PMR2560 – Visão Computacional Formação de imagens

Prof. Eduardo L. L. Cabral

Objetivos

- Visão computacional:
 - Sensores de visão;
 - Imagens digitais;
 - Noções de transformação de coordenadas;
 - Formação da imagem;
 - Lentes.

Sensores de imagem

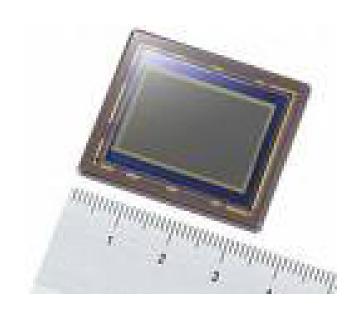
- Efeito fotoelétrico
 ⇒ um raio de luz (que na mecânica quântica pode ser visto como uma partícula chamada fóton) incide em um material e se choca com um elétron de um átomo, provocando a saída desse elétron do átomo. Esse elétron que escapa fica "livre" para formar uma corrente elétrica.
- O fluxo incidente de fótons em um material semicondutor gera pares elétron-lacuna.
- Um material semi-condutor aumenta o efeito fotoelétrico ⇒ para cada elétron livre de carga negativa se forma também uma lacuna de carga positiva.

Sensores de imagem

- Eficiência do sensor de imagem (eficiência quântica), $q(\lambda)$:
 - Relação entre o fluxo de fótons e o fluxo de elétrons;
 - Depende da energia do fóton (λ) e do material do sensor;
 - Tubos de vácuo $\Rightarrow q(\lambda)$ baixo;
 - CCDs \Rightarrow $q(\lambda)$ elevado;
 - CMOS $\Rightarrow q(\lambda)$ médio;
 - Fotografia $\Rightarrow q(\lambda)$ baixo.

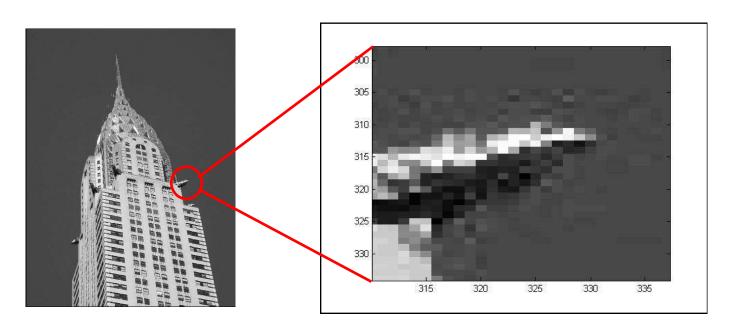
Sensores de imagem

D40 CCD Sensor

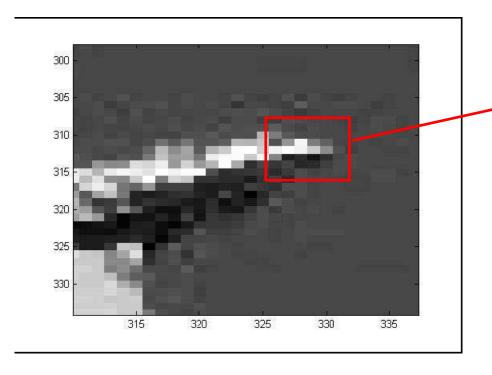


12.4-megapixel CMOS Sensor

- Imagens digitais são funções discretas que correspondem à intensidade luminosa média recebida pela câmera durante um intervalo finito de tempo.
 - São discretas espacialmente;
 - Valores de intensidade luminosa quantizados.



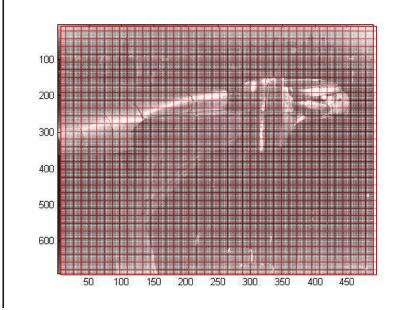
- A imagem é somente um conjunto de números na memória do computador.
- É possível manipular esses números para transformálos em informações úteis.

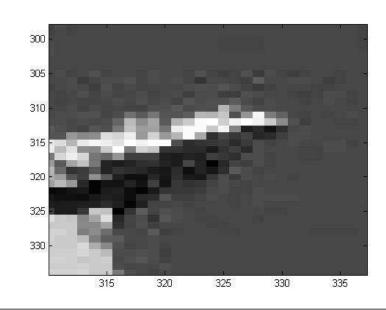


61	29	29	57 1	99 1	192
222	200	197	135	167	222
203	203	203	137	137	165
208	208	201	124	142	111
208	203	200	190	127	92
204	201	200	218	173	139

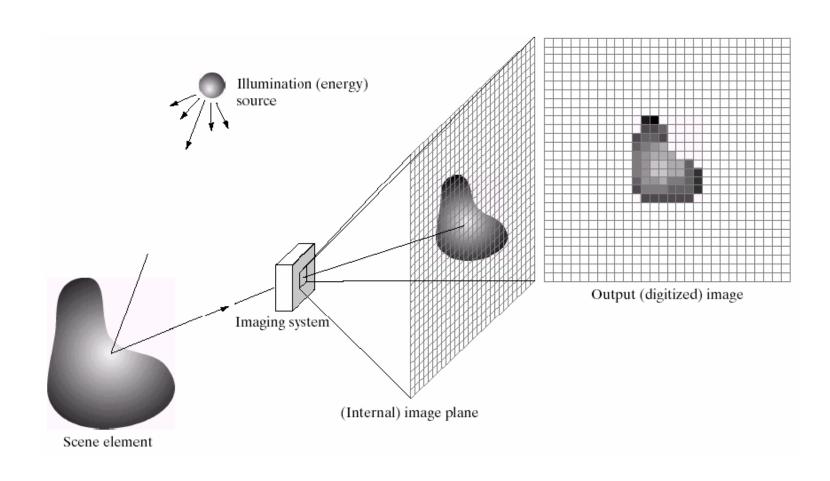
- Diversas propriedades definem o formato da imagem digital:
 - Número de pixels, ou resolução espacial (exemplo 640x480 pixels);
 - Número de bits por pixel (exemplos: 8-bit sem sinal, 16-bits com sinal etc.);
 - Taxa de aquisição (exemplo 30 Hz);
 - Número de planos ⇒ 1 para imagens em tons de cinza, 3 para imagens coloridas;
 - Forma de representar cor (RGB, HSI etc.);
 - Formato do pixel (plano versus empacotado).

Como chegamos da imagem analógica para a digital?

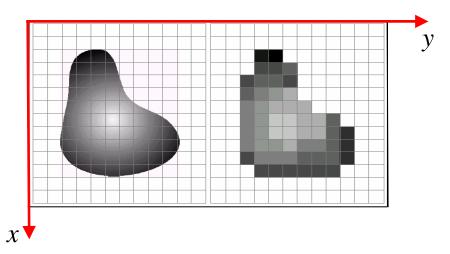




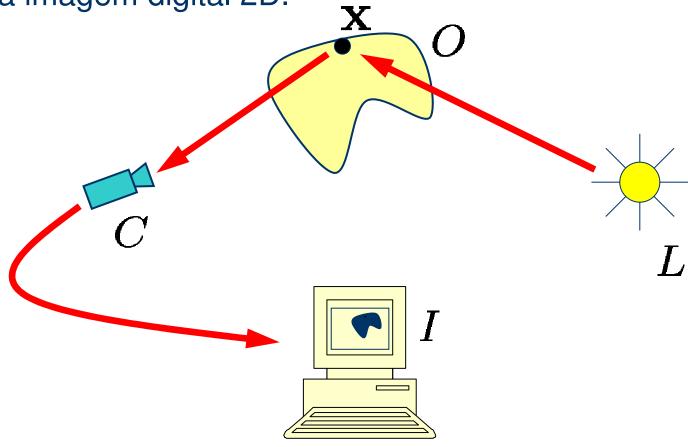
Amostragem e quantização.



- Pode-se pensar que as imagens são funções discretas da intensidade luminosa em cada posição da imagem I(x,y).
- Valores de I(x,y) são definidos para cada ponto com a resolução definida pelo sensor de visão (CCD ou CMOS).
- A quantização da intensidade luminosa de cada ponto da imagem é definida pelo número de bits por pixel e pelo espaço de cor utilizado.



 Compreender como o mundo tridimensional se projeta na imagem digital 2D.



- O que determina a localização de um ponto da imagem? (geometria)
 - Transformação de sistemas de coordenadas;
 - Projeção perspectiva;
 - Lentes.
- Como se determina o brilho/cor que uma superfície/objeto apresenta numa imagem? (Radiometria)
 - Emissão de luz;
 - Interação da luz com as superfícies.
- Conversão da imagem analógica para digital:
 - Amostragem espacial;
 - Intervalo dinâmico;
 - Integração temporal.

Transformação de coordenadas

Transformação de coordenadas do sistema 0 para o sistema 1:

$$\mathbf{p}_0 = \mathbf{x}_0 + \mathbf{R}_0^1 \mathbf{p}_1$$

onde:

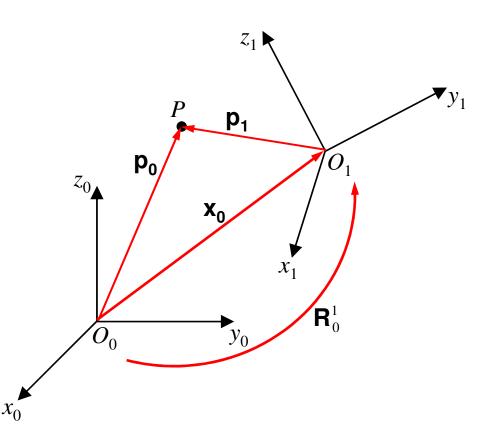
- X₀ ⇒ vetor de translação;
 R₀¹ ⇒ matriz de rotação.
- Somente translação:

$$\mathbf{p}_0 = \mathbf{x}_0 + \mathbf{l}\mathbf{p}_1;$$

- Vetor de translação x₀;
- $\mathbf{R}_{n}^{1} = \mathbf{I}$ (identidade 3x3).
- Somente rotação:

$$\mathbf{p}_0 = \mathbf{R_0^1} \mathbf{p}_i$$

$$- x_0 = 0.$$



Transformação de coordenadas

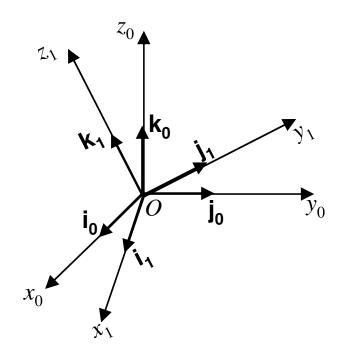
Matriz de rotação:

$$\mathbf{R_0^1} = \begin{bmatrix} i_1.i & j_1.i & k_1.i \\ i_1.j & j_1.j & k_1.j \\ i_1.k & j_1.k & k_1.k \end{bmatrix}$$

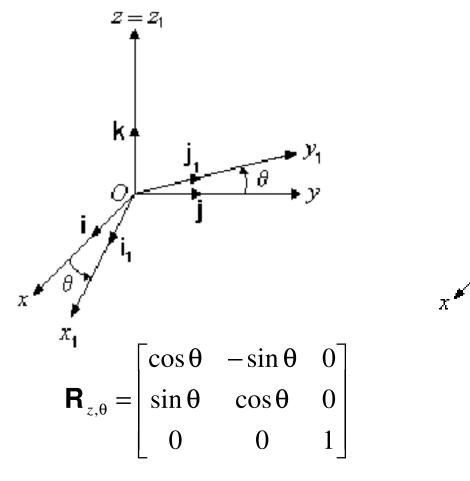
Propriedades:

- Linhas e colunas tem módulo unitário;
- Linhas e colunas são perpendiculares entre sí ⇒ produto escalar entre elas é zero;
- Det(R) = 1 (se a regra da mão direita é seguida);
- Inversa da matriz de rotação:

$$\mathbf{R_1^0} = \left(\mathbf{R_0^1}\right)^{-1} = \mathbf{R_0^1}^t$$

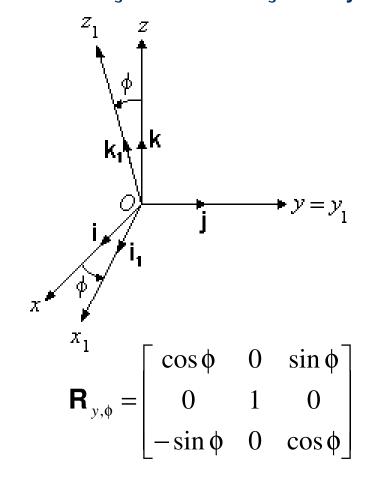


Transformação de coordenadas



Rotação em relação a z:

• Rotação em relação a y:



Transformação homogênea

Define-se os vetores homogêneos P₀ e P₁ de dimensão 4x1:

$$\mathbf{P_0} = (\lambda p_{x0}, \lambda p_{y0}, \lambda p_{z0}, \lambda)^t = \begin{bmatrix} \lambda \mathbf{p_0} \\ \lambda \end{bmatrix} \qquad \mathbf{P_1} = (\lambda p_{x1}, \lambda p_{y1}, \lambda p_{z1}, \lambda)^t = \begin{bmatrix} \lambda \mathbf{p_1} \\ \lambda \end{bmatrix}$$

onde p_x , p_y e p_z são as coordenadas de um ponto P no espaço e λ é um fator de escala.

Define-se a matriz homogênea, H₀, de dimensão 4x4:

$$\mathbf{H_0^1} = \begin{bmatrix} \mathbf{R_0^1} & \mathbf{x_0} \\ \mathbf{0} & 1 \end{bmatrix}$$

> matriz H_0^1 representa a posição e a orientação do sistema O_1 - $x_1y_1z_1$ em relação ao sistema O_0 - $x_0y_0z_0$.

Transformação homogênea

 Uma transformação de coordenadas (p₀ = x₀ + R₀¹p₁) em termos dos vetores e matriz homogêneos fica:

$$P_0 = A_0^1 P_1 \Rightarrow Transformação homogênea$$

ou,

$$\begin{bmatrix} \mathbf{p_0} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R_0^1} & \mathbf{x_0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p_1} \\ 1 \end{bmatrix}$$

➤ Vantagem da transformação homogênea ⇒ forma compacta de representação (conveniente para representar transformações consecutivas).

Transformação homogênea

A transformação homogênea inversa pode ser obtida da transformação inversa:

$$\mathbf{p}_1 = -(\mathbf{R}_0^1)^t \mathbf{x}_0 + (\mathbf{R}_0^1)^t \mathbf{p}_0$$

Escrevendo de forma matricial e usando os vetores e matriz homogêneos P_0 , P_1 e H_0^1 fica:

$$P_1 = (H_0^1)^{-1}P_0 = H_1^0P_0$$

onde,

$$\mathbf{H_1^0} = \left(\mathbf{H_0^1}\right)^{-1} = \begin{bmatrix} \left(\mathbf{R_0^1}\right)^t & -\left(\mathbf{R_0^1}\right)^t \mathbf{X_0} \\ \mathbf{0} & 1 \end{bmatrix} \qquad \Longrightarrow \qquad$$

essa é a forma de calcular a inversa da matriz homogênea

Transformações consecutivas

- ➤ Transformação homogênea ⇒ forma compacta de representar diversas transformações de coordenadas consecutivas por um único termo.
- Transformação homogênea do sistema i–1 para o sistema i é descrita por:

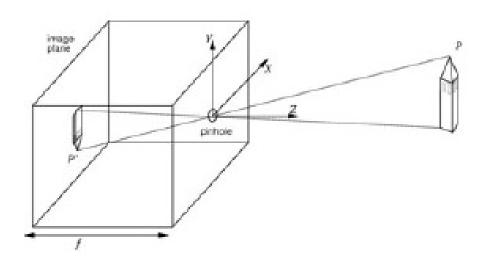
$$\mathbf{P}_{i-1} = \mathbf{H}_{i-1}^{i} \mathbf{P}_{i};$$

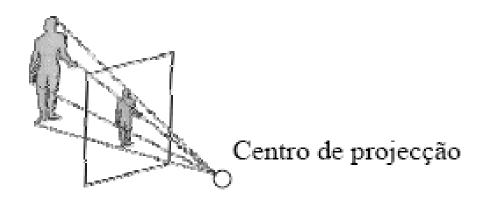
Transformação do sistema 0 para o sistema n:

$$P_0 = H_0^1 H_1^2 ... H_{n-1}^n P_n$$

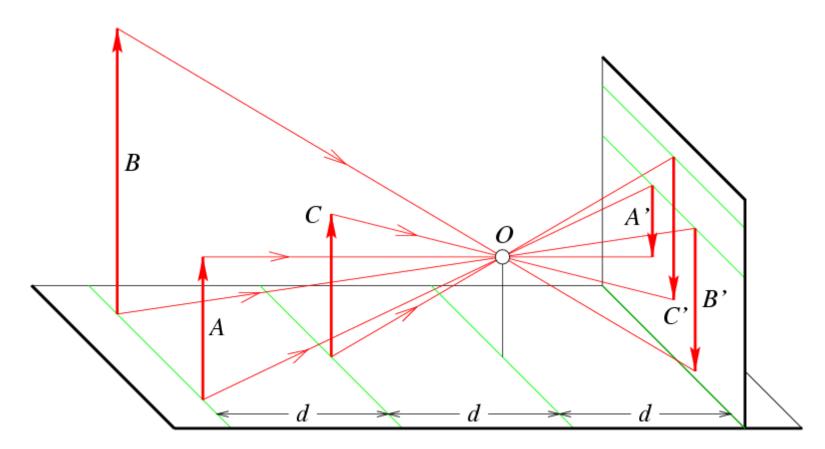
- P₀ posição do ponto P no sistema 0;
- P_n posição do ponto P no sistema n.

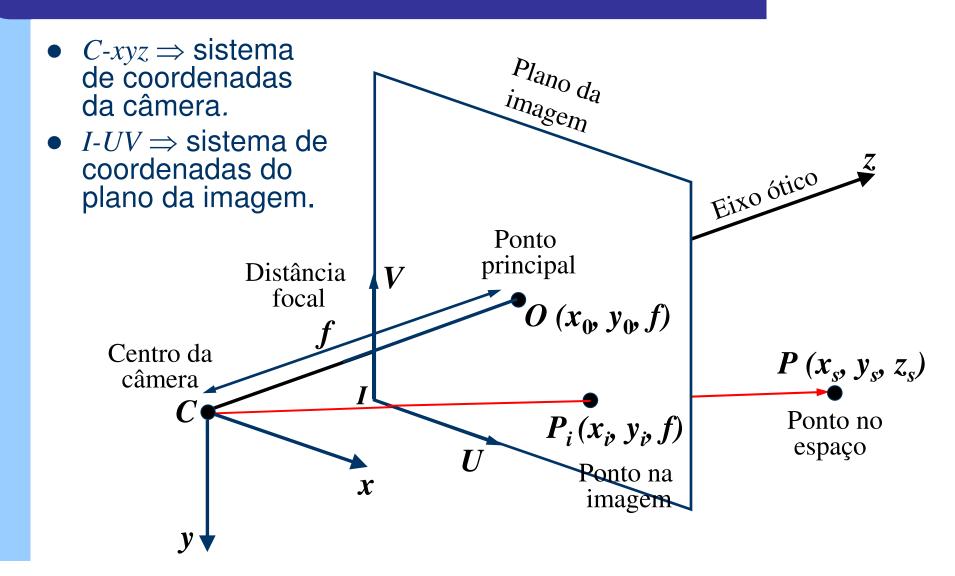
- Situação ideal:
 - Modelo de câmara pontual (*pinhole*);
 - Só a luz vinda do "furo" atinge o plano de imagem;
 - Cada ponto na imagem corresponde a um único ponto 3D.
- Representação alternativa.





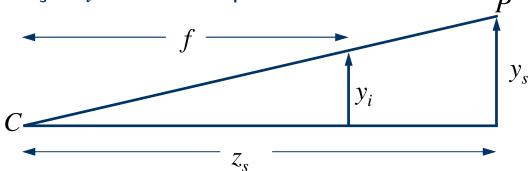
• Projeção perspectiva.





Projeção perspectiva:

- Ponto P no espaço descrito no sistema de coordenadas da câmera $\Rightarrow (x_s, y_s, z_s)$;
- Ponto P no plano da imagem descrito no sistema de coordenadas da câmera $\Rightarrow (x_i, y_i, z_i)$;
- Na direção y tem-se esquematicamente:



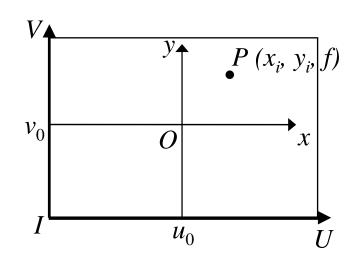
Por similaridade de triângulos:

$$x_i = f \frac{x_s}{z_s}; \quad y_i = f \frac{y_s}{z_s}; \quad z_i = f.$$

 Transformação do sistema de coordenadas da imagem (3D - métrica) para o sistema da imagem (2D - pixel):

$$u - u_0 = k_x x_i \Longrightarrow u = k_x f \frac{x_s}{z_s} + u_0$$

$$v - v_0 = k_y y_i \Longrightarrow v = k_y f \frac{y_s}{z_s} + v_0$$



onde:

- $-x_i$ e y_i coordenadas métricas;
- -ueven meta = ven pixel;
- $-k_x$ e k_y são fatores de escala;
- $-u_0$ e v_0 são coordenadas do centro da imagem em pixel.

Utilizando matrizes homogêneas:

$$\begin{cases} uw = \alpha_x x_s + u_0 z_s \Rightarrow u = \alpha_x \frac{x_s}{z_s} + u_0 \\ vw = \alpha_y y_s + v_0 z_s \Rightarrow v = \alpha_y \frac{y_s}{z_s} + v_0 \end{cases}$$

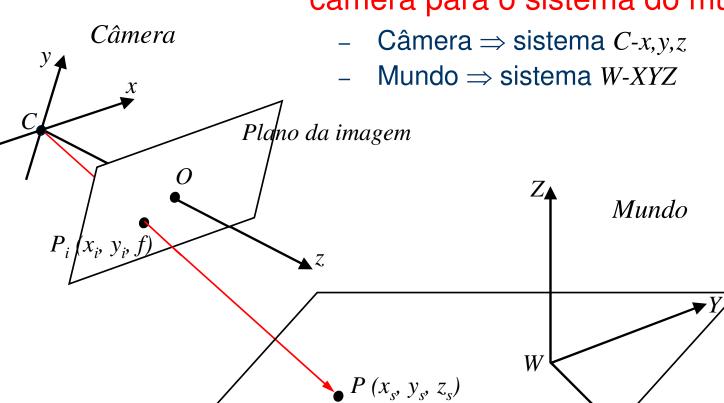
$$\alpha_x \in \alpha_y \Rightarrow \text{distâncias focais em pixels;}$$

$$\alpha_x = k_x f$$

$$\alpha_y = k_y f$$

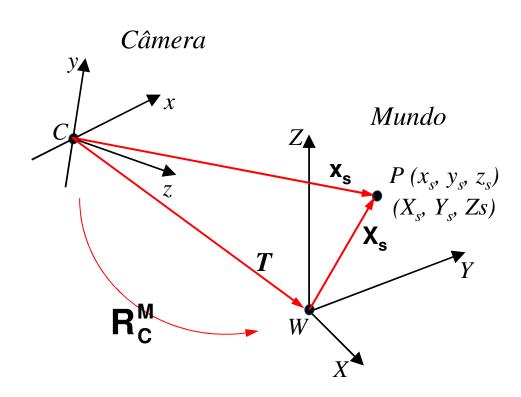
$$\begin{bmatrix} uw \\ vw \\ w \end{bmatrix} = \begin{bmatrix} \alpha_x & 0 & u_0 & 0 \\ 0 & \alpha_y & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} \qquad \Box \qquad \begin{bmatrix} uw \\ vw \\ w \end{bmatrix} = \mathbf{K} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix}$$

Transformação do sistema da câmera para o sistema do mundo.



 (X_s, Y_s, Zs)

 Transformação de coordenadas do sistema da câmera para o mundo.



$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R_c^M} & \mathbf{T} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

$$\mathbf{X}_{s} = \begin{bmatrix} \mathbf{R}_{c}^{M} & \mathbf{T} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}_{s}$$

- Transformação de coordenadas do sistema da imagem (2D em pixels) para o mundo (3D métrico):
 - Da imagem para a câmera:

$$\begin{bmatrix} uw \\ vw \\ w \end{bmatrix} = \mathbf{K} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix}$$

Da câmera para o mundo:

$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R_c^M} & \mathbf{T} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

Da imagem para a camera.
$$\begin{bmatrix} uw \\ vw \\ w \end{bmatrix} = \mathbf{K} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix}$$
Da câmera para o mundo:
$$\begin{bmatrix} x_s \\ y_s \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathbf{C}}^{\mathbf{M}} & \mathbf{T} \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \end{bmatrix}$$

$$\begin{bmatrix} x_s \\ y_s \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathbf{C}}^{\mathbf{M}} & \mathbf{T} \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \end{bmatrix}$$

Propriedades da matriz P:

$$\mathbf{P} = \mathbf{k} \mathbf{H}_{\mathbf{C}}^{\mathbf{M}} = \begin{bmatrix} \boldsymbol{\alpha}_{x} & 0 & u_{0} & 0 \\ 0 & \boldsymbol{\alpha}_{y} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathbf{C}}^{\mathbf{M}} & \mathbf{T} \\ \mathbf{0} & 1 \end{bmatrix}$$

- Matriz de rotação R^M_c ⇒ 3 parâmetros independentes;
- Vetor de translação T ⇒ 3 parâmetros;
- Matriz K ⇒ 4 parâmetros.
- Lente ⇒ como entra a lente na formação da imagem?
- Como obter esses 10 parâmetros?

- Problema com as câmeras pinholes ⇒ tamanho do furo é um compromisso entre nitidez e luminosidade:
 - O diâmetro do furo tem que ser "muito pequeno" para obter uma imagem nítida;
 - Um furo pequeno n\u00e3o produz luminosidade suficiente;
 - Se o furo é da mesma ordem de grandeza do comprimento de onda da luz ⇒ difração embaralha a imagem.
 - Uma imagem nítida com a câmera pinhole é obtida quando o diâmetro do furo é dado por:

$$d = 2\sqrt{f'\lambda}$$

- Exemplo: se f = 50mm, para a cor vermelha $\lambda = 600nm \Rightarrow d = 0.6mm$.
- > Solução ⇒ uso de lentes.

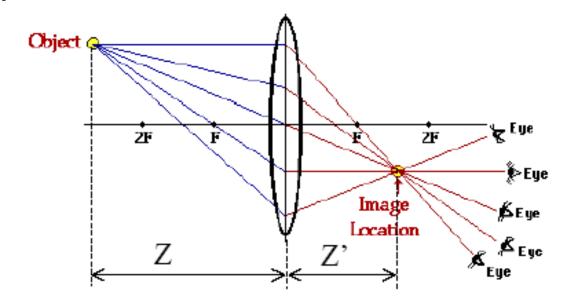
• Exemplos de imagens de câmeras *pinhole*.

Fig. 5.96 The pinhole camera. Note the variation in image clarity as the hole diameter decreases. [Photos courtesy Dr. N. Joel, UNESCO.]

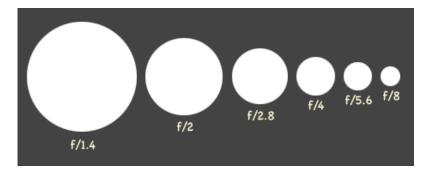
- Benefícios das lentes ⇒ aumenta a intensidade de luz na imagem pela focalização de raios de luz da cena.
- Complicações das lentes:
 - Profundidade limitada;
 - Distorção radial e tangencial ⇒ linhas retas aparecem curvas;
 - Imagem parece mais escura nas bordas;
 - Aberração cromática ⇒ distância focal é função do comprimento de onda.
- Profundidade de campo:
 - Intervalo de distâncias bem focadas ⇒ depende do sensor;
 - Quanto maior a abertura da lente menor a profundidade de campo

- Lente ideal:
 - O raio que passa pelo centro da lente, não é defletido.
 - Os restantes raios intersectam-se num ponto único juntamente com o raio central.
- Equação da lente:

$$\frac{1}{f} = \frac{1}{Z'} + \frac{1}{Z}$$



• Abertura \Rightarrow diâmetro D da lente que é exposta à luz.



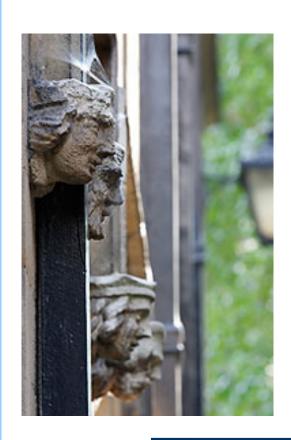
• F-Number (*f/#*):

$$f / \# = \frac{f}{D}$$

- Por exemplo \Rightarrow se f for 16 vezes o diâmetro da pupila, então f/# = f/16.
- Quanto maior o F-Number menos luz por unidade de área atinge o plano da imagem.

- Profundidade de campo
 ⇒ intervalo de
 distâncias para as
 quais a imagem é bem
 focalizada.
- Controle da profundidade de campo ⇒ aumento da abertura da lente diminui a profundidade de campo.

Cenas próximas e distantes ficam embaralhadas





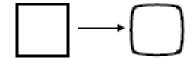
Aumento da abertura diminui a profundidade de visão

- Modelo de distorção radial da lente:
 - A distorção é função da distância do pixel ao centro da imagem:

$$\begin{bmatrix} u_d \\ v_d \end{bmatrix} = L(r) \begin{bmatrix} u \\ v \end{bmatrix}$$

onde,

$$r = \sqrt{(u - u_0)^2 + (v - v_0)^2}$$



Exemplo do que a distorção radial provoca na imagem

Pode ser aproximada por um polinômio:

$$L(r) = 1 + k_1 r + k_2 r^2 + \dots$$

 Distorção tangencial em geral é pequena e pode ser desconsiderada.

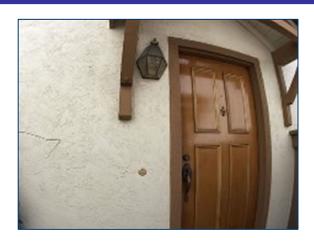


Imagem distorcida

Imagem corrigida

- Outras formas de distorção da imagem:
 - Fatores de escala diferentes para as colunas e linhas de pixels ⇒ pixels da câmera não são necessariamente quadrados.
 - Efeito considerado pelos fatores de escala k_x e k_y .
 - Fator de inclinação, s (Skew factor):
 - Causado pelo tempo finito de amostragem da imagem e pela disposição incorreta das linhas da imagem.

 Transformação de coordenadas do sistema da imagem (em pixels) para o mundo considerando a distorção da lente:

$$\begin{bmatrix} u_d \\ v_d \end{bmatrix} = L(r) \begin{bmatrix} u \\ v \end{bmatrix} \Rightarrow \begin{bmatrix} u_d w \\ v_d w \\ w \end{bmatrix} = L(r) \begin{bmatrix} \alpha_x & s & u_0 & 0 \\ 0 & \alpha_y & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{H}_{\mathbf{C}}^{\mathbf{M}} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

 Em geral considera-se somente o termo linear da distorção radial:

$$L(r) \cong 1 + k_1 r$$

- No modelo de formação da imagem tem-se diversos parâmetros:
 - Parâmetros intrínsecos ⇒ internos à câmera:
 - α_x , α_y , u_0 , v_0 , s, k_1 (6 parâmetros).
 - Parâmetros extrínsecos ⇒ externos à câmera:
 - R_c^M e T (6 parâmetros).
 - Na maioria das aplicações de visão computacional é preciso conhecer esses parâmetros.
- Cálculo dos parâmetros da câmera ⇒ calibração da câmera.

Sumário

- Sensores de visão:
 - Visão computacional ⇒ CCD ou CMOS.
- Imagens digitais:
 - Representam luminosidade média de um ponto no espaço;
 - Resolução espacial;
 - Quantização da intensidade luminosa.
- Formação da imagem ⇒ modelo de câmera pinhole:
 - Transformação perspectiva e métrica para pixel.
 - Lente pinhole ⇒ imagem escura e sem nitidez;
 - Uso de lentes resolve problemas da lente pinhole ⇒ mas causa distorção;
 - Transformação do sistema da câmera para o do mundo;
 - Lentes reais.

Exercícios

- Dados parâmetros da câmera, da lente e a transformação de coordenadas da câmera para o mundo calcular a matriz P.
- 2. Mapeamento de pontos no espaço na imagem digital.

Solução do exercício 1

- Câmera:
 - Imagem de 640x480 pixels;
 - Tamanho do \Rightarrow CCD 5x3mm;
 - Distância focal ⇒ 20mm;
- Transformação da câmera para mundo em mm:

$$\mathbf{T} = \begin{bmatrix} 0 \\ 0 \\ 2000 \end{bmatrix} \qquad \mathbf{R_c^M} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- Centro da imagem:
 - $-u_0 = 310 \text{ pixels};$
 - $-v_0 = 230 \text{ pixels};$

Solução do exercício 1

Fatores de escala:

$$k_x = \frac{640}{5} = 128 \text{ pixels/mm}$$
 $k_y = \frac{480}{3} = 160 \text{ pixels/mm}$

Matriz P de formação da imagem:

$$\mathbf{P} = \mathbf{K} \mathbf{H}_{\mathbf{C}}^{\mathbf{M}} = \begin{bmatrix} \alpha_{x} & 0 & u_{0} & 0 \\ 0 & \alpha_{y} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathbf{C}}^{\mathbf{M}} & \mathbf{T} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 128x20 & 0 & 310 & 0 \\ 0 & 160x20 & 230 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2000 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2560 & 310 & 620x10^3 \\ -3200 & 0 & 230 & 460x10^3 \\ 0 & 0 & 1 & 2000 \end{bmatrix}$$

Solução do exercício 2

 Dada a matriz de formação de imagem calculada no exercício 1, calcule a posição dos seguintes pontos no espaço no plano da imagem em pixel.

$$\mathbf{P_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} mm \qquad \mathbf{P_2} = \begin{bmatrix} 0 \\ 0 \\ 1000 \end{bmatrix} mm \qquad \mathbf{P_3} = \begin{bmatrix} 200 \\ -10 \\ 500 \end{bmatrix} mm$$