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ABSTRACT

The goal of linkage learning, or building block identification, is the creation of a
more effective genetic algorithm (GA).  This paper explores the relationship between the
linkage-learning problem and that of learning probabili ty distributions over multi-variate
spaces. Herein, it is argued that these problems are equivalent. Using a simple but effective
approach to learning distributions, and by implication linkage, this paper reveals the
existence of GA-like algorithms that are potentially orders of magnitude faster and more
accurate than the simple GA.

I. Introduction

Linkage learning in genetic algorithms (GAs) is the identification of building blocks
to be conserved under crossover. Theoretical studies have shown that if an effective
linkage-learning GA were developed, it would hold significant advantages over the simple
GA (2). Therefore, the task of developing such an algorithm has drawn significant
attention.  Past approaches to developing such an algorithm have focused on evolving a
problem's chromosomal representation along with its solution (3, 4, 5). This has proven to
be a difficult undertaking.  This paper reinterprets and solves the linkage-learning problem
in the context of probabili stic optimization.

Recently, a number of algorithms have been developed that replace the GA's
population and crossover operator with a probabili stic representation and generation
method (6, 8, 9, 11). Studies have shown a close correspondence between these
algorithms and equivalent simple GAs (4). This paper shows how a variant of these
algorithms, that pays close attention to the probabili stic modeling of the population
successfully tackles the linkage-learning problem.

We will begin by briefly reviewing the workings of the simple GA, as well as those
of the related probabili ty-based algorithms. We will then explore the close relationship
between these two approaches to optimization. The remainder of this paper is then
concerned with the ultimate consequences of this relationship. The argument to be
presented will consist of two separate assertions:

• That learning a 'good' probabili ty distribution is equivalent to learning linkage.
• That one 'good' distribution can be found by searching for a jointly small

representation of two components: 1) the compressed representation of the



population under the given distribution and 2) the distribution's representation
given the problem encoding.

Ultimately, this argument must stand on the legs of empirical observations, as in its
essence it is but the application of Occam's Razor. The last part of this paper presents a
probabili stic algorithm, the extended compact GA (ECGA), designed to learn linkage
through learning good probabili ty distributions. It then demonstrates the advantage that
this approach provides over the simple GA, on a  theoretical problem that has traditionally
been used to test other linkage-learning approaches.  Finally, this paper explores the
consequences of the proposed probabili stic algorithm.

II. The Simplified Simple GA

A GA (12, 13) is a simulation of the genetic state of a population of individuals ---
their genetic state being their combined chromosomes. It typically includes those forces of
genetics deemed most influential in nature, such as natural selection, mutation, and
crossover (mating). In this paper, we will restrict ourselves to one facet of the GA: its use
as a problem solver, or optimization algorithm. Natural evolution typically leads to a set of
individuals that are well suited to their environment. By controlli ng the computational
nature of such an environment, the GA can be made to evolve chromosomes (structures)
that are well suited to any given task.

An optimization is a search over a set of structures, to find the "best" structure
under some given criteria. This paradigm maps over readily to implementation in a GA.
Each structure is represented by its blueprint, or chromosome, in the GA's population. The
GA's population is thus the current set of structures the algorithm has found to be most
interesting or useful. At each point in time, it represents the current 'state' of the search.
The genetic operators of natural selection, crossover, and mutation then generate the next
state of the search from the current one. The GA's goal is to reach a final state
(population) that contains a good solution (structure) to the problem at hand.

In order to simplify this exposition, we will assume that the structures the GA will
optimize over are the set of binary strings of fixed length L. A binary string is simply a
consecutive sequence of characters each of which is a 0 or a 1. This restriction makes it
easier to visualize and understand the GA and its operators. However, the theory
developed in this paper will remain applicable to the much wider domain of optimization
over finite-dimensional spaces. We will for the same reason also consider only selecto-
recombinative GAs, thus ignoring for the moment the effects of mutation.

In the course of optimization, the GA's population repeatedly undergoes
processing by the two genetic operators of crossover and selection, until i t converges.
Convergence here means that only one type of chromosome remains in the population ---
hopefully the best or a good solution. The two operators have orthogonal goals. The
crossover operator generates new chromosomes by mixing parts from other pairs of
chromosomes.  It roughly corresponds to mating and reproduction in nature.



The selection operator weeds out those chromosomes that are unsuited to their
environment --- that is, those that have a poor score under the current optimization.
Again, for the purpose of simplicity, we focus on block selection (14) and uniform
crossover (15) as representatives of possibly more general selection and crossover
operators.

In block selection, a large fraction of the weakest chromosomes in the population
are thrown out, and the stronger chromosomes are given their place. Strength here is
measured according to the chosen optimization problem. Operationally, the optimization
problem is represented by a fitness function that maps structures over to real numbers.
The strongest structures are then those with the highest fitness score. Block selection is
controlled by one parameter, S, which specifies that only the best fraction 1/S of the
population is to be retained after the action of selection. Figure 1 shows the effects of
selection with S=2 on a population of size 8.
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Figure 1: With S=2, each chromosome in the top half of the population
gets 2 copies in the next generation.

Under uniform crossover, the population is paired up, and each pair of
chromosomes generates two children, which replace their parents in the population. A
child is created from the two parents by randomly inheriting the value of each position
(dimension) from one of its two parents, while its sibling gets the value at that position
from the other parent. In the parlance of GAs, each (position, value) combination is
referred to as a gene. Figure 2 shows the possible effects of uniform crossover on two
very dissimilar chromosomes.



Parents before crossover Children after crossover

11111111
00000000

10011000
01100111

Figure 2: Note how all the genes are conserved in a crossover. Each
parental gene ends up in one of the two children.

Optimization by selecto-recombinative GAs thus consists of a random
initialization of the population, followed by repeated applications of crossover and
selection. This optimization is typically stopped when the population has converged,
although a number of other stopping criteria are also possible. Figure 3 shows one
particular population that has converged to the value 01110111. In a number of problems,
GAs have been shown to consistently outperform standard optimization techniques.  The
reason why the GA does well is widely agreed to be a consequence of its effective
propagation of sub-structures that are correlated with high fitnesses.
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Figure 3: A converged population only has one type of chromosome
in it, and can therefore not search for more structures.

As an example, let us consider simple optimization problem of maximizing 1s (one-
max), where the fitness of each string is the number of 1s it contains. Figure 4 shows the
possible evolution of a population under one generation of selection and crossover. Note
how the ratio of 1s in the new population is higher than in the old, and
that the 1s are well distributed. This is because selection increases the number of 1s, and
crossover mixes them together in an attempt to combine all the 1s into a single
chromosome. In this case, each 1 gene is correlated with a high fitness, and the GA has
successfully exploited this information.
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Figure 4: Selection followed by crossover leads to a new chromosome
(the first) that is more fit (7) than any previous one.

Although the reason for the GA's success is widely agreed upon, the nature of the
structures it exchanges, and whose correlation with fitness it maintains, is under vigorous
debate. The crux of the problem is the complexity of these structures.  Two mutually
exclusive possibili ties vie for the explanation of the GA's success: 1) that single genes are
the only structures that the GA can effectively deal with; and 2) that the GA can process
more complex structures, consisting of several genes, which are referred to as building
blocks.

The study of linkage learning is the study of how to make the GA process
structures more complex than single genes, in the absence of information about which
genes are related. In this context, related roughly means that the genes would have to exist
in tandem to provide a fitness boost, but each gene alone would not provide a detectable
fitness signal. As of yet, the most advanced of such methods have only been marginally
successful in justifying the computational effort necessary to undertake them (4).  The
remainder of this paper addresses this issue by developing a computationally justifiable
algorithm that learns linkage. First, however, we take a necessary detour to explore a set
of probabili stic algorithms that are closely related to the GA.

III. Order-1 Probabilistic Optimization Algorithms

The population of the GA represents information about the parts of the search
space that the GA has seen before. The crossover and selection operators tell the GA how
to exploit this information to generate new, and potentially good, solutions. Along the
course of time, researchers noticed that crossover tended to decorrelate the individual
dimensions (or genes) in the solution structures, while selection tended to change the
makeup of the population by rewarding the more successful genes. Thus were born a
number of algorithms that replaced the population, crossover, and selection with a number
of actions on marginal probabili ty distributions on each of the representation's genes.

The idea behind these algorithms rested on representing the current state of the
search as the fraction of each dimension (or gene) in the population that had a value of 1.
Using only this information, a new population could be generated that mimicked the effect
of many consecutive crossovers. By altering these probabili ties according to how well



certain genes did against the competition, these algorithms could also mimic the effect of
selection. The compact GA (cGA) (9) and PBIL (8) are two examples of these simplistic
(but effective) algorithms. We will restrict ourselves here to looking at the cGA as it is
slightly simpler than PBIL.

The cGA begins by initializing an L-dimensional probabili ty vector P[] (one for
each gene position) to 0.5. This phase corresponds to the random initialization phase of
the simple GA. S solutions are then generated by polli ng this vector, i.e., selecting the Kth
dimension (or gene) to be 1 if a unit uniform random variable was less than the Kth
dimention of the probabili ty vector, P[K]. The gene positions of the fittest of these S
solutions are rewarded in pairwise competitions with each of the less fit solutions. P[K] is
increased if the fittest has a 1 in the Kth position, and the less fit solution does not. P[K] is
likewise decreased if the fittest has a 0 in the Kth gene, and the less fit solution does not.
The amount of increase or decrease in parametrized by a value E.

For instance, take the maximizing 1s problem, and assume L=4, S=2 and E = 0.25.
Figure 5 shows one evaluation taking place under this algorithm. Of the two generated
chromosomes 0111 (with a fitness of 3) is fitter than 1010 (with a fitness of 2). The
original probabili ty vector is random, P[] = [0.5 0.5 0.5 0.5].  In the first gene, the 0 is
part of a fitter chromosome than the 1. Therefore P[0] is decreased by 0.25. Note that the
index of the first gene in the vector is taken to be 0, not 1 due to a programming
convention. In the second gene, the opposite is true, therefore P[1] is increased by 0.25.
The third gene is the same in both chromosomes, so P[2] is unchanged. P[3] is again
increased by 0.25. This leaves us with the new probabili ty vector P[] = [0.25 0.75 0.5
0.75]. This process continues until the P[] vector implies a single solution, that is all i ts
values are zeroes or ones. At this point, the cGA has converged.

P

0.5 0.5 0.5 0.5

0111

1010

P generates two chromosomes

fitness
3

2

- 0.25

+ 0.25
+0.25

Next P

0.25 0.75 0.5 0.75

Figure 5: The cGA evaluation step consits of generation, followed
by an examination that changes the probabili ty distribution.



One might see a close correlation between this algorithm and the simple GA, but
still find it diff icult to guess at the extent of this relationship.  It has been shown that the
simple GA using a population size N and a selection rate of S under tournament selection
(which is a close cousin to block selection), and uniform crossover, can be mimicked very
closely by the cGA generating S solutions and using E = 1/N. These algorithms are
referred to as order-1 probabili stic algorithms as they maintain the population's
distribution as a product of the marginal distributions of each of the separate genes; genes
being considered order-1 or trivial building blocks.

IV. Probabilistic Optimization and Linkage Learning

   The correspondence between the operation of cGA and the simple GA hints at a deeper
connection. This connection is that the GA's population can be interpreted as representing
a probabili ty distribution over the set of future solutions to be explored. The GA's
population consists of chromosomes that have been favored by evolution and are thus in
some sense good. The distribution that this population represents tells the algorithm where
to find other good solutions.

In that sense, the role of crossover is to generate new chromosomes that are very
much like the ones found in the current population. This role can also be played by a more
direct representation of the distribution itself. This is precisely what the cGA and PBIL do.
Similarly, changes in the makeup of the population due to selection can be reflected in
alterations of the probabili ty distribution itself.

The probabili ty distribution chosen to model the population can be crucial to the
algorithm's success. In fact, the choice of a good distribution is equivalent to linkage
learning.  We take a moment now to explore this statement in the context of a problem
that is diff icult for the simple GA to solve without proper linkage learning.

IV.1 Linkage Learning and Deceptive Problems

We begin by defining a "deceptive" version of the counting ones problem. Here the
fitness of a string is the number of 1s it contains, unless it is all 0s, in which case its fitness
is L+1 (L recall is the problem length). The reason this is called a deceptive problem is that
the GA gets rewarded incrementally for each 1 it adds to the problem, but the best
solution consists of all 0s.

The initial conception of this problem is a needle in a haystack, which no
optimization algorithm can be reasonably expected to solve. To transform it into one that
requires linkage learning, we combine multiple copies of deceptive subproblems into one
larger problem. For example, a 40 dimensional problem can be formed by grouping
together each 4 dimensions into a deceptive subproblem. This problem will thus utili ze 10
of the deceptive subproblems defined above. The fitness of a string will be the sum of the
subproblem fitnesses, where each subproblem is defined over a seperate group of 4
dimensions. Figure 6 shows how a sample 40 bit string is evaluated in this problem. This



problem is an order-4 deceptive problem, and is typical of the kinds of problems used to
test linkage learning algorithms.

1111 0100 1110 1011 0110 0101 1011 1111 0000 0000

 4        1       3       3        2      2        3      4      5        5+ + + + + + + + + = 32 fitness = 

Figure 6: A large partially deceptive problem can be formed by
concatenating a number of smaller fully deceptive subproblems.

A GA that learns linkage will operate by recombining each of the optimal solutions
to the 4 bit subproblems into one optimal 40 bit string consisting of all 0s (Q mGA paper,
LLGA). A GA not learning linkage will tend to gravitate towards a suboptimal solution
consisting of some 0000s, and some 1111s. This is what the simple GA will do [2]. In
swapping genes between parents, it will often break up good combinations, such as 0000,
by crossing them over with slightly worse combinations, such as 1111. The difficulty in
learning linkage in this situation is that the four genes defining each subproblem don't have
to be adjacent. To learn linkage, a GA must correctly pick out each set of four related
genes. Even in this small problem, the number of such combinations is astronomical.

Figure 7 shows a possible size 8 population representing a set of solutions to this
partially deceptive problem. This ill ustration depicts only one subproblem (four genes) of
each chromosome. In figure 7 the GA has found several good solutions with marginal
fitness contributions of  4 and 5 over these four genes. The uniform crossover shown
destroys the correlations among the genes that lead to a high fitness; and the average
fitness in the population decreases after crossover! Similarly, the order-1 probabili ty
representing this population is P[] = [0.5 0.5 0.5 0.5]. Yet, generating new solutions
using this distribution leads to poor solutions.
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0000……...
1111……...
1111……...
1111……...
0000……...
1111……...
0000……...

marginal fitness

+4
+5
+4
+4
+5
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0011……...
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1111……...
1111……...
0001……...
1110……...
1101……...
0010……...

+2
+2
+4
+4
+1
+3
+3
+1

Figure 7: The first four genes of a population before and after
a crossover that does not recognize building block boundaries.



The correspondence that holds between the cGA and the simple GA rears an ugly
side to its head here. Both are unable to deal with this partially deceptive problem, in
which linkage learning is crucial. That is, both uniform crossover, and order-1 probabili stic
generation, fail to produce new chromosomes that are as good as the ones already in the
population! Similarly, the solution to this problem holds dually in the realm of GAs and
probabili stic algorithms.

In the GA, the crossover operator needs to understand that these four genes are
related, and not break up the combinations they represent. A building block crossover can
be developed for this purpose that only swaps whole solutions to subproblems, instead of
single genes. In order to do this, however, the algorithm must guess correctly at which
genes are related --- it must learn linkage.

In probabili stic algorithms, the probabili ty distribution needs to recognize that
these four genes are related, and represent the joint probabili ty of these four genes having
the 16 possible configurations they can hold; as opposed to the marginal distributions over
each of the four genes independently. Such an algorithm would model the original
population in figure 7 using P[0000] = 0.5 and P[1111] = 0.5, and each set of four genes
would maintain their correlation from one generation to the next.

What we have just seen is that linkage learning is a skill that is easily transferrable
into the domain of probabili stic algorithms.  The remainder of this paper shows that the
reverse is also true: that an operational and computationally feasible search for good
distributions can fulfill the traditional task of linkage learning.

IV.2 What Makes a Good Probability Model?

The cGA and PBIL define what it means to generate new solutions that are like
the current one. It is to poll the marginal distributions of each dimension or gene position,
considering each of the gene positions to be independent. More complex algorithms have
been developed that match some of the order-2 behavior of the population (11).  These
algorithms act by investigating pairwise inter-gene correlations and generating a
distribution that is very close to polli ng from the population. The closeness measure most
easily used is an information-theoretic measure of probabili ty distribution distances (1).
Modeling more complex, and more precise, higher-order behavior has been suggested, but
the validity of doing so has been questioned (6).

Pursuing this last train of thought to its ultimate conclusion reveals the flaw in its
prescription. We can directly model the order-L behavior of polli ng the population, by
only generating new members through random selection of chromosomes that exist in the
population already. This behavior will rapidly lead to the algorithm's convergence, while
exploring no new structures. Thus, more accurate modeling of the population's
distribution is not always a desirable course of action.



Probabili stic algorithms that use order-2 correlations have sometimes been found
to be vastly superior to those using order-1 probabili ties. Yet the argument above
indicates that this trend cannot continue indefinitely up to order-L modeling of the
population.  At some point, this progression must stop. This puzzling combination seems
to imply that more complicated models of the population are useful, but only up to a point.

These ruminations hint at a resolution to the problem of picking an appropriate
distribution to model the population. The solution comes from realizing that the
probabili ty distribution to be used will represent a model of what makes the current
population good; and that the population is simply a finite sample from this distribution.
Fundamentally, the task of identifying a probabili ty model to be used is then the induction
of models that are likely to have generated the observed population.

It is well known that unbiased search for such models is futile. Thus we have no
choice but to select a bias in this search space. The one we choose is that given all other
things are equal, simpler distributions are better than complex ones. Simplicity here
can be defined in terms of the representational complexity of the distribution, given the
original problem encoding. All things are, however, rarely equal, and there remains a
tradeoff between simplicity and accuracy. Our aim will therefore be to find a simple model
that nonetheless is good at explaining the current population.

IV.3 Minimum Description Length Models

Motivated by the above requirement, we venture forth a hypothesis on the nature
of good distributions:

By reliance on Occam's Razor, good distributions are those under which the
representation of the distribution using the current encoding, along with the
representation of the population compressed under that distribution, is minimal.

This definition is a minimum description length bias on the model search for
distributions (10). It directly penalizes complex models by minimizing over model size. In
addition to doing so, it penalizes inaccurate models, because information theory tells us
that these are unlikely to be of much use in the compression of the population (1).

IV.4 MDL Restrictions on Marginal Product Models

We take a moment now to explore this hypothesis. The basis for compression is
the availabili ty of a probabili ty distribution over the space of structures to be compressed.
Given any particular distribution, we can calculate how many bits it takes to represent a
given message. In our case, the message is the population, and the distribution is the one
to be evaluated.  This hypothesis reformulates the problem of finding a good distribution
as a new optimization problem --- that of finding the distribution model that minimizes the
combined model and population representation.



For the remainder of this paper we focus on a simple class of probabili ty models:
those formed as the product of marginal distributions on a partition of the genes ---
marginal product models (MPMs). These models are similar to those of the cGA and
PBIL, excepting for the fact that they can represent probabili ty distributions over more
than one gene at a time. We choose these models for two reasons: 1) they make the
exposition simpler; and 2) the structure of such a model can directly be translated into a
linkage map, with the partition used defining precisely which genes should be tightly
linked.

[0,3] [1] [2]
00 0.5 0 0.5 0 0.6
01 0 1 0.5 1 0.4
10 0
11 0.5

Table 1: A marginal probabili ty model over four genes.

To make MPMs more concrete, figure 9 shows one possible model over a four
dimensional problem. The partition chosen is [0,3][1][2], which means the distribution
represents genes 1 and 2 independently, but genes 0 and 3 jointly. Thus the probabili ty
distribution over [0,3] has a positive distribution for only the values 00 and 11. This means
that at no time can the population generated by this distribution contain a 1 in the first
position and a 0 in the fourth position. So, chromosomes of 1001 and 0100 are legal, but
0001 and 1010 are not! This form of restriction is not possible if the probabili ties of genes
0 and 3 are represented independently. Obviously, this form of distribution is more
powerful than that allowed by the cGA (or PBIL).

Let us now try to represent a population of N chromosomes, half of which are
0000, and half of which are 1111. If the populations represented as is (simple bit listing),
this population will require 4N bits of storage. On the other hand, an MPM of genes
[0,1,2,3] could first represent the probabili ty of a structure being any of the 16 possible
binary structures over those four positions. This probabili ty distribution would indicate
that only 1111 and 0000 have a positive probabili ty of being represented. Subsequently,
the representation of each structure can be 0 for 0000 and 1 for 1111. This encoding uses
only one bit per structure, and thus only N bits for the whole population.

By recognizing that these four bits are correlated, and representing their
distribution in an MPM, we have cut down to a fourth the amount of space that storing
the population requires!  Even when the probabili ties are not so abrupt, and every string
has a positive probabili ty of being represented, the entropy of a distribution E(P) gives us
the average number of bits it takes to represent structures randomly pulled from this
distribution. By calibrating an MPM's probabili ties to match those of the population, this
number can be used to estimate that distribution's compression of the population.



Furthermore, the calibrated MPM can easily be seen to be the one that compresses
the population the most --- that is, incorrectly modeling the population cannot possibly
help. In fact, since the order of chromosomes is deemed unimportant in the representation,
a randomization of the ordering, followed by sampling a chromosome then projecting onto
any gene subset from the MPM will be identical to polli ng the MPM at that subset. Thus,
no distribution over that MPM subset can do better than that incorporating the
population's frequency counts (1).

The use of an MPM to represent the population consists of two parts: 1) choosing
the partition structure of the MPM; and 2) calibrating the MPM by pulli ng the frequency
counts of each of the subsets of the MPM directly from the population. The efficacy of a
particular distribution is defined as the sum representation size of the model itself and the
population compressed under the model. At this point, there is little recourse but to
explore the actual equations defining this criterion.

IV.5 The Combined Complexity Criterion

Let the Ith partition subset of an MPM be of size S[I], where the sum of the SI is
L. Each subset of size S requires 2S[I] frequency counts to define its marginal distribution -
one for each possible configuration over those genes. Each of the frequency counts is of
size log N, where N is the population size. Therefore the total model representation size,
or complexity is:

Model Complexity = log N  ΣI 2
S[I]

Now, the Ith subset represents S[I] genes. Let MI be the marginal distribution over
this subset. The entropy of this distribution is then E(MI). This number is the average
number of bits it takes to represent these S[I] genes in the population. This number will
never be greater than S[I]. This is how the population is compressed, by representing the
Ith subset's genes only after the Ith marginal distribution has been represented! Therefore,
the total compressed population complexity is:

Compressed Population Complexity = N Σ E(MI)

Armed with these two definitions, we can evaluate the efficacy of any given MPM
structure. By MPM structure, we mean the MPM partitioning, without the actual
probabili ties for each of the marginal distributions. These probabili ties are determined by
the population, and the required condition that the compression be optimal. First, we
calibrate the MPM structure using the population's frequency counts to form a full MPM
model. Second, we add the model complexity and compressed population complexity to
get a combined complexity number.

CC(MPM) = Model Complexity + Compressed Population Complexity



The next section describes a simple algorithm for searching for partitions of the
gene space for a good MPM distribution over the population, given this operational
criterion of finding a distribution such that its compressed complexity is suitably small.

V. The ECGA

In this section, we combine the above heuristic with a greedy search algorithm to
invent an efficient probabili stic optimization algorithm. The proposed algorithm is very
simple:

1. Generate a random population of size N.
2. Undergo tournament selection at a rate S.
3. Model the population using a greedy MPM search.
4. If the model has converged, stop.
5. Generate a new population using the given model.
6. Return to step 2.

This algorithm may also be stopped at any time, using the best found solution so
far as its result. Most of the algorithm is self-explanatory, but we focus on two of its
features. First, the algorithm requires both a population, and selection. Because we are
remodeling the population at each generation, the structure of the models may not be
stable. Therefore, selection cannot be replaced by a simple update as in the cGA. For the
same reason, a concrete population is required also. Only the crossover step is replaced by
probabili stic polli ng in this algorithm. Second, we have yet to describe the greedy MPM
search.

The greedy MPM search begins each generation by postulating that all of the genes
are independent --- that is, that the MPM [0][2]...[L-2][L-1] is best. What it will then do is
perform a steepest ascent search, where at each step, the algorithm attempts to merge all
pairs of subsets into larger subsets. It judges such mergers again on the basis of their
combined complexity. If the best such combination leads to a decrease in combined
complexity, then that merger is carried out. This process continues until no further pairs of
subsets can be merged. The resulting MPM is then the one that is used for that generation.
A new MPM search is thus carried out each generation.  Significant optimizations can and
have been taken in the implementation here, such as caching delta values for all pair
combinations at each step.

This combined greedy search algorithm along with the minimum description length
search criteria, applied to the task of optimization, will henceforth be referred to as the
extended compact GA (ECGA).

V.1 Experimental Results

Most of this paper has concerned itself with the theoretical justification of the
ECGA. This section shows how the ECGA can significantly speed the solution of



problems that are partially deceptive. In the creation of partially deceptive functions, we
will rely on the composition of small deceptive problems, like the 4-bit problem defined
above. The subproblems we will use are trap functions, whose fitness relies solely on the
number of 1s present in a chromosome. These functions have been used extensively in the
testing of linkage learning algorithms, and solving them has proven to be quite challenging
in the absence of prior linkage information.

We will begin by exploring the relationship between the population size used and
the proportion of subproblems solved correctly by both the ECGA and the simple GA
using uniform crossover. By adding in information about the algorithms' running time, we
can show comparisons of the number of function evaluations both algorithms need to
achieve a comparable level of optimization. Without further ado then, we proceed to the
experimental results.

V.2 Deceptive Trap Functions

In this section, ten copies of the four-bit trap subproblem, are concatenated to
form a difficult 40-bit problem, as in figure. This is the problem used to compare the
ECGA with the simple GA. Each set of four neighboring genes [0-3][4-7] thus formed
one subfunction to be optimized. But neither the simple GA nor the ECGA were told
which genes were related, or that the related groups were contiguous, or for that matter
the size of the subproblems.

Both the ECGA and the simple GA with uniform crossover were run on this
problem 10 times, with a selection rate of 16 (which is higher than the ECGA needs, but
which the simple GA requires), gathering the average number of subfunctions solved per
population size. This is measure is especially significant, as the performance of GAs and
other optimization algorithms is typically judged by the number of objective function
evaluations they undertake - and this number is the population size times the number of
generations.

Table 2 shows the population size versus the average number of subfunctions
solved for the simple GA, and the average number of function evaluations taken to do so.
Table 3 does the same for the ECGA.

Population size   Subfunctions Solved   Objective Evaluations
100 3.9 740
500 5.2 5100
1000 6.1 15600
5000 6.8 100000
10000 7.3 248000
20000 8.0 614000
50000 7.9 1560000
100000 8.8 3790000
Table 2: Simple GA complexity on deceptive subproblems.



Population size   Subfunctions Solved   Objective Evaluations
100 4.0 750
200 5.2 1460
300 7.1 2610
500 9.3 4000
600 9.9 5040
1000 10.0 7300

Table 3: ECGA complexity on deceptive subproblems.

The differences between the simple GA and the ECGA are large, and in the favor
of the ECGA. To consistently solve 9 building blocks, the simple GA needs a population
size of 100 thousand and over 3.8 milli on function evaluations! To do the same, the
ECGA needs a population size of 500 and 4 thousand function evaluations.  On this small
40-bit problem, the ECGA is 1000 times faster than the simple GA. This speedup is due to
the careful attention paid to probabili stic modeling in the ECGA. This speedup should
theoretically also become much greater when solving larger problems. The following
shows the successive MPM structures used in one successful run of the ECGA:

GENERATION 0

[0-3][4 7 27][5-6 15][8-11][12-14 24][16-19][20-23][25][26 32-35][28-31][36-39]

GENERATION 1

[0-3 25][4-7 15][8-11][12-14][16-19][20-23][24 27][26 32-35][28-31][36-39]

GENERATION 2

[0-3][4-7][8-11][12-15][16-19][20-23][24-27][28-31][32-35][36-39]

Note that this structure changes from generation to generation. The ECGA makes
a few mistakes in the first pair of generations. The final result arrived at in generation 2,
however, completely discerns the subfunction structure of the given problem --- without
being given this information ahead of time. By simply searching for MPM-structures that
optimally compress the population, the ECGA has completely dissected the subproblem
structure of the 40-bit problem! It is no surprise that armed with this information, the
ECGA proceeded to optimize this problem much faster then the simple GA.

V.3 The Role of Selection

The role of selection is a curious one in the ECGA and not at all immediately clear.
If the proper level of selection is not maintained in the above runs however, the ECGA
fails, and never models the problem structure correctly (the same is true but an often



ignored aspect of the simple GA). Taking a second, we consider the dual roles of
probabili stic generation and selection in the ECGA.  The role of generation (the ECGA's
crossover equivalent) is to create more chromosomes that are like the ones in the present
population. These chromosomes will have no correlations across the MPM structure
boundaries. That is, if the MPM structure says that genes 1 and 2 are independent, they
will actually be independent in the generated population. Given that the algorithm begins
by assuming that all genes are independent, one might wonder where dependencies come
from at all.

The answer to that question is that selection recorrelates genes if a specific
combination of theirs is correlated with high fitness. In the partially deceptive problems we
have experimented on, selection correlates the group of 0s defined over a common
subproblem. This correlation is what the ECGA detects. If the level of selection is very
low, this correlation will never be generated, and the ECGA will never detect that the
genes are related. Thus, a low level of selection can cause the ECGA to fail. This point is
especially important in considering the future of research on such probabili stic algorithms.
It also points to a related class of algorithms that learn the proper MPM structures by
exploring intergene correlations.

VI. Summary, Conclusions and Future Work

This paper began by reviewing the simple GA and a related set of probabili stic
algorithms. Past work has equated some of these algorithms with the simple GA, and an
exploration of this relationship has pointed to the existence of more general
probabili stically-based GA-like algorithms. That this class exists has been pointed out
before (6). However, the benefits of paying close attention to the probabili stic modeling of
the a GA-like population have not previously been thoroughly explored.

This paper demonstrated that proper probabili stic modeling in these algorithms is
in effect the long-sought solution to the linkage-learning problem. It has also introduced
an operational complexity criterion for distinguishing between good models and bad
models. Experimental results have shown that by focusing on learning marginal probabili ty
models, the ECGA can solve some difficult problems orders of magnitude faster than
simple GAs not using linkage information.

This paper has revealed a strong connection between linkage learning and proper
probabili stic modeling. This is however, only the tip of the iceberg inasmuch as effective
optimization is concerned. The goal of linkage learning, while ambitious, is only a small
part of the more general goal of representation learning. In representation learning, the
actual optimization problem is transformed into a different space, and optimized in that
new space. The optimization and design of biological entities --- which transforms fitness
functions defined on three dimensional molecules into ones over a genetic representation -
-- is proof that such techniques can be effective. It is this author's belief that even such a
search for transformations can be placed into the framework of complexity based
modeling.



Several questions and difficulties remain to be addressed by future work on
probabili ty based optimization in general, and MPM-like approaches in particular. A few
of the more promising or addressable issues in this area are:

• The ECGA is simple to parallelize, by replacing the migration step of standard parallel
GAs by one of probabili ty model exchange. This has the potential to greatly reduce the
amount of communication and synchronization needed over that of the parallel simple
GA.

• The MPM model search is potentially computationally expensive. In some problems,
this poses the risk of overwhelming the function evaluation time with the search's own
computational overhead. One recourse in these cases is to use simpler probabili ty
models, such as those used by the cGA or MIMIC. Another possible alternative is to
implement this fixed search algorithm in hardware, or to look for heuristic
approximations to the MPM algorithm. For example, the MPM search could be biased
somewhat to the encoder’s original linkage specification.

• Another approach to reducing the complexity of the MPM model search is to sample
from the population when building the correct MPM structure.

• On the other spectrum of function evaluation complexity, it is possible that more time
for population analysis might be available. In these cases, bayesian network learning,
although more complex, is likely to yield even more powerful algorithms than the one
described in this paper. In some cases, such as optimization in euclidean spaces, direct
probabili stic modeling might also offer more accurate methodologies than modeling
using arbitrary binary encodings over the selfsame space.

• The probabili ty modeling framework suggested here deals particularly well with
multidimensional data, but does not trivially extend to optimization over more
complex structures such as permutations, or programs. This issue deserves serious
consideration.

• Algorithmic complexity analysis of the ECGA is likely to be difficult. However, it is
quite likely that simple estimates of its overhead costs over the simple GA on non-
deceptive problems would be straightforward to calculate.

• Even when using the most complex probabili ty models, it is quite likely that high levels
of selection will be required to solve certain problems. The role of selection there will
be to correlate the features of the population, so that they may be detected in the
probabili stic model. To date, few theories explain this dependence of GA-like
algorithms on selection. The SEARCH framework seems likely to offer at least a
partial answer to this puzzle.

• It is quite possible that by searching for mixtures of different models, one might be
able to optimally decide between the application of different GA operators. That is, the
probabili stic approach could settle once and for all, on a problem by problem basis, the
efficacy question of crossover versus mutation.

• Finally, while in theory the ECGA seems to provide a huge advantage over optimizing
with the simple GA, this result has yet to be extended to the solution of a practical,
real-world problem.
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