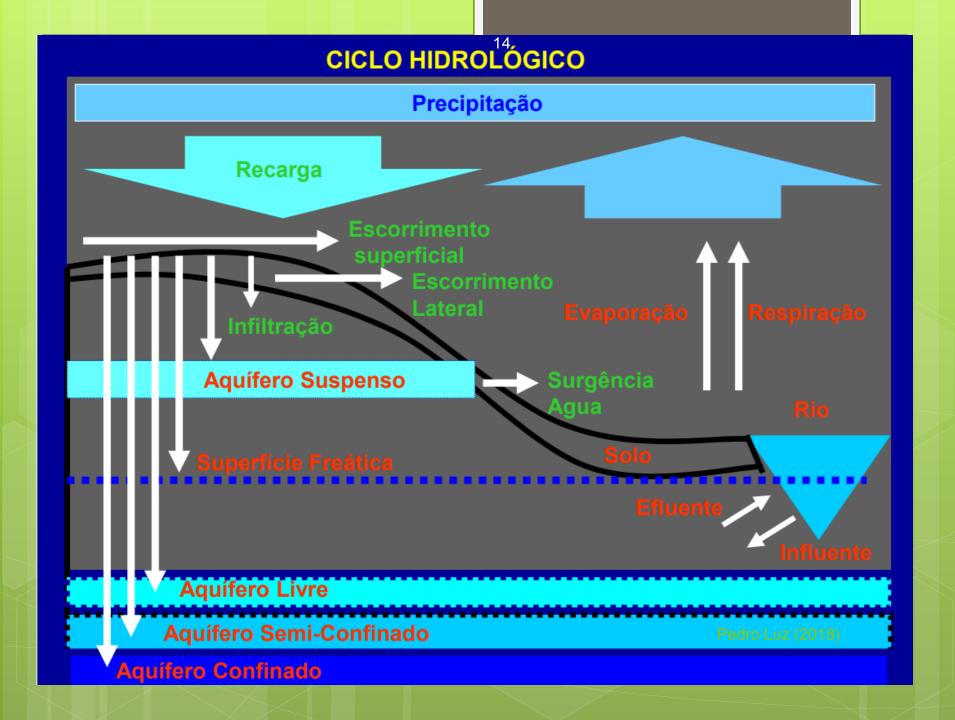


O desmatamento no Brasil começou com a chegada dos portugueses, que iniciaram a exploração da Mata Atlântica, interessados no lucro com a venda do pau-brasil na Europa. Relatório da FAO (agência da ONU responsável pela agricultura e segurança alimentar no mundo) divulgado em 28/nov/2011 aponta um cenário pessimista para a SAN mundial. Segundo ele, 25% dos solos do planeta estão degradados.

Isso representa um maior desafio para alimentar a população mundial no futuro. A FAO estima que, até 2050, a agricultura precisará produzir 70% a mais de alimentos do que produz hoje. Atualmente a produção agrícola cresce num ritmo cada vez menor e, em algumas áreas, o ritmo de crescimento é apenas metade do que era na época da Revolução Verde, há mais de cinquenta anos atrás.

Assim como os solos, os recursos hídricos mundiais também estão em processo de esgotamento. A poluição dos lençóis subterrâneos aumentou, enquanto que em regiões de produção intensiva de cereais as reservas subterrâneas estão secando. A FAO alerta que a competição por recursos hídricos entre cidades, indústrias e agricultura tende a aumentar no futuro.

A FAO indica que a solução pode estar numa melhor gestão da água e numa agricultura sustentável. De qualquer modo, ajustes deverão ser feitos no percentual de consumo mundial.


TURBILHONAMENTO DA ÁGUA DA CHUVA

Microbacia

DISTRIBUIÇÃO MUNDIAL DA ÁGUA **ÁGUA DOCE SUPERFÍCIAL TOTAL DE ÁGUA ÁGUA DOCE** (FÁCIL ACESSO) **OCEANOS 97.5% CAPOTAS POLARES E GELEIRAS 79%** LAGOS 52% **ÁGUA DOCE 2,5%** ÁGUA SUBTERRÂNEA 20% **UMIDADE DO SOLO 38%** ÁGUA DOCE SUPERFÍCIAL **VAPOR NA ATMOSFERA 8%**

A ÁGUA COBRE 75% DO GLOBO TERRESTRE, MAS SUA DISPONIBILIDADE E DISTRIBUIÇÃO INSPIRAM

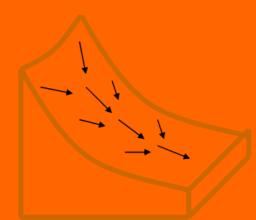
PERMANENTES CUIDADOS COM O PLANEJAMENTO E AS RACIONALIZAÇÕES DE SEUS²⁰¹⁸⁾

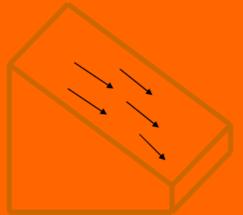
DIVERSOS USOS.

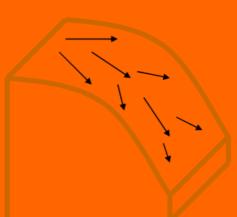
ÁGUA NOS ORGANISMOS VIVOS 1%

RIOS 1%

(FÁCIL ACESSO) 1%

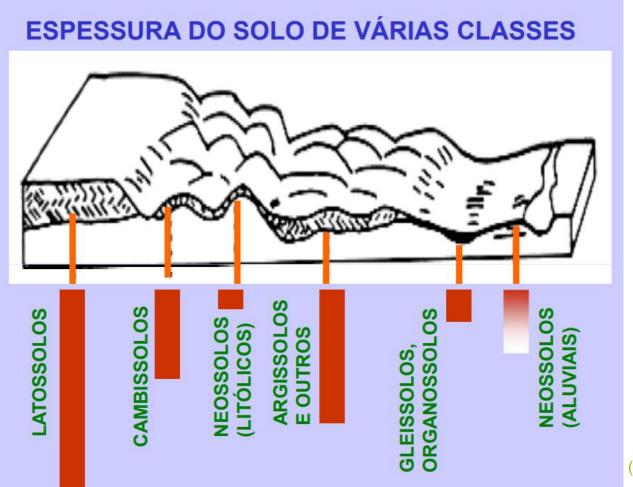



RELÊVO X PROCESSO EROSIVO


Forma do relevo - Pedoformas

Côncava Plana Convexa

Convergência das águas Erosão mais localizada - sulcos Espessura do Solum Desigual Erosão e deposição Acúmulo de sementes e nutrientes Divergência das águas Erosão mais uniforme - Laminar Espessura do "Solum" uniforme Erosão Dispersão de sementes e nutrientes



EROSÃO NATURAL MAIOR

TIPO DE SOLO X EROSÃO

(2018)

Conceitos

Erosão é o processo de desprendimento e arraste acelerado das partículas do solo causado pela água e pelo vento.

A água é o mais importante agente de erosão.

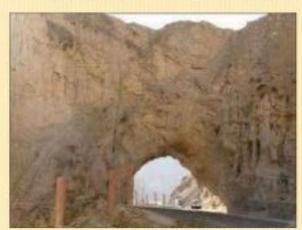
A água da chuva exerce sua ação erosiva sobre o solo mediante o impacto da gota de chuva.

As gotas de chuva que golpeiam o solo contribuem para a erosão da seguinte maneira:

- a). Desprendem as partículas do solo;
- b). Transportam por salpicamento;
- c). Imprimem energia, em forma de turbulência, formando a enxurrada.

Erosão por gravidade: Consiste no movimento de rochas e sedimentos montanha abaixo principalmente devido à

A erosão pluvial é provocada pela retirada de material da parte superficial do solo pelas águas da chuva.

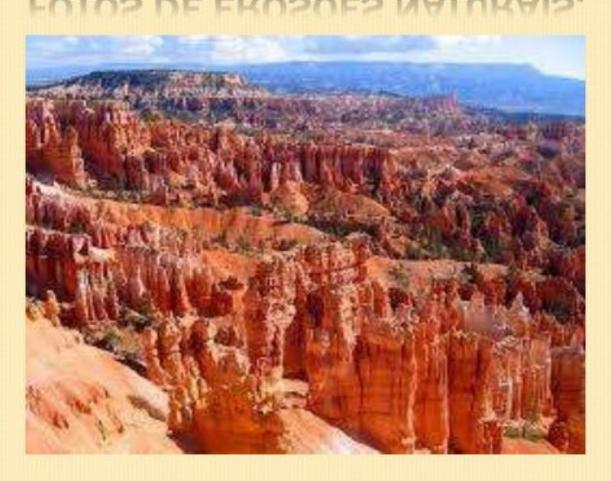


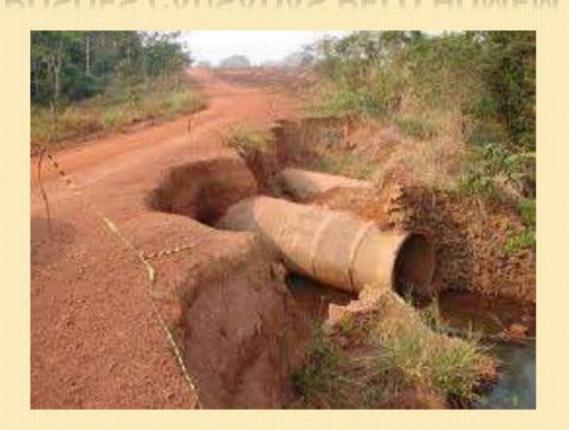
Erosão Eólica: Ocorre quando o vento transporta partículas diminutas que se chocam contra rochas e se dividem em mais partículas que se chocam contra outras rochas.

Podem ser vistas nos <u>desertos</u> na forma de <u>dunas</u> e de montanhas retangulares ou também em zonas

Pedro Luz (2018)

Erosão Marinha: é um longo processo de atrito da água do mar com as rochas que acabam cedendo transformando-se em grãos, esse trabalho constante atua sobre o <u>litoral</u> transformando os relevos em planície.





EROSÕES CAUSADAS PELO HOMEM.

EROSÃO HÍDRICA E IMPACTO AMBIENTAL

EROSÃO HÍDRICA

PERDA DE SOLO E ÁGUA MATÉRIA ORGÂNICA MICROELEMENTOS MACROELEMENTOS EUTROFICAÇÃO ASSOREAMENTO DEPOSIÇÃO

PRODUTIVIDADE ECONÔMICO SOCIAL AMBIENTAL

EROSÃO HÍDRICA

A) LAMINAR

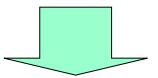
 Ocorre "perda de terra" uniforme em toda a superfície da área

• B) SULCOS

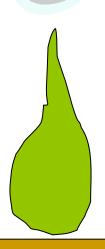
- A "perda de terra" se dá de forma localizada
- Podem ocorrer separadamente ou de forma conjunta

PROCESSO DE EROSÃO

o Três etapas:

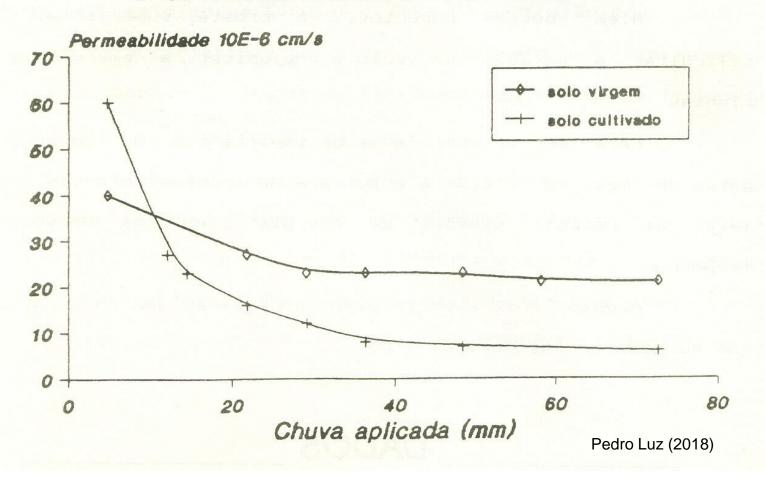

DESPRENDIMENTO

- AGENTES:
- A) CHUVA
 - A.1) IMPACTO DAS GOTAS DA CHUVA
 - A.2) ENXURRADA
- o B) VENTO


GOTA DE CHUVA

ENERGIA DAS GOTAS DE CUVA

IMPACTO

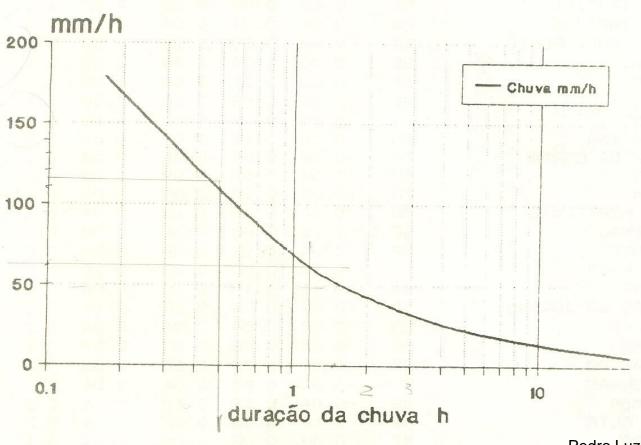


SOLO

IMPACTO DAS GOTAS DE CHUVA

- O CONSEQUÊNCIAS:
- A)Desprendimento de partículas
- B) compactação superficial encrostamento
- o C) redução na capacidade de infiltração
- o D) turbilhonamento da enxurrada
- E) transporte por salpicamento (pequeno)

Permeabilidade vs. chuva


Velocidade e energia das gotas de chuva

Diàmetro gotas	das	Velocidade terminal	Altura p/ 95% da vel. term.		rgia tica
mm		m/s	m		uJ
1		4.0	2.2		4
2		6.5	5.0		38
3		8.1	7.2		50
A		8.8	7.8	128	2000
5		9.1	7.6	269	
6		9.3	7.2	485	

CHUVA

- IMPORTANTE:
- A) VOLUME mm
- B) INTENSIDADE mm/h
- o C) DURAÇÃO min ou hora

Duração da chuva vs. intensidade máxima Cuiabá-MS Tempo de retorno de 20 anos

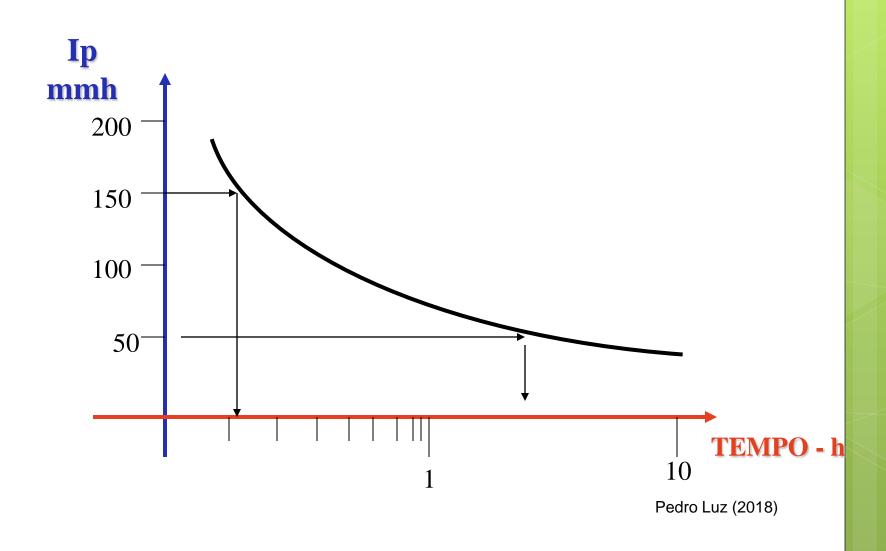
Pedro Luz (2018)

MECÂNICA DA EROSÃO

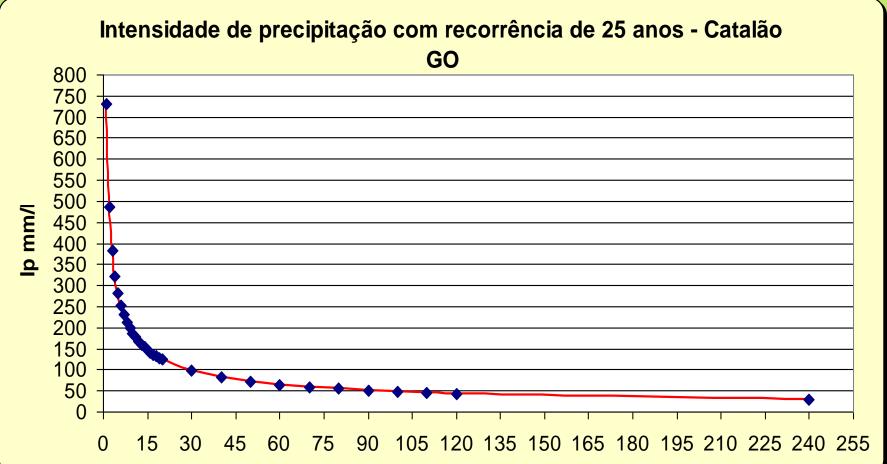
10 DESPRENDIMENTO

CHUVA

- INTENSIDADE - DURAÇÃO

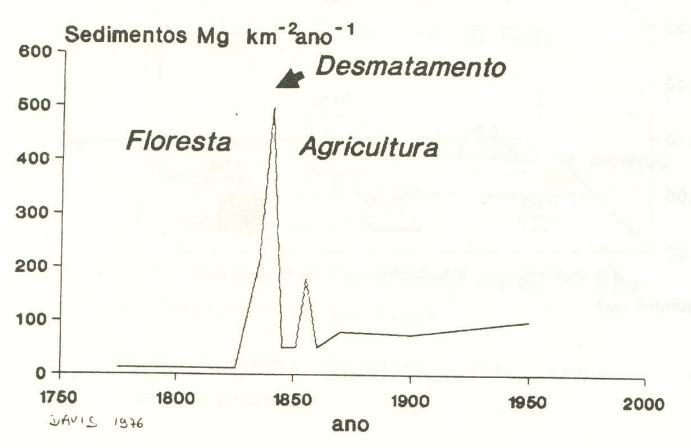


IMPACTO DA GOTA DA CHUVA SOBRE O SOLO

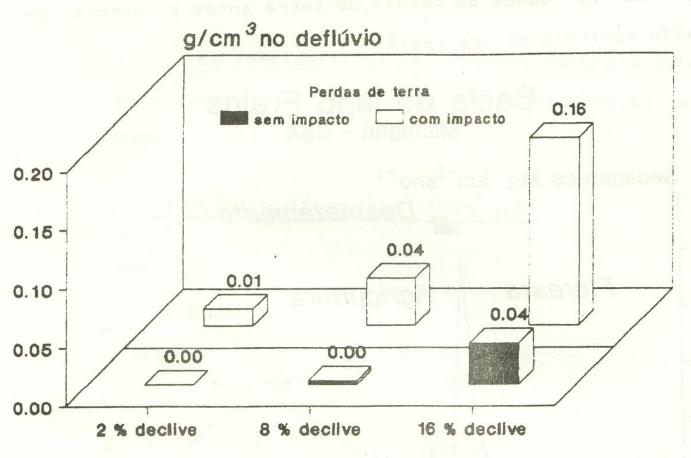


IMPORTÂNCIA DO SOLO PROTEGIDO

CHUVA: INTENSIDADE x DURAÇÃO



Comportamento da Intensidade


Pearo Luz (2016)

Bacia do lago Frains Michigan - USA

Pedro Luz (2018)

Perdas de Terra com e sem impacto das gotas

WOODRUFF 1947

Pedro Luz (2018)

Tipos de Cobertura do Solo

Vegetal -> Permanente - Matas, pastos, áreas de proteção

Temporária — Leguminosas, culturas

Parcial Faixas

Morta Palhada Plantio direto, manejo do mato

> Plásticos - Olericultura

INFILTRAÇÃO X PREPARO DO SOLO

Tabela 2.2 - Taxas de infiltração da água em um Latossolo-Roxo distrófico, após duas horas de teste, determinadas por infiltrômetro de anel e simulador de chuvas para três sistemas de preparo do solo

Sistemas de	Taxa de Infiltraçã	Palacão A1/		
Preparo	Infiltrômetro de Anel	Simulador de Chuvas	Relação Anel/ Simulador	
Convencional (1)	244	45	5.4	
Escarificação	191	50	3,8	
Plantio direto	129	58	2;2	

Fonte: SIDIRAS e ROTH, 1984. (1) Correspondente a uma aração e duas gradagens.

INFILTRAÇÃO X PREPARO DO SOLO

Tabela 2.1 - Taxas de infiltração da água em um Latossolo-Roxo distrófico, após duas horas de teste, determinadas por infiltrômetro de anel e simulador de chuvas, para cinco restevas de culturas de inverno


Cultura de	Cobertura	Taxa de Infiltração (mm h ⁻¹)		Dalasão A. 1/	
Inverno	do Solo (%)	Infiltrômetro de Anel	Simulador de Chuvas	Relação Anel/ Simulador	
Aveia-preta	90	445	57,5	7.7	
Nabo-forrageiro	47	412	50,9	8,1	
Trigo	36	395	47,6	8,3	
Tremoço	22	354	42,3	8,4	
Pousio invernal	6	362	28,3	12,8	

Fonte: SIDIRAS; ROTH, 1984.

IRRIGAÇÃO

VOLUME & TEMPO

INTENSIDADE DE PRECIPITAÇÃO

SOLO

SISTEMA POROSO

INFILTRAÇÃO

PARÂMETROS

- A) INFILTRAÇÃO ACUMULADA mm
- B) VELOCIDADE DE INFILTRAÇÃO mm/h
- C) VELOCIDADE BÁSICA DE INFILTRAÇÃO VIB mm/h

A) INFILTRAÇÃO ACUMULADA – mm

Quantidade total de água infiltrada no solo durante um determinado tempo

I - mm

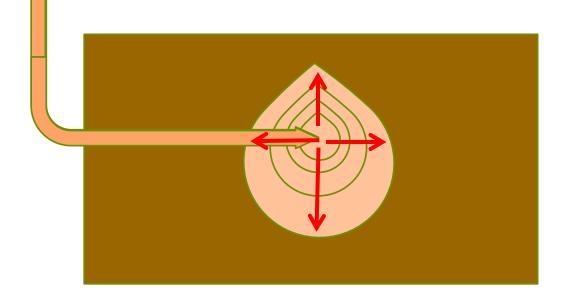
B) VELOCIDADE DE INFILTRAÇÃO – mm/h

Vem a ser a quantidade de água infiltrada no perfil do solo na unidade de tempo

VI - mm/h

A VI (mm/h) varia com

- A umidade atual do solo
- A porosidade do solo
- A existência de camada impermeável no perfil do solo


C) VELOCIDADE BÁSICA DE INFILTRAÇÃO - VIB - mm/h

Vem a ser o valor da velocidade de infiltração a partir do momento que assume valor constante

VIB - mm/h

É utilizada como indicador para seleção do Aspersor, bem como critério para projetos de irrigação por superfície

DA ÁGUA NO SELO

A água "caminha" no solo em todas as direções, tanto na vertical como na horizontal, predominando a vertical descendente

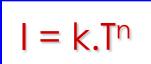
DETERMINAÇÃO DA INFILTRAÇÃO

Caso – A – Vertical Usa-se o Método do Infiltrômetro de Anel

Caso – B – Vertical e Horizontal
Usa-se o Método das Entradas e
Saídas

Método do Infiltrômetro de Anel

Consta de 2 Anéis concêntricos


Coloca-se água no anel externo, posteriormente no interno

Mede-se a infiltração vertical – altura (mm) e o tempo correspondente

Determina-se a VI e a la – Cálculo

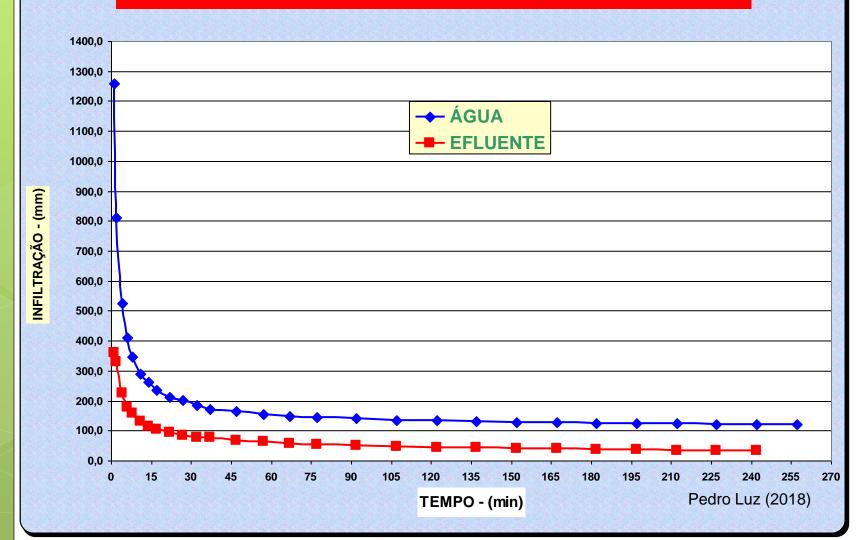
Modelo de Kostiakov

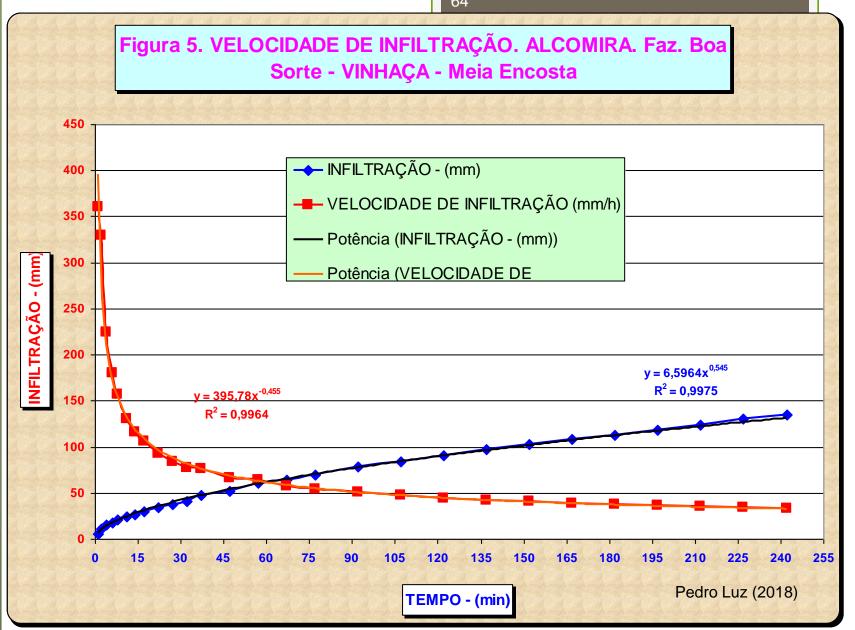
VELOCIDADE BÁSICA DE INFILTRAÇÃO - VIB - mm/h

TIPO DE SOLO - INFILTRAÇÃO	VIB mm/h
MUITO ALTA	> 30 mm/h
ALTA	15 – 30 mm/h
MÉDIA	5 – 15 mm/h
BAIXA	< 5 mm/h

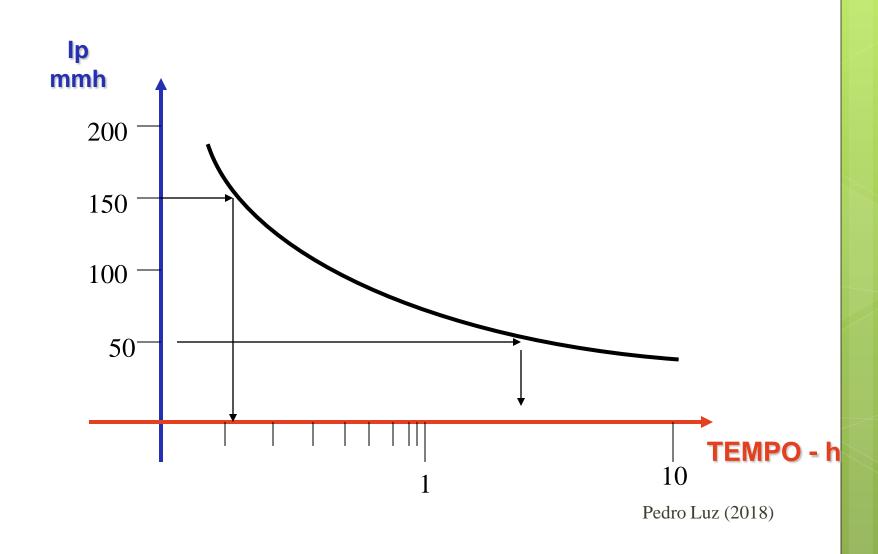
PROJETO DE VINHAÇA

Pedro Luz (2018)




Pedro Luz (2018)

TESTE DE INFILTRAÇÃO



TRANSPORTE

- AGENTES:
- A) ENXURRADA
- o B) VENTO

CHUVA: INTENSIDADE x DURAÇÃO

PRECIPITAÇÃO - mm/h

ESCOAMENTO SUPERFICIAL

ENXURRADA

INFILTRAÇÃO

CAPACIDADE DE INFILTRAÇÃO – mm/h

ES = P.Ce

Pedro Luz (2018)

Coeficiente de Enxurrada - Ce

Cobortura do Colo	Declividade (%)	Textura do Solo		
Cobertura do 3010		Arenosa	Franca	Argilosa
FLORESTAS	0 a 5	0,10	0,30	0,40
	5 a 10	0,25	0,35	0,50
	10 a 30	0,30	0,50	0,60
	0 a 5	0,10	0,30	0,40
PASTAGENS	5 a 10	0,15	0,35	0,55
	10 a 30	0,20	0,40	0,60
TERRAC	0 a 5	0,30	0,50	0,60
TERRAS CULTIVADAS	5 a 10	0,40	0,60	0,70
COLITVADAS	10 a 30	0,50	0,70	0,80

Valores de Ce recomendados pelo Soil Conservation Service - USDA

reuro Luz (2018)

"ARENOSO"

PRECIPITAÇÃO - mm/h

ESCOAMENTO SUPERFICIAL

ENXURRADA

INFILTRAÇÃO

CAPACIDADE DE INFILTRAÇÃO – mm/h

ES = P.Ce

Tendência: maior infiltração e menor escorrimento

"ARGILOSO"

PRECIPITAÇÃO - mm/h

ESCOAMENTO SUPERFICIAL

ENXURRADA

INFILTRAÇÃO

CAPACIDADE DE INFILTRAÇÃO – mm/h

ES = P.Ce

Tendência: menor infiltração e maior escorrimento

QUANTO A SUPERFÍCIE

VEGETADA - PASTAGEM

PRECIPITAÇÃO - mm/h

ESCOAMENTO SUPERFICIAL

ENXURRADA

INFILTRAÇÃO

CAPACIDADE DE INFILTRAÇÃO – mm/h

ES = P.Ce

Tendência: maior infiltração e menor escorrimento

QUANTO A SUPERFÍCIE

TERRA CULTIVADA –"PREPARADA"

PRECIPITAÇÃO - mm/h

ESCOAMENTO SUPERFICIAL

ENXURRADA

INFILTRAÇÃO

CAPACIDADE DE INFILTRAÇÃO – mm/h

ES = P.Ce

Tendência: infiltração e escorrimento podem ser similares

TERRA CULTIVADA –"COMPACTADA"

PRECIPITAÇÃO - mm/h

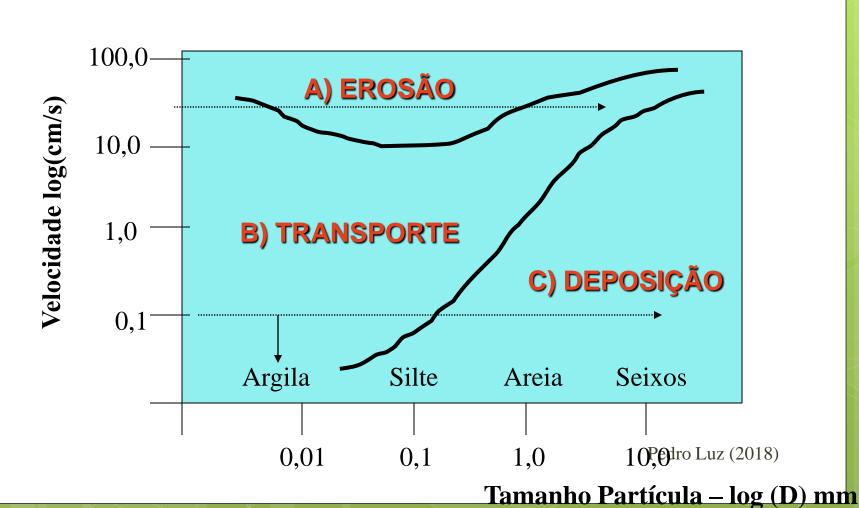
ESCOAMENTO SUPERFICIAL

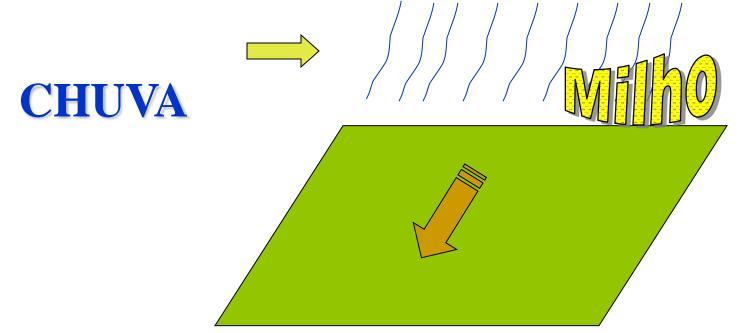
ENXURRADA

INFILTRAÇÃO

CAPACIDADE DE INFILTRAÇÃO – mm/h

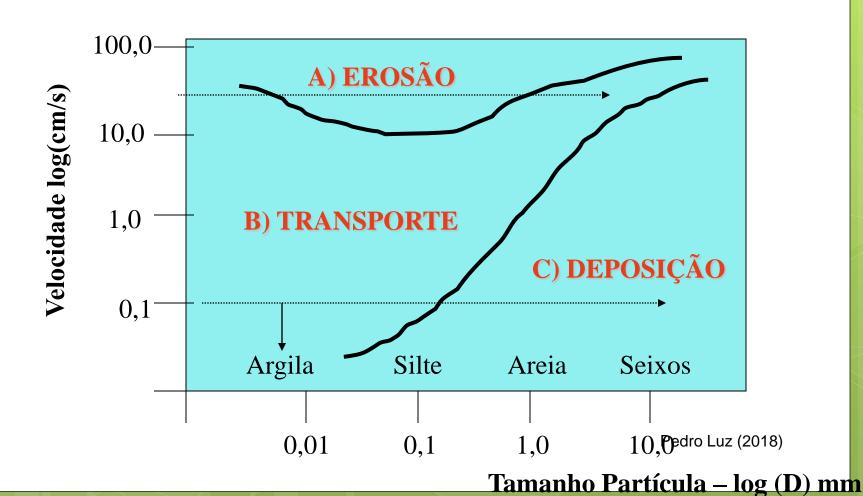
ES = P.Ce


Tendência: grande escorrimento e pequena infiltração


DESPRENDIMENTO

2) TRANSPORTE

ENXURRADA


PROCESSO EROSIVO

10 DESPRENDIMENTO
20 TRANSPORTE
30 DEPOSIÇÃO
Pedro Luz (2018)

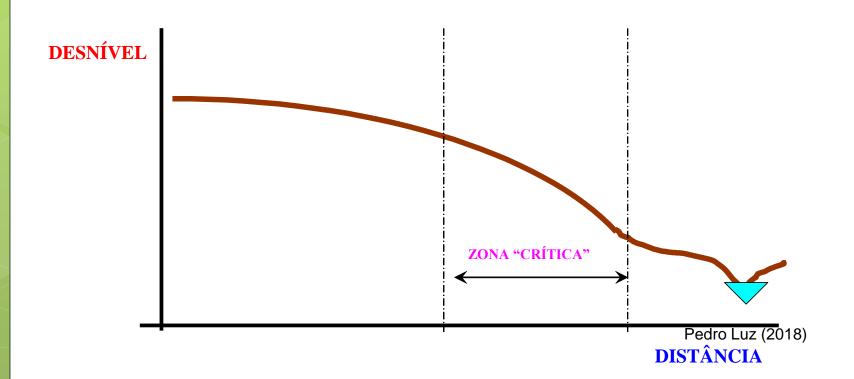
2) TRANSPORTE

ENXURRADA

ENXURRADA x PLANTIO DIRETO

IMPORTÂNCIA DO SOLO COBERTO

AUMENTA A RUGOSIDADE DA SUPERFÍCIE

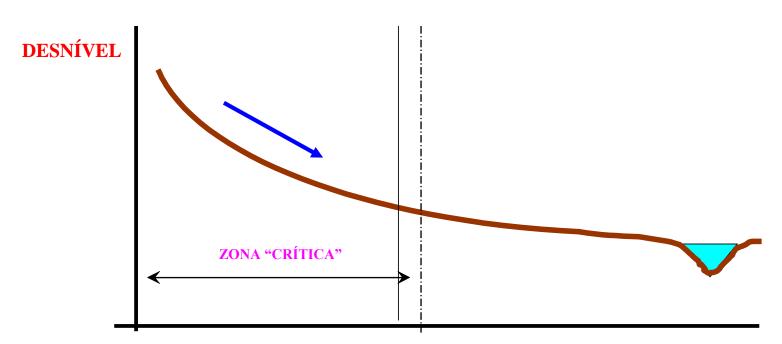

REDUZ A ENERGIA DA ENXURRADA

Pedro Luz (2018)

RELÊVO - DIRETO

MODELO DE RELÊVO DE UMA PENDENTE - DIRETO

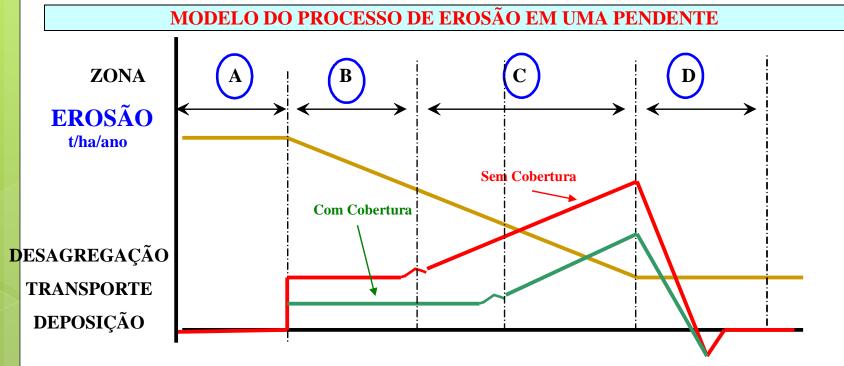
A) PENDENTE DIRETA – DECLIVIDADE CRESCENTE



RELÊVO - INDIRETO

MODELO DE RELÊVO DE UMA PENDENTE - INVERTIDO

B) PENDENTE INVERTIDA – DECLIVIDADE DECRESCENTE



DISPedio Cua (2018)

PROCESSO EROSIVO

ZONA	EROSÃO	AÇÃO
A	"ZERO"	Só despreendimento
В	"AEROLAR" ou "LAMINAR"	Transporte por enxurrada de baixa velocidade
C	"LINEAR" ou "SULCO"	Despreendimento pela enxurrada e transporte
D	DEPOSIÇÃO	Deposição do material erodido

Pedro Luz (2018)

DEPOSIÇÃO

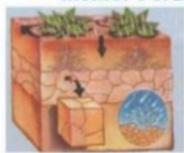
- Quando cessa o efeito de transporta da enxurrada
- Acúmulo nas posições de "baixadas"

Melhorar a Fertilidade do Solo

- Enriquecer solo com matéria orgânica
- Fertilizar racionalmente as culturas
- Corrigir a acidez do solo

Defender o Solo Contra Erosão

- Terraceamento;
- Rotação de Culturas;
- Racionalizar a mobilização do solo;
- · Cultivo em Nível;
- Evitar a Compactação do Solo;
- Cordão de Vegetação Permanente;
- Associação de Culturas;


Proteção e Conservação da Água

- Uso racional da água na Irrigação
- Proteger a qualidade da água da poluição dos fertilizantes e produtos fitofarmacêuticos.
- Proteger os rios e as ribeiras contra assoreamento.

Praticas de Conservação de Solo e Água

 Tem como objetivo minimizar as perdas e escassez dos recursos naturais que são os fatores básicos para uma boa produção.

Melhor Fertilidade do Solo

Praticas Usadas na Conservação do Solo e Água

- Praticas Vegetativas
- Praticas Edáficas
- Praticas Mecânicas

Tel. 19 – 3565.4195 ou 3565.4267 ou 9784.5913 E- mail – phcerluz@usp.br ou pedrohenriqueluz51@gmail.com.