Lecture #4 Power and sample size

Outline

- Importance of sample size
- Statistical terms
- Confidence and power calculations
- Sample size calculations
- Example
- Replicate concordance
 - Individual array results
 - Combined array results

Replicates

- Reliability of statistical inference requires replicate data
 - Hypothesis testing
 - Feature selection
 - Classification
- Variance estimates are highly dependent on an adequate sampling
- Microarrays can be fairly costly, so the minimum number of arrays is optimal for experiment and analysis

Statistical Terms

- Hypothesis tests
 - H_i: the means of two samples are the same (null)
 - H₁: the means of two samples are not the same (alternative)

Rejecting or disproving the null hypothesis – and thus concluding that there are grounds for believing that there is a relationship between two phenomena or that a potential treatment has a measurable effect – is a central task in the modern practice of science

	H ₀ is true Truly not guilty	H ₁ is true Truly guilty
Accept Null Hypothesis Acquittal	Right decision	Wrong decision Type II Error
Reject Null Hypothesis Conviction	Wrong decision Type I Error	Right decision

- Type I error (talse positive alpha value)
 - Probability of accepting the alternative hypothesis, when the means are the same
- Type II error (false negative beta value)
 - Probability of accepting the null hypothesis, when the means are different

Statistical Terms (cont.)

- Confidence level
 - Probability of accepting the null hypothesis, when the means are the same
 - $1-\alpha$ (where α is the size of the test)
 - is used to indicate the reliability of an estimate
- Power
 - Probability of accepting the alternative hypothesis, when the means are different (1-β)
- Sample size determination is made, such that confidence and power can reach predefined values
 - e.g. 95% confidence; 80% power

Calculations (two sample case)¹

- Power can help estimate the minimum sample size necessary to test for the effect size
- The t-statistic for the hypothesis test:
- The H₀ distribution for all classes having the same mean is defined as:
- The H₁ distribution for all classes having different means is defined as:

 The effect size is the critical difference between populations that is set in advance:

$$H_0: \mu_1 = \mu_2 \text{ and } H_1: \mu_1 \neq \mu_2$$

 $t = \frac{(\bar{y}_1 - \bar{y}_2)}{S_p \sqrt{1/n_1 + 1/n_2}}$

$$H_{0}: t = \frac{(\bar{y}_{1} - \bar{y}_{2})}{S_{p}\sqrt{1/n_{1} + 1/n_{2}}} \sim t(N-2)$$

$$H_{1}: t = \frac{(\bar{y}_{1} - \bar{y}_{2})}{S_{p}\sqrt{1/n_{1} + 1/n_{2}}}$$

$$\sim t \left(N-2; \Delta = \frac{\Delta_{e}}{\sqrt{1/n_{1} + 1/n_{2}}}\right)$$

$$\Delta_e = \frac{(\bar{y}_1 - \bar{y}_2)_{crit}}{S_p}.$$

Flow diagram¹

Calculations (cont.)¹

- Confidence and power are calculated using the distributions of the null and alternative hypotheses¹
- An initial sample size is assumed, along with a given effect size¹
- A critical value is identified to ensure a pre-selected confidence level (95% in this example) from the null distribution (blue)¹
- The power is then calculated by integrating the alternative distribution (green) from the critical value to positive infinity¹
- If the power falls below the predefined value (1-β), the sample size is increased until the power reaches this threshold¹

Calculations (cont.)¹

- Power curve
- Sample size in the plot represent the total number of samples (both classes)
- Assumes that the standard deviation matrix is the same for each class¹

Sample size calculation

- Sample size is a function of multiple factors
 - Effect size
 - Desired power (1-type II error probability)
 - Confidence level (type I error probability)
 - Variability (CVs)
- There is difficulty in representing variability in microarray data because it tends to vary across genes
 - Effect size is expected difference between classes (e.g. fold change)
 - Power is a pre-determined threshold (e.g. 95%)
 - Confidence level is 1-α (e.g. 99% for a size=.01 test)
- To get a single statistic for n genes, we must assume a single estimator (constant variance) across a microarray
 - This is unrealistic for each gene to have similar variability
- For calculating the power in at least h genes that are thought be regulated between classes, the binomial probabilities must be summed
 - (1-β) = ∑ x!/(h!(x-h)!)(1-B)hB(x-h) where h=# regulated genes detected x=# of actually regulated genes B= type II error

Sample size calculation – two sample, two-sided test

given: z_{α} = critical value at specific size of test $k = n_2/n_1$ projected ratio of 2 sample sizes $\sigma_1^2 \& \sigma_2^2$ = sample variances $\mu_1 \& \mu_2$ = sample means

Power
$$(1-\beta) = \acute{Q} [-z_{1-\sigma/2} + (\sqrt{n_1}|\mu_1 - \mu_2|) / (\sqrt{\sigma_1^2 + \sigma_2^2/k})]$$

 $n_{1} = \{ (\sigma_{1}^{2} + \sigma_{2}^{2}/k)(z_{1-\sigma/2} + z_{1-\beta})^{2} \} / |\mu_{1} - \mu_{2}|^{2}$ $n_{2} = \{ (k\sigma_{1}^{2} + \sigma_{2}^{2})(z_{1-\sigma/2} + z_{1-\beta})^{2} \} / |\mu_{1} - \mu_{2}|^{2}$

assuming near equal sample sizes n = { $(\sigma_1^2 + \sigma_2^2)(z_{1-\sigma_2} + z_{1-\beta})^2$ / $|\mu_1 - \mu_2|^2$

Example

- Multiple gene power calculations are beyond the scope of this course
 - We can calculate sample sizes and power based on single gene statistics
- Utilizing only a few selected genes, we can get an idea of how many replicates would be required to detect a specified mean difference between classes

Example with colon data gene #8,000 boxplots

Gene #8000


```
Welch Two Sample t-test
data: x and y
t = 2.226, df = 32.726, p-value =
0.03302
alternative hypothesis: true difference
in means is not equal to 0
95 percent confidence interval:
 0.03484702 0.77814245
sample estimates:
 mean of x mean of y
 0.06089474 - 0.34560000
```

Sample size

- The t-test finds a significant result (p=0.03) at a difference of ~0.41 between the means
- To detect a 3 fold difference (log scale) for gene #8,000 with 80% power and confidence=95%
 - Data is z-score normalized, so detectable fold change is difficult to infer

<u>Two-sample t test power calculation</u>

```
n = 7
delta = 1.099
sd = 0.680
sig.level = 0.05
power = 0.8
alternative = two.sided
```

NOTE: n is number in *each* group

Power curves³

 Assuming constant variance across all genes (false assumption) at ~ 1.44, the replicate numbers can be represented by the calculated power at the specified fold change detections

False Discovery Rate as opposed to power and confidence for sample size determination

- The p-value is associated with specificity of a test
 - p-value<0.05 means that specificity = 0.95
- Multiple testing procedures can be too conservative
 - Will discuss this concept in later lectures
- False discovery rate (FDR) is proposed as an alternative to simple p-values
 - FDR is expected proportion of FPs among declared significant results
 - e.g: if 100 genes are declared differentially expressed, and set the FDR to 0.10, 10 of these genes will be FPs

Properties of the FDR

- The FDR relies on:
 - The proportion of truly differentially expressed genes
 - Distribution of the true differences
 - Variability
 - Sample size (only factor under the experimentalists control)

10,000 gene example⁵

	Test result: non differentially regulated	Test result: differentially expressed	Total 9500	
True: non differentially expressed	A = 9025	B = 475		
True: differentially expressed	C = 100	D = 400	500	
Total	9125	875	10,000	

- FP rate (1-specificity) = B/(A+B) = 5%
- Sensitivity = D/(C+D) = 80%
- FDR = B/(B+D) = 54%
- FNR = C/(C+D) = 20%
 - Over half of genes that hypothesis test says are differentially expressed, are not
- Using significance test, 80% power and 95% confidence gives a high FDR
 - Can reduce FPs by reducing p-value threshold

FDR curves for non-differentially expressed genes⁵

- Each curve is labeled by the percentage of truly non-differentially expressed genes
- In experiments with small *n*, where the percentage of non-differentially expressed genes is expected to be high, FDR can be high, even when using large *t*-statistic critical values
 - *e.g.* if the proportion of non-differentially expressed genes = 0.90, this provides a 60% FDR, with a sample size of 5
- When n is increased to 30 (per group), FDR improves
 - e.g. at a *t*-statistic critical value of 3 (p-value=0.004), there is <10% FDR, if 0.90 of genes are nondifferentially expressed; sensitivity ~ 0.80

- Assume
 - Genes with top 1% highest absolute t-statistics are truly differentially expressed
 - Proportion of non-differentially expressed genes = 0.99
- FDR > 80% for *n*=5 (per group)
- As *n* is increased, FDR increases

FDR curves vs. *n* for non-differentially expressed genes (p0)⁵

- Each curve is labeled with a fixed percentage of truly differentially expressed genes
- If the number of differentially expressed genes is known to be around a certain amount for an array, increasing the probes will only increase the proportion of non-differentially expressed genes
 - This will result in larger FDRs

Increase log-fold changes for truly differentially expressed genes⁵

With increased fold changes FDR is reduced

References

- ¹Hwang D, Schmitt W, Stephanopoulos G, and Stephanopoulos G. (2002) Determination of minimum sample size and discriminatory expression patterns in microarray data. *Bioinformatics*. **18**, 1184-1193.
- ²Lee M, Kuo F, Whitmore G, and Sklar J. (2000). Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. *PNAS*. **97**, 9834-9839.
- ³SUNY
 - http://www.ams.sunysb.edu/~kye/talks/PoolingPoster.pdf
- ⁴Leeds University
 - http://www.amsta.leeds.ac.uk/~edwin/m1830/lectures/m1830_7.htm
- ⁵Pawitan Y, Michiels S, Koscielny S, Gusnanto A, and Ploner A. (2005). False discovery rate, sensitivity and sample size for microarray studies. *Bioinformatics*. 21(13): 3017-3024.

R Code

```
# import eisen data
dat <- read.table("eisen.txt",header=T)</pre>
dimnames(dat)[[1]] <- as.character(dat[,1])</pre>
dat <- dat[,-1]</pre>
dat <- as.data.frame(dat)</pre>
# import annotation file
ann <- read.table("eisenClasses.txt",header=T)</pre>
# subset dat by samples of interest
cl <- as.character(ann[,2])</pre>
dat <- dat[,cl]</pre>
# two classes of DLBCL
gc <- cl[1:19]
act <- c1[20:39]
# split up classes and look at both samples for gene #8000
x <- as.numeric(dat[8000,gc])</pre>
y <- as.numeric(dat[8000,act])</pre>
# remove "NAs"
x <- x[!is.na(x)]; y <- y[!is.na(y)]</pre>
# plot both samples
xy.list <- list(x,y)</pre>
```

boxplot(xy.list,col='purple',main='Gene #8000')

calculate two-sample Welch's t-test (unequal variances) between normal and tumor for gene #8000 xy.ttest <- t.test(x, y, alternative ="two.sided",paired = FALSE, var.equal = FALSE,conf.level = 0.95)</pre>

determine sd of each group and choose max
x.sd <- sd(x)
y.sd <- sd(y)</pre>

calculate number of replicates to detect 3 fold change (1.1 on log scale) at 80% power power.t.test(delta=log(3),sd=y.sd,power=.8)

Backup slides

Replicate concordance

- An alternative method of viewing the effect of replicate experiments is to estimate the concordance of various parameters in each replicate individually
 - Probability of detecting a gene
- This method can give you insight into the similarity between each replicate independently
- Then, observe how this changes when the replicates are pooled

Statistical Model²

- We assume a model for the detection of a¹ particular gene g (g=1...,G) in replicate j (j=1...,J), subject to the following considerations²:
 - Expression of a gene is taken as the log ratio Y_g
 - Y_ghas two distinct distributions:
 - Gene g is not in the sample tissue, distributed as $N(\mu_{ij}\sigma_{ij}^2)$, where U refers to being <u>unexpressed</u> Probability density function is $Y_{ij}|E.bar_{ij}$ given by $f_{ij}(y)$
 - Gene g is in the sample tissue, distributed as N(μ_{Ej}σ²_{Ej}), where E refers to being <u>expressed</u> Probability density function is Y_a|E_agiven by f_E(y)
 - Prior probability of observing a gene is Pr{E_g}=p

Statistical Model (cont.)²

- The log-ratio, Y_g for replicate *j* will be distributed¹ according to the following mixture model
 f_j(y) = pf_{Ej}(y) + (1-p)f_{Uj}(y)
- Manipulating the equation above gives the posterior probabilities for whether gene g is expressed, based on the expression value Y_g = y

 $Pr\{E_g \mid Y_{gj} = y\} = pf_{Ej}(y) / f_j(y)$

Model Parameters²

- Using the following parameters, we can estimate the posterior probabilities from the two previous equations
 - *p* = prior prob. of observing a gene (controlled experiment showed 32/288 (0.111) as expressed)
 - μ_{u} α_{u}^{2} = mean and variance for gene *g* being unexpressed
 - $\mu_{\rm E} \& \sigma_{\rm E}^2$ = mean and variance for gene *g* being expressed
 - We would expect a large difference between the 2 mean parameters $(\mu_{\text{E}} > \mu_{\text{U}})$
- First solve the MLE (maximum likelihood estimates) of the parameters above in each of the 3 replicates alone and see how similar they are
 - MLE is a method of determining the values of *n* unknown variables, such that the function is maximized
 - We solve for these parameters in the first equation and compare how they differ between replicates

Equation #1 Model Parameters²

Table 1. Separate analysis for each experimental replicate

	Replicate			
Parameter	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	
р	0.285	0.124	0.274	
μ_{U_i}	0.384	0.410	0.442	
μ_{E_i}	0.968	2.203	1.233	
$\sigma_{U_i}^{2'}$	0.070	0.076	0.062	
$\sigma_{E_{j}}^{2'}$	1.186	0.114	1.079	

Donlicato

Parameter estimates of the mixed normal model (Eq. 1).

- Replicate #2 is fairly different for 3 parameters
- The approximations of *p* in j=1 and 3 are too large, as compared to the controlled study (0.111)
- These 3 replicates show the differences in replicate mean and variance between identical samples

Equation #2 Posterior Probabilities²

Table 2. Posterior probability of expression in sample tissue

Log ratios $Y_{gj} = y$ and estimates of posterior probabilities $Pr\{\mathscr{E}_g | Y_{gj} = y\}$ for a few illustrative genes g, for replicates j = 1, 2, 3.

- The posterior probability that a gene is expressed is at a threshold of 0.5
 - $E_g | Y_g > 0.5$ (gene is expressed);
 - E_g | Y_g < 0.5 (gene is not expressed);
- Gene #17 has very different estimate of posterior probability (prob. of being expressed) in replicate 3, as compared to 1 and 2.

Single Replicate vs. Combined

- The differences in both model parameters and posterior probabilities (prob. that the gene is expressed) are significant when looking at individual replicates
- How can these estimates be improved when utilizing combined replicate data?
 - Model parameters
 - Misclassification percentages (stratified by replicate combinations)

Combined Data Model Parameters²

Table 4. Analysis of the combined data from all three replicates

Parameter	Estimate	Est. Std. Err.		
р	0.118	0.013		
μ_U	-0.204	0.009		
μ_E	1.524	0.058		
σ_U^2	0.044	0.003		
σ_E^2	0.126	0.036		

Parameter estimates of the mixed normal model (Eq. 5) derived from the estimated main effects for genes $\hat{\alpha}_g$.

- Prior probability is more consistent with controlled study results
 - 0.118 vs. 0.111
- Difference between means is large
 - 1.524 >> -0.204

Combined Data Misclassification Rates²

Table 5. Misclassification percentages for different combinations of replicates

Classification	Combination of Replicates						
Outcome	(1)	(2)	(3)	(1, 2)	(1, 3)	(2, 3)	(1, 2, 3)
False positive, %	8.3	1.4	9.0	1.0	2.1	0.7	0.7
False negative, %	0.3	0.0	0.0	0.3	0.3	0.0	0.0
Misclassified, %	8.7	1.4	9.0	1.4	2.4	0.7	0.7

- Misclassification rates are highest in individual replicates 1 and 3
- All three replicates provide the lowest misclassification rate