
INF3580/4580 – Semantic Technologies – Spring 2018
Lecture 12: OWL: Loose Ends

Martin Giese

10th April 2017

Department of
Informatics

University of
Oslo



Guest Lecture

8 May

Martin Skjæveland: Ontology Templates and Applications

A kind of macro mechanism for ontologies
Generate large ontologies from tables, etc.
Note: relevant for exam!

Also of interest: Friday 13 April, 9:15–11:00, Informatikksalen
Leif H. Karlsen: Programming semantics: the OTTR implementation in Java

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 2 / 49



Reminder: OWL

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 3 / 49



Reminder: OWL

Make it simple!

“Data level” with resources

“Ontology level” with properties and “classes”

Can have rdf:type relation between data objects and classes

Allow a fixed vocabulary for relations between classes and properties

Interpret:

Class as set of data objects
Property as relation between data objects

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 4 / 49



Reminder: OWL

OWL 2 TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
roles symmetric, asymmetric, reflexive, irreflexive, transitive,. . .
roles functional, inverse functional
inverse roles: hasParent = hasChild−1

role inclusion hasBrother v hasSibling
role chains hasParent ◦ hasBrother v hasUncle

Only certain combinations allowed

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 5 / 49



Reminder: OWL

OWL 2 TBox and ABox

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of (negative) concept assertions C (a), ¬D(b) . . .
and (negative) role assertions R(b, c), ¬S(a, b)
also owl:sameAs: a = b and owl:differentFrom: a 6= b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 6 / 49



Reminder: OWL

A Strange Catalogue

We have seen many nice things that can be said in OWL

Why the strange restrictions, e.g. on role axioms?

Why not use 1st-order logic, could say much more?

Because of the reasoning

Class satisfiability (C 6≡ ⊥)
Classification (C v D)
Instance Check (C (a))
. . .

All decidable

Algorithm gives a correct answer after finite time

Add a little more to OWL, and this is lost

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 7 / 49



Reminder: OWL

A Strange Catalogue

We have seen many nice things that can be said in OWL

Why the strange restrictions, e.g. on role axioms?

Why not use 1st-order logic, could say much more?

Because of the reasoning

Class satisfiability (C 6≡ ⊥)
Classification (C v D)
Instance Check (C (a))
. . .

All decidable

Algorithm gives a correct answer after finite time

Add a little more to OWL, and this is lost

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 7 / 49



Reminder: OWL

A Strange Catalogue

We have seen many nice things that can be said in OWL

Why the strange restrictions, e.g. on role axioms?

Why not use 1st-order logic, could say much more?

Because of the reasoning

Class satisfiability (C 6≡ ⊥)
Classification (C v D)
Instance Check (C (a))
. . .

All decidable

Algorithm gives a correct answer after finite time

Add a little more to OWL, and this is lost

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 7 / 49



Disjointness and Covering Axioms

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 8 / 49



Disjointness and Covering Axioms

Single and Married

Try to model the relationship between the concepts Person, Married and Single:

First try:
Single v Person

Married v Person

General shape of a model:

aMarried

Ernesto

Emilie

Single

x is both Single and Married , y is neither but a Person.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 9 / 49



Disjointness and Covering Axioms

Single and Married

Try to model the relationship between the concepts Person, Married and Single:

First try:
Single v Person

Married v Person

General shape of a model:

aMarried

Ernesto

Emilie

Single

x is both Single and Married , y is neither but a Person.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 9 / 49



Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Single and a Married
Add a disjointness axiom for Single and Married
Equivalent possibilities:

Single uMarried ≡ ⊥
Single v ¬Married
Married v ¬Single

General shape of a model:

Married Single

EmilieErnesto

Specific support in OWL (owl:disjointWith) and Protégé

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 10 / 49



Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Single and a Married
Add a disjointness axiom for Single and Married
Equivalent possibilities:

Single uMarried ≡ ⊥
Single v ¬Married
Married v ¬Single

General shape of a model:

Married Single

EmilieErnesto

Specific support in OWL (owl:disjointWith) and Protégé

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 10 / 49



Disjointness and Covering Axioms

Covering Axioms

Any Person should be either Single or Married .

Add a covering axiom Person v Married t Single

General shape of a model (with disjointness):

Married Single

Emilie
Ernesto

Specific support in Protégé (Edit Menu: “Add Covering Axiom”)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 11 / 49



Disjointness and Covering Axioms

Covering Axioms

Any Person should be either Single or Married .

Add a covering axiom Person v Married t Single

General shape of a model (with disjointness):

Married Single

Emilie
Ernesto

Specific support in Protégé (Edit Menu: “Add Covering Axiom”)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 11 / 49



Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both

No disjointness axiom for MeatEatingMammal and VeggieEatingMammal

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 12 / 49



Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both

No disjointness axiom for MeatEatingMammal and VeggieEatingMammal

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 12 / 49



Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both

No disjointness axiom for MeatEatingMammal and VeggieEatingMammal

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 12 / 49



Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal
Dog v Mammal

Nothing is both a cat and a dog: Cat v ¬Dog
But there are mammals which are neither

No covering axiom with subclasses Cat and Dog for Mammal

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 13 / 49



Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal
Dog v Mammal

Nothing is both a cat and a dog: Cat v ¬Dog

But there are mammals which are neither

No covering axiom with subclasses Cat and Dog for Mammal

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 13 / 49



Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal
Dog v Mammal

Nothing is both a cat and a dog: Cat v ¬Dog
But there are mammals which are neither

No covering axiom with subclasses Cat and Dog for Mammal

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 13 / 49



Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person

Researcher v Person

There are people who are neither a researcher nor a teacher (yet)

No covering axiom for these subclasses of Person

There are people who are both a researcher and a teacher

E.g. most PhD students

No disjointness axiom for Reasearcher and Teacher

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 14 / 49



Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person

Researcher v Person

There are people who are neither a researcher nor a teacher (yet)

No covering axiom for these subclasses of Person

There are people who are both a researcher and a teacher

E.g. most PhD students

No disjointness axiom for Reasearcher and Teacher

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 14 / 49



Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person

Researcher v Person

There are people who are neither a researcher nor a teacher (yet)

No covering axiom for these subclasses of Person

There are people who are both a researcher and a teacher

E.g. most PhD students

No disjointness axiom for Reasearcher and Teacher

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 14 / 49



Keys

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 15 / 49



Keys

Keys

A Norwegian is uniquely identified by his/her “personnummer”

Different Norwegians have different numbers

Each customer in the DB is uniquely identified by the customer ID

No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.

E.g. 〈INF3580/4580, Spring, 2018〉
R is a key for some set A if for all x , y ∈ A

x R k and y R k imply x = y

So R is a key if it is “inverse functional”

There is a function giving exactly one object for every key value

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 16 / 49



Keys

Keys

A Norwegian is uniquely identified by his/her “personnummer”

Different Norwegians have different numbers

Each customer in the DB is uniquely identified by the customer ID

No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.

E.g. 〈INF3580/4580, Spring, 2018〉
R is a key for some set A if for all x , y ∈ A

x R k and y R k imply x = y

So R is a key if it is “inverse functional”

There is a function giving exactly one object for every key value

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 16 / 49



Keys

Keys

A Norwegian is uniquely identified by his/her “personnummer”

Different Norwegians have different numbers

Each customer in the DB is uniquely identified by the customer ID

No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.

E.g. 〈INF3580/4580, Spring, 2018〉

R is a key for some set A if for all x , y ∈ A

x R k and y R k imply x = y

So R is a key if it is “inverse functional”

There is a function giving exactly one object for every key value

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 16 / 49



Keys

Keys

A Norwegian is uniquely identified by his/her “personnummer”

Different Norwegians have different numbers

Each customer in the DB is uniquely identified by the customer ID

No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.

E.g. 〈INF3580/4580, Spring, 2018〉
R is a key for some set A if for all x , y ∈ A

x R k and y R k imply x = y

So R is a key if it is “inverse functional”

There is a function giving exactly one object for every key value

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 16 / 49



Keys

Keys

A Norwegian is uniquely identified by his/her “personnummer”

Different Norwegians have different numbers

Each customer in the DB is uniquely identified by the customer ID

No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.

E.g. 〈INF3580/4580, Spring, 2018〉
R is a key for some set A if for all x , y ∈ A

x R k and y R k imply x = y

So R is a key if it is “inverse functional”

There is a function giving exactly one object for every key value

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 16 / 49



Keys

Keys

Keys in applications are usually (tuples of) literals

Can we use “inverse functional datatype properties”?

Reasoning about these is problematic

Their existence would imply a literal as subject in a triple (not allowed in RDF)

Therefore, datatype properties cannot be declared inverse functional in OWL 2

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 17 / 49



Keys

Keys

Keys in applications are usually (tuples of) literals

Can we use “inverse functional datatype properties”?

Reasoning about these is problematic

Their existence would imply a literal as subject in a triple (not allowed in RDF)

Therefore, datatype properties cannot be declared inverse functional in OWL 2

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 17 / 49



Keys

OWL 2 Keys

OWL 2 includes special “hasKey” axioms

Example: Course hasKey {hasCode, hasSemester, hasYear}

Works for object properties and datatype properties.

OWL Keys apply only to explicitly named instances
Makes reasoning tractable.
It may not be supported by all OWL 2 reasoners

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 18 / 49



Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:drillo a :Norwegian

:drillo :personnr "12345698765"

:egil a :Norwegian

:egil :personnr "12345698765"

Can infer:
:drillo owl:sameAs :egil

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 19 / 49



Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:drillo a :Norwegian

:drillo :personnr "12345698765"

:egil a :Norwegian

:egil :personnr "12345698765"

Can infer:
:drillo owl:sameAs :egil

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 19 / 49



Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:drillo a :Norwegian

:drillo :personnr "12345698765"

:egil a :Norwegian

:egil :personnr "12345698765"

Can infer:
:drillo owl:sameAs :egil

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 19 / 49



Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:drillo a :Norwegian

:drillo :personnr "12345698765"

:egil a :Norwegian

:egil :personnr "12345698765"

Can infer:
:drillo owl:sameAs :egil

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 19 / 49



Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some :Singleton

:Singleton

:x :b

1

a a

:id :id

:other

Since :b is a blank node, and therefore not an explicitly named instance,

the reasoner does not infer :x owl:sameAs :b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 20 / 49



Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some :Singleton

:Singleton

:x :b

1

a a

:id :id

:other

Since :b is a blank node, and therefore not an explicitly named instance,

the reasoner does not infer :x owl:sameAs :b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 20 / 49



Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some :Singleton

:Singleton

:x :b

1

a a

:id :id

:other

Since :b is a blank node, and therefore not an explicitly named instance,

the reasoner does not infer :x owl:sameAs :b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 20 / 49



Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some (:Singleton and not {:x})

:Singleton

:x :b

1

a a

:id :id

:other

This is not inconsistent.

Distinct keys only required for explicitly named individuals.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 21 / 49



Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some (:Singleton and not {:x})

:Singleton

:x :b

1

a a

:id :id

:other

This is not inconsistent.

Distinct keys only required for explicitly named individuals.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 21 / 49



Punning

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 22 / 49



Punning

Punning

Remember: In OWL strict separation of classes, properties and individuals. However, not
entirely correct...

OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an
individual,

but not both a class and a datatype property, or for different property types.

Example:
:Joe rdf:type :Eagle .

:Eagle rdf:type :Species .

:Eagle is both a class and an individual.

However, semantically, “punned” URI are treated as different terms. (under the hood)

Meaning, the class :Eagle is different from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 23 / 49



Punning

Punning

Remember: In OWL strict separation of classes, properties and individuals. However, not
entirely correct...

OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an
individual,

but not both a class and a datatype property, or for different property types.

Example:
:Joe rdf:type :Eagle .

:Eagle rdf:type :Species .

:Eagle is both a class and an individual.

However, semantically, “punned” URI are treated as different terms. (under the hood)

Meaning, the class :Eagle is different from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 23 / 49



Punning

Punning

Remember: In OWL strict separation of classes, properties and individuals. However, not
entirely correct...

OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an
individual,

but not both a class and a datatype property, or for different property types.

Example:
:Joe rdf:type :Eagle .

:Eagle rdf:type :Species .

:Eagle is both a class and an individual.

However, semantically, “punned” URI are treated as different terms. (under the hood)

Meaning, the class :Eagle is different from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 23 / 49



Punning

Punning

Remember: In OWL strict separation of classes, properties and individuals. However, not
entirely correct...

OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an
individual,

but not both a class and a datatype property, or for different property types.

Example:
:Joe rdf:type :Eagle .

:Eagle rdf:type :Species .

:Eagle is both a class and an individual.

However, semantically, “punned” URI are treated as different terms. (under the hood)

Meaning, the class :Eagle is different from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 23 / 49



More about Datatypes

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 24 / 49



More about Datatypes

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 25 / 49



More about Datatypes

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 25 / 49



More about Datatypes

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 25 / 49



More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 26 / 49



More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 26 / 49



More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 26 / 49



More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 26 / 49



More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available built-in datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (e.g., depending on editor and reasoner)

Possible to define custom datatypes (e.g. datatype “age” as xsd:integer[≥ 0, ≤ 130])

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 27 / 49



More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string

xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[≥ 9] – integers ≥ 9.
xsd:integer[≥ 9, ≤ 11] – integers between 9 and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 28 / 49



More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string

xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[≥ 9] – integers ≥ 9.
xsd:integer[≥ 9, ≤ 11] – integers between 9 and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 28 / 49



More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 29 / 49



More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 29 / 49



More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 29 / 49



More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 29 / 49



More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last a single digit.

Book v ISBN some string[length 17 ,

pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

R a functional datatype property
A ≡ R some string[pattern "(ab)*"]

B ≡ R some string[pattern "a(ba)*b"]

Reasoner can find out that B v A.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 30 / 49



More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last a single digit.

Book v ISBN some string[length 17 ,

pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

R a functional datatype property
A ≡ R some string[pattern "(ab)*"]

B ≡ R some string[pattern "a(ba)*b"]

Reasoner can find out that B v A.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 30 / 49



What can’t be expressed in OWL 2

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 31 / 49



What can’t be expressed in OWL 2

Expressivity

Certain relationships between concepts and properties can’t be expressed in OWL

E.g.

Given that property hasSibling and class Male are defined. . .
. . . cannot say that hasBrother(x , y) iff hasSibling(x , y) and Male(y).

Usually, adding such missing relationships would lead to undecidability

Not easy to show that something is not expressible

We look at some examples, not proofs

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 32 / 49



What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel
hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v ∀hasBrother .Male or: rg(hasBrother ,Male)
∃hasSibling .Male v ∃hasBrother .>

Not enough to infer that all male siblings are brothers

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 33 / 49



What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel
hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v ∀hasBrother .Male or: rg(hasBrother ,Male)
∃hasSibling .Male v ∃hasBrother .>

Not enough to infer that all male siblings are brothers

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 33 / 49



What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel
hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v ∀hasBrother .Male or: rg(hasBrother ,Male)
∃hasSibling .Male v ∃hasBrother .>

Not enough to infer that all male siblings are brothers

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 33 / 49



What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel
hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v ∀hasBrother .Male or: rg(hasBrother ,Male)
∃hasSibling .Male v ∃hasBrother .>

Not enough to infer that all male siblings are brothers

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 33 / 49



What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent ◦ hasBrother v hasUncle

hasUncle v hasParent ◦ hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 34 / 49



What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent ◦ hasBrother v hasUncle

hasUncle v hasParent ◦ hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 34 / 49



What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent ◦ hasBrother v hasUncle

hasUncle v hasParent ◦ hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 34 / 49



What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent ◦ hasBrother v hasUncle

hasUncle v hasParent ◦ hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 34 / 49



What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent ◦ hasBrother v hasUncle

hasUncle v hasParent ◦ hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 34 / 49



What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall
The separating walls of the left and
right units are the same

“diamond property”

lUnit

house wall

rUnit

hasLef
tUnit

hasRightUnit

hasSeparatingWall

hasSep
aratin

gWall

Try. . .
SemiDetached v ∃hasLeftUnit.Unit u ∃hasRightUnit.Unit
Unit v ∃hasSeparatingWall .Wall

But this does not guarantee to use the same wall

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 35 / 49



What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall
The separating walls of the left and
right units are the same
“diamond property”

lUnit

house wall

rUnit

hasLef
tUnit

hasRightUnit

hasSeparatingWall

hasSep
aratin

gWall

Try. . .
SemiDetached v ∃hasLeftUnit.Unit u ∃hasRightUnit.Unit
Unit v ∃hasSeparatingWall .Wall

But this does not guarantee to use the same wall

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 35 / 49



What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall
The separating walls of the left and
right units are the same
“diamond property”

lUnit

house wall

rUnit

hasLef
tUnit

hasRightUnit

hasSeparatingWall

hasSep
aratin

gWall

Try. . .
SemiDetached v ∃hasLeftUnit.Unit u ∃hasRightUnit.Unit
Unit v ∃hasSeparatingWall .Wall

But this does not guarantee to use the same wall

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 35 / 49



What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ≡ Person u ∃hasChild .∃hasBirthday [. . .]

u ∃hasChild .∃hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.

(and no way to say that the children are not the same)

Try. . .
TwinParent ≡ Person u ≥2hasChild .∃hasBirthday [. . .]

Still no way of connecting the birthdays

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 36 / 49



What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ≡ Person u ∃hasChild .∃hasBirthday [. . .]

u ∃hasChild .∃hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.

(and no way to say that the children are not the same)

Try. . .
TwinParent ≡ Person u ≥2hasChild .∃hasBirthday [. . .]

Still no way of connecting the birthdays

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 36 / 49



What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ≡ Person u ∃hasChild .∃hasBirthday [. . .]

u ∃hasChild .∃hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.

(and no way to say that the children are not the same)

Try. . .
TwinParent ≡ Person u ≥2hasChild .∃hasBirthday [. . .]

Still no way of connecting the birthdays

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 36 / 49



What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ≡ Person u ∃hasChild .∃hasBirthday [. . .]

u ∃hasChild .∃hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.

(and no way to say that the children are not the same)

Try. . .
TwinParent ≡ Person u ≥2hasChild .∃hasBirthday [. . .]

Still no way of connecting the birthdays

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 36 / 49



What can’t be expressed in OWL 2

Reasoning about Numbers

Reasoning about natural numbers is undecidable in general.

DL Reasoning is decidable

Therefore, general reasoning about numbers can’t be “encoded” in DL

Cannot encode addition, multiplication, etc.

Note: a lot can be done with other logics, but not with DLs

Outside the intended scope of Description Logics

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 37 / 49



What can’t be expressed in OWL 2

Combining OWL 2 and Rules

Some limitation may be addressed

SWRL: Semantic Web Rule Language

Uses XML syntax based on RuleML

OWL 2 + unrestricted SWRL leads to undecidability

Restricted SWRL + OWL is decidable and very powerful

A bit more in the next SPARQL lesson

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 38 / 49



OWL 2 profiles

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 39 / 49



OWL 2 profiles

OWL 2 profiles

OWL 2 has various profiles that correspond to different DLs.

OWL 2 DL is the “normal” OWL 2 (sublanguage): “maximum” expressiveness while
keeping reasoning problems decidable—but still very expensive.

(Other) profiles are tailored for specific ends, e.g.,
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL’s

reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://owl.cs.manchester.ac.uk/validator/

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 40 / 49

http://owl.cs.manchester.ac.uk/validator/


OWL 2 profiles

OWL 2 profiles

OWL 2 has various profiles that correspond to different DLs.

OWL 2 DL is the “normal” OWL 2 (sublanguage): “maximum” expressiveness while
keeping reasoning problems decidable—but still very expensive.

(Other) profiles are tailored for specific ends, e.g.,
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL’s

reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://owl.cs.manchester.ac.uk/validator/

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 40 / 49

http://owl.cs.manchester.ac.uk/validator/


OWL 2 profiles

OWL 2 profiles

OWL 2 has various profiles that correspond to different DLs.

OWL 2 DL is the “normal” OWL 2 (sublanguage): “maximum” expressiveness while
keeping reasoning problems decidable—but still very expensive.

(Other) profiles are tailored for specific ends, e.g.,
OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.

OWL 2 RL:

Designed for compatibility with rule-based inference tools.

OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL’s

reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://owl.cs.manchester.ac.uk/validator/

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 40 / 49

http://owl.cs.manchester.ac.uk/validator/


OWL 2 profiles

OWL EL

Based on DL EL++.

EL++ concept descriptions, simplified

C ,D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
{a} | (singular enumeration)
C u D | (intersection)
∃R.C | (existential restriction)

Axioms

C v D and C ≡ D for concept descriptions D and C .

P v Q and P ≡ Q for roles P,Q. Also Domain and Range.

C (a) and R(a, b) for concept C , role R and individuals a, b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 41 / 49



OWL 2 profiles

OWL EL contd.

Not supported, simplified:

negation, (NB, disjointness of classes: C u D v ⊥ possible),

disjunction,

universal quantification,

cardinalities,

inverse roles,

plus some role characteristics.

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview.

Checking ontology consistency, class expression subsumption, and instance checking is in
P.

“Good for large ontologies.”

Used in many biomedical ontologies (e.g. SNOMED CT).

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 42 / 49

http://www.w3.org/TR/owl2-profiles/#Feature_Overview


OWL 2 profiles

OWL EL contd.

Not supported, simplified:

negation, (NB, disjointness of classes: C u D v ⊥ possible),

disjunction,

universal quantification,

cardinalities,

inverse roles,

plus some role characteristics.

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview.

Checking ontology consistency, class expression subsumption, and instance checking is in
P.

“Good for large ontologies.”

Used in many biomedical ontologies (e.g. SNOMED CT).

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 42 / 49

http://www.w3.org/TR/owl2-profiles/#Feature_Overview


OWL 2 profiles

OWL QL

Based on DL-LiteR .

DL-LiteR concept descriptions, simplified

C → A | (atomic concept)
∃R.> | (existential restriction with > only)

D → A | (atomic concept)
∃R.D | (existential restriction)
¬D | (negation)
D u D ′ | (intersection)

Axioms

C v D for concept descriptions D and C (and C ≡ C ′).

P v Q and P ≡ Q for roles P,Q. Also Domain and Range.

C (a) and R(a, b) for concept C , role R and individuals a, b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 43 / 49



OWL 2 profiles

OWL QL contd.

Not supported, simplified:

disjunction,

universal quantification,

cardinalities,

functional roles, keys,

= (SameIndividual)

enumerations (closed classes),

subproperties of chains, transitivity

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2.

Captures language for which queries can be translated to SQL.

“Good for large datasets.”

We will see more in the Ontology Based Data Access (OBDA) lesson

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 44 / 49

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2


OWL 2 profiles

OWL QL contd.

Not supported, simplified:

disjunction,

universal quantification,

cardinalities,

functional roles, keys,

= (SameIndividual)

enumerations (closed classes),

subproperties of chains, transitivity

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2.

Captures language for which queries can be translated to SQL.

“Good for large datasets.”

We will see more in the Ontology Based Data Access (OBDA) lesson

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 44 / 49

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2


OWL 2 profiles

OWL2: RL

OWL 2 RL is based on the description logic RL (also called DLP):

RL-concepts

C → A | (atomic concept)
C u C ′ | (intersection)
C t C ′ | (union)
∃R.C | (existential restriction)

D → A | (atomic concept)
D u D ′ | (intersection)
∀R.D | (universal restriction)

Axioms

C v D, C ≡ C ′, > v ∀R.D, > v ∀R−.D R v P, R ≡ P− and R ≡ P for roles R,P and concept
descriptions C and D. Also Domain and Range.

C (a) and R(a, b) for concept C , role R and individuals a, b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 45 / 49



OWL 2 profiles

OWL2: RL

OWL 2 RL is based on the description logic RL (also called DLP):

RL-concepts

C → A | (atomic concept)
C u C ′ | (intersection)
C t C ′ | (union)
∃R.C | (existential restriction)

D → A | (atomic concept)
D u D ′ | (intersection)
∀R.D | (universal restriction)

Axioms

C v D, C ≡ C ′, > v ∀R.D, > v ∀R−.D R v P, R ≡ P− and R ≡ P for roles R,P and concept
descriptions C and D. Also Domain and Range.

C (a) and R(a, b) for concept C , role R and individuals a, b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 45 / 49



OWL 2 profiles

OWL2: RL

OWL 2 RL is based on the description logic RL (also called DLP):

RL-concepts

C → A | (atomic concept)
C u C ′ | (intersection)
C t C ′ | (union)
∃R.C | (existential restriction)

D → A | (atomic concept)
D u D ′ | (intersection)
∀R.D | (universal restriction)

Axioms

C v D, C ≡ C ′, > v ∀R.D, > v ∀R−.D R v P, R ≡ P− and R ≡ P for roles R,P and concept
descriptions C and D. Also Domain and Range.

C (a) and R(a, b) for concept C , role R and individuals a, b.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 45 / 49



OWL 2 profiles

OWL RL contd.

Puts constraints in the way in which constructs are used (i.e., syntactic subset of OWL 2).

So that OWL 2 RL axioms can be directly translated into datalog rules

Enables desirable computational properties using rule-based reasoning engines.

It also imposes a reduced list of allowed datatypes (e.g., not supported “real” nor
“rational”)

We will see more in the next SPARQL lesson.

Complete list of characteristics: http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3.

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 46 / 49

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3


OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C
> v ∀R.C

R ◦ R v R
> v ≤ 1R.>
> v ≤ 1R−.>
R v R−

R v ¬R−

> v ∃R.Self
∃R.Self v ⊥

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 47 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C

Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain

(∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C

Range (> v ∀hasPet.(Animal u ¬Person))
R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )

R1 ≡ R−
2 Inverse (partOf ≡ hasPart−)

> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range

(> v ∀hasPet.(Animal u ¬Person))
R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )

R1 ≡ R−
2 Inverse (partOf ≡ hasPart−)

> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R

Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity

(ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2

Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse

(partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.>

Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality

(> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.>

Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality

(> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R−

Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry

(friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R−

Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry

(partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self

Reflexive (> v ∃hasRelative.Self )
∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive

(> v ∃hasRelative.Self )
∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥

Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive

(∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



OWL 2 profiles

EXERCISE: Property axioms expressed as DL-axioms

∃R.> v C Domain (∃hasPet.> v Person)
> v ∀R.C Range (> v ∀hasPet.(Animal u ¬Person))

R ◦ R v R Transitivity (ancestorOf ◦ ancestorOf v ancestorOf )
R1 ≡ R−

2 Inverse (partOf ≡ hasPart−)
> v ≤ 1R.> Functionality (> v ≤ 1 hasSpouse.>)
> v ≤ 1R−.> Inverse Functionality (> v ≤ 1 hasSpouse−.>)
R v R− Symmetry (friendOf v friendOf −)
R v ¬R− Asymmetry (partOf v ¬partOf −)
> v ∃R.Self Reflexive (> v ∃hasRelative.Self )

∃R.Self v ⊥ Irreflexive (∃parentOf .Self v ⊥)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 48 / 49



Next

Next

17 April: Linked Open Data, RDF and HTML, etc. (Martin)

24 April: SPARQL 1.1 (Ernesto)

8 May: Templates (Martin G. Skjæveland)

15 May: OBDA, R2RML, query rewriting (Ernesto)

INF3580/4580 :: Spring 2018 Lecture 12 :: 10th April 49 / 49


	Reminder: OWL
	Disjointness and Covering Axioms
	Keys
	Punning
	More about Datatypes
	What can't be expressed in OWL 2
	OWL 2 profiles

