INF3580/4580 - Semantic Technologies - Spring 2018

Lecture 11: OWL 2

Ernesto Jimenez-Ruiz

3rd April 2018

University of Oslo

Outline

(1) Reminder: $\mathcal{A L C}$
(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

The $\mathcal{A L C}$ Description Logic

```
Vocabulary
Fix a set of atomic concepts {\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots}, roles {\mp@subsup{R}{1}{},\mp@subsup{R}{2}{},\ldots}\mathrm{ and individuals }{\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots}.
```


The $\mathcal{A L C}$ Description Logic

Vocabulary

Fix a set of atomic concepts $\left\{A_{1}, A_{2}, \ldots\right\}$, roles $\left\{R_{1}, R_{2}, \ldots\right\}$ and individuals $\left\{a_{1}, a_{2}, \ldots\right\}$.

$\mathcal{A L C}$ concept descriptions

$$
\begin{array}{ll|l}
C, D \rightarrow & A_{i} & \text { (atomic concept) } \\
& \top & \text { (universal concept } \\
& \perp & \text { (bottom concept) }
\end{array}
$$

The $\mathcal{A L C}$ Description Logic

Vocabulary

Fix a set of atomic concepts $\left\{A_{1}, A_{2}, \ldots\right\}$, roles $\left\{R_{1}, R_{2}, \ldots\right\}$ and individuals $\left\{a_{1}, a_{2}, \ldots\right\}$.

$\mathcal{A L C}$ concept descriptions

$C, D \rightarrow$	A_{i}	(atomic concept)
	\top	(universal concept)
	\perp	(bottom concept)
	$\neg C$	(negation)
	$C \sqcap D$	(intersection)
	$C \sqcup D$	(union)

The $\mathcal{A L C}$ Description Logic

Vocabulary

Fix a set of atomic concepts $\left\{A_{1}, A_{2}, \ldots\right\}$, roles $\left\{R_{1}, R_{2}, \ldots\right\}$ and individuals $\left\{a_{1}, a_{2}, \ldots\right\}$.

$\mathcal{A L C}$ concept descriptions

$C, D \rightarrow$	A_{i}	(atomic concept)
	\top	(universal concept)
	\perp	(bottom concept)
	$\neg C$	(negation)
	$C \sqcap D$	(intersection)
	$C \sqcup D$	(union)
	$\forall R_{i} . C$	(universal restriction)
	$\exists R_{i} . C$	(existential restriction)

The $\mathcal{A L C}$ Description Logic

Vocabulary

Fix a set of atomic concepts $\left\{A_{1}, A_{2}, \ldots\right\}$, roles $\left\{R_{1}, R_{2}, \ldots\right\}$ and individuals $\left\{a_{1}, a_{2}, \ldots\right\}$.

$\mathcal{A L C}$ concept descriptions

$C, D \rightarrow$	A_{i}	(atomic concept)
	\top	(universal concept)
	\perp	(bottom concept)
	$\neg C$	(negation)
	$C \sqcap D$	(intersection)
	$C \sqcup D$	(union)
	$\forall R_{i} . C$	(universal restriction)
	$\exists R_{i} . C$	(existential restriction)

Axioms

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- $C(a)$ and $R(a, b)$ for concept description C, atomic role R and individuals a, b.

$\mathcal{A L C}$ Semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the domain, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept $A, R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

$\mathcal{A L C}$ Semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the domain, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept $A, R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$
\begin{aligned}
\top^{\mathcal{I}} & =\Delta^{\mathcal{I}} \\
\perp^{\mathcal{I}} & =\emptyset
\end{aligned}
$$

$\mathcal{A L C}$ Semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the domain, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept $A, R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$
\begin{aligned}
\top^{\mathcal{I}} & =\Delta^{\mathcal{I}} \\
\perp^{\mathcal{I}} & =\emptyset \\
(\neg C)^{\mathcal{I}} & =\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} & =C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} & =C^{\mathcal{I}} \cup D^{\mathcal{I}}
\end{aligned}
$$

$\mathcal{A L C}$ Semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the domain, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept $A, R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$
\begin{aligned}
\top^{\mathcal{I}} & =\Delta^{\mathcal{I}} \\
\perp^{\mathcal{I}} & =\emptyset \\
(\neg C)^{\mathcal{I}} & =\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} & =C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} & =C^{\mathcal{I}} \cup D^{\mathcal{I}} \\
(\forall R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid \text { for all } b, \text { if }\langle a, b\rangle \in R^{\mathcal{I}} \text { then } b \in C^{\mathcal{I}}\right\} \\
(\exists R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid \text { there is a } b \text { where }\langle a, b\rangle \in R^{\mathcal{I}} \text { and } b \in C^{\mathcal{I}}\right\}
\end{aligned}
$$

$\mathcal{A L C}$ Semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the domain, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept $A, R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$
\begin{aligned}
\top^{\mathcal{I}} & =\Delta^{\mathcal{I}} \\
\perp^{\mathcal{I}} & =\emptyset \\
(\neg C)^{\mathcal{I}} & =\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} & =C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} & =C^{\mathcal{I}} \cup D^{\mathcal{I}} \\
(\forall R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid \text { for all } b, \text { if }\langle a, b\rangle \in R^{\mathcal{I}} \text { then } b \in C^{\mathcal{I}}\right\} \\
(\exists R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid \text { there is a } b \text { where }\langle a, b\rangle \in R^{\mathcal{I}} \text { and } b \in C^{\mathcal{I}}\right\}
\end{aligned}
$$

Interpretation of Axioms

- $\mathcal{I} \models C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ and $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}}=D^{\mathcal{I}}$
- $\mathcal{I} \models C(a)$ if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $\mathcal{I} \models R(a, b)$ if $\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \in R^{\mathcal{I}}$.

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{aligned}
& \text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } \\
& \text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp \\
& \text { Penguin(a) }
\end{aligned}
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{I} be an interpretation such that

$$
\Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety }, \text { terry }, \text { carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety }, \quad b^{\mathcal{I}}=\text { terry }
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{I} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety, terry, carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety }, \quad b^{\mathcal{I}}=\text { terry } \\
& \text { Penguin }
\end{aligned}
$$

$\mathcal{A} \mathcal{L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{I} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety }, \text { terry, carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety }, \quad b^{\mathcal{I}}=\text { terry } \\
& \text { Penguin }=\left\{a^{\mathcal{I}}\right. \\
& \text { eats }^{\mathcal{I}}=\left\{\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle,\left\langle b^{\mathcal{I}}, \text { carl }\right\rangle\right\}
\end{aligned}
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{I} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety }, \text { terry, carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety }, \quad b^{\mathcal{I}}=\text { terry } \\
& \text { Penguin }=\left\{a^{\mathcal{I}}\right. \\
& \text { eats }^{\mathcal{I}}=\left\{\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle,\left\langle b^{\mathcal{I}}, \text { carl }\right\rangle\right\} \\
& \text { Fish }^{\mathcal{I}}=\left\{b^{\mathcal{I}}\right.
\end{aligned}
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{aligned}
& \text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } \\
& \text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp \\
& \text { Penguin(a) }
\end{aligned}
$$

Let \mathcal{I} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety }, \text { terry }, \text { carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety }, \quad b^{\mathcal{I}}=\text { terry } \\
& \text { Penguin } \\
& \text { eats }{ }^{\mathcal{I}}=\left\{\left\langlea^{\mathcal{I}}\right.\right. \\
& \text { Fish } \left.^{\mathcal{I}}=\left\{b^{\mathcal{I}}\right\rangle,\left\langle b^{\mathcal{I}}, \text { carl }\right\rangle\right\} \\
& \text { Anima } \mathcal{I}^{\mathcal{I}}=\left\{a^{\mathcal{I}}, b^{\mathcal{I}}\right.
\end{aligned}
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{I} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety, terry, carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety }, \quad b^{\mathcal{I}}=\text { terry } \\
& \text { Penguin } \\
& \text { eats }{ }^{\mathcal{I}}=\left\{\left\langle a^{\mathcal{I}}\right\}=\{\text { tweety }\}\right. \\
& \text { Fish } \left.^{\mathcal{I}}=\left\{b^{\mathcal{I}}\right\rangle,\left\langle b^{\mathcal{I}}, \text { carl }\right\rangle\right\}=\{\langle\text { tweety, terry }\rangle,\langle\text { terry, carl }\rangle\} \\
& \text { Anima } \mathcal{I}^{\mathcal{I}}=\left\{a^{\mathcal{I}}, b^{\mathcal{I}}\right\}=\{\text { tweety, terry }\}
\end{aligned}
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{I} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety, terry, carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety }, \quad b^{\mathcal{I}}=\text { terry } \\
& \text { Penguin } \\
& \text { eats }{ }^{\mathcal{I}}=\left\{\left\langle a^{\mathcal{I}}\right\}=\{\text { tweety }\}\right. \\
& \text { Fish } \left.^{\mathcal{I}}=\left\{b^{\mathcal{I}}\right\rangle,\left\langle b^{\mathcal{I}}, \text { carl }\right\rangle\right\}=\{\langle\text { tweety, terry }\rangle,\langle\text { terry, carl }\rangle\} \\
& \text { Anima } \mathcal{I}^{\mathcal{I}}=\left\{a^{\mathcal{I}}, b^{\mathcal{I}}\right\}=\{\text { tweety, terry }\}
\end{aligned}
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{aligned}
& \text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } \\
& \text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp \\
& \text { Penguin(a) }
\end{aligned}
$$

Let \mathcal{I} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\top^{\mathcal{I}}=\{\text { tweety, terry, carl }\}, \quad \perp^{\mathcal{I}}=\emptyset, \quad a^{\mathcal{I}}=\text { tweety, } \quad b^{\mathcal{I}}=\text { terry } \\
& \text { Penguin } \\
& \text { eats }{ }^{\mathcal{I}}=\left\{a^{\mathcal{I}}\right\}=\{\text { tweety }\} \\
& \text { Fish } \left.^{\mathcal{I}}=\left\{b^{\mathcal{I}}\right\}=\left\{b^{\mathcal{I}}\right\rangle,\left\langle b^{\mathcal{I}}, \text { carl }\right\rangle\right\}=\{\langle\text { tweety }, \text { terry }\rangle,\langle\text { terry }, \text { carl }\rangle\} \\
& \text { Anima } \mathcal{I}^{\mathcal{I}}=\left\{a^{\mathcal{I}}, b^{\mathcal{I}}\right\}=\{\text { tweety, terry }\}
\end{aligned}
$$

Now $\mathcal{I} \vDash \mathcal{K}$.

$\mathcal{A} \mathcal{L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{J} be an interpretation such that

$\mathcal{A} \mathcal{L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{J} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{J}}=\top^{\mathcal{J}}=\{\text { tweety }\}, \quad \perp^{\mathcal{J}}=\emptyset, \quad a^{\mathcal{J}}=\text { tweety, } b^{\mathcal{J}}=\text { tweety } \\
& \text { Animal } \mathcal{I}^{\mathcal{J}}=\left\{a^{\mathcal{J}}, b^{\mathcal{J}}\right\}=\{\text { tweety }\}, \\
& \text { Penguin } \mathcal{J}=\left\{a^{\mathcal{J}}\right\}=\{\text { tweety }\}, \\
& \text { Fish }^{\mathcal{J}}=\left\{b^{\mathcal{J}}\right\}=\{\text { tweety }\} \\
& \text { eats }{ }^{\mathcal{J}}=\left\{\left\langle a^{\mathcal{J}}, b^{\mathcal{J}}\right\rangle,\left\langle b^{\mathcal{J}}, a^{\mathcal{J}}\right\rangle\right\}=\{\langle\text { tweety, tweety }\rangle\}
\end{aligned}
$$

$\mathcal{A L C}$ Examples

Let \mathcal{K} be the following set of axioms:

$$
\begin{array}{lr}
\text { Penguin } \sqsubseteq \text { Animal } \sqcap \forall \text { eats.Fish } & \text { Fish } \sqsubseteq \text { Animal } \\
\text { Penguin } \sqcap \text { Fish } \sqsubseteq \perp & \text { Animal } \sqsubseteq \exists \text { eats. } \top \\
\text { Penguin }(a) & \text { eats }(a, b)
\end{array}
$$

Let \mathcal{J} be an interpretation such that

$$
\begin{aligned}
& \Delta^{\mathcal{J}}=\top^{\mathcal{J}}=\{\text { tweety }\}, \quad \perp^{\mathcal{J}}=\emptyset, \quad a^{\mathcal{J}}=\text { tweety, } b^{\mathcal{J}}=\text { tweety } \\
& \text { Animal } \mathcal{J}^{\mathcal{J}}=\left\{a^{\mathcal{J}}, b^{\mathcal{J}}\right\}=\{\text { tweety }\}, \\
& \text { Penguin }{ }^{\mathcal{J}}=\left\{a^{\mathcal{J}}\right\}=\{\text { tweety }\}, \\
& \text { Fish }^{\mathcal{J}}=\left\{b^{\mathcal{J}}\right\}=\{\text { tweety }\} \\
& \text { eats }^{\mathcal{J}}=\left\{\left\langle a^{\mathcal{J}}, b^{\mathcal{J}}\right\rangle,\left\langle b^{\mathcal{J}}, a^{\mathcal{J}}\right\rangle\right\}=\{\langle\text { tweety, tweety }\rangle\}
\end{aligned}
$$

Now $\mathcal{J} \not \models \mathcal{K}$ since $\mathcal{J} \not \models$ Penguin \sqcap Fish $\sqsubseteq \perp$.

Modelling patterns

So, what can we say with $\mathcal{A L C}$?
\checkmark Every person has a mother.
\checkmark Penguins eats only fish. Horses eats only chocolate.
X Every nuclear family has two parents, at least two children and a dog.
\checkmark No smoker is a non-smoker (and vice versa).
X Everybody loves Mary.
X Adam is not Eve (and vice versa).
\checkmark Everything is black or white.
\checkmark There is no such thing as a free lunch.
x Brothers of fathers are uncles.
X My friend's friends are also my friends.
X If Homer is married to Marge, then Marge is married to Homer.
X If Homer is a parent of Bart, then Bart is a child of Homer.
Today we'll learn how to say more.

Outline

(1) Reminder: $\mathcal{A L C}$

(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

World assumptions

- Closed World Assumption (CWA)
- Open World Assumption (OWA)

CWA:

- Complete knowledge.
- Any statement that is not known to be true is false. (*)
- Typical semantics for database systems.

OWA:

- Potential incomplete knowledge.
- (*) does not hold.
- Typical semantics for logic-based systems.

Name assumptions

- Unique name assumption (UNA)
- Non-unique name assumption (NUNA)
- Under any assumption, equal names (read: individual URIs, DB constants) always denote the same "thing" (obviously).
- E.g., cannot have $a^{\mathcal{I}} \neq a^{\mathcal{I}}$.
- Under UNA, different names always denote different things.
- E.g., $a^{\mathcal{I}} \neq b^{\mathcal{I}}$.
- common in relational databases.
- Under NUNA, different names need not denote different things.
- Can have , $a^{\mathcal{I}}=b^{\mathcal{I}}$, or
- dbpedia:Oslo ${ }^{\mathcal{I}}=$ geo: $34521^{\mathcal{I}}$.

Outline

(1) Reminder: $\mathcal{A L C}$

(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

$\mathcal{S R O I} \mathcal{Q}(\mathcal{D})$ and OWL 2

- OWL 2 is based on the DL $\mathcal{S R O \mathcal { O } (\mathcal { D }) \text { : }}$
- \mathcal{S} for $\mathcal{A L C}{ }^{1}$ plus role transitivity,
- \mathcal{R} for (complex) roles inclusions,
- \mathcal{O} for closed classes,
- I for inverse roles,
- \mathcal{Q} for qualified cardinality restrictions, and
- \mathcal{D} for datatypes.

[^0]
$\mathcal{S R O I} \mathcal{Q}(\mathcal{D})$ and OWL 2

- OWL 2 is based on the DL $\mathcal{S R O \mathcal { O } (\mathcal { D }) \text { : }}$
- \mathcal{S} for $\mathcal{A} \mathcal{L C}^{1}$ plus role transitivity,
- \mathcal{R} for (complex) roles inclusions,
- \mathcal{O} for closed classes,
- I for inverse roles,
- \mathcal{Q} for qualified cardinality restrictions, and
- \mathcal{D} for datatypes.
- So, today we'll see:
- new concept and role builders,
- new TBox axioms,
- new ABox axioms,
- new RBox axioms, and
- datatypes.

[^1]
Outline

(1) Reminder: $\mathcal{A L C}$
(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
- DL: $a=b, a \neq b$;
- RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
- Manchester: SameAs, DifferentFrom.

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
- DL: $a=b, a \neq b$;
- RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
- Manchester: SameAs, DifferentFrom.
- Semantics:
- $\mathcal{I} \models a=b$ iff $a^{\mathcal{I}}=b^{\mathcal{I}}$
- $\mathcal{I} \models a \neq b$ iff $a^{\mathcal{I}} \neq b^{\mathcal{I}}$

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
- DL: $a=b, a \neq b$;
- RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
- Manchester: SameAs, DifferentFrom.
- Semantics:
- $\mathcal{I} \models a=b$ iff $a^{\mathcal{I}}=b^{\mathcal{I}}$
- $\mathcal{I} \models a \neq b$ iff $a^{\mathcal{I}} \neq b^{\mathcal{I}}$
- Examples:
- sim:Bart owl:sameAs dbpedia:Bart_Simpson,
- sim:Bart owl:differentFrom sim:Homer.

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
- DL: $a=b, a \neq b$;
- RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
- Manchester: SameAs, DifferentFrom.
- Semantics:
- $\mathcal{I} \models a=b$ iff $a^{\mathcal{I}}=b^{\mathcal{I}}$
- $\mathcal{I} \models a \neq b$ iff $a^{\mathcal{I}} \neq b^{\mathcal{I}}$
- Examples:
- sim:Bart owl:sameAs dbpedia:Bart_Simpson,
- sim:Bart owl:differentFrom sim:Homer.
- Remember:
- Non unique name assumption (NUNA) in Sem. Web,
- must sometimes use $=$ and \neq to get expected results.

Creating concepts using individuals

- New concept builder.

Creating concepts using individuals

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.

Creating concepts using individuals

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called closed classes in OWL.

Creating concepts using individuals

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called closed classes in OWL.
- Syntax:
- DL: $\{a, b, \ldots\}$
- RDF/OWL: owl:oneOf + rdf:List++
- Manchester: $\{\mathrm{a}, \mathrm{b}, \ldots\}$

Creating concepts using individuals

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called closed classes in OWL.
- Syntax:
- DL: $\{a, b, \ldots\}$
- RDF/OWL: owl:oneOf + rdf:List++
- Manchester: $\{\mathrm{a}, \mathrm{b}, \ldots\}$
- Example:
- SimpsonFamily \equiv \{Homer, Marge, Bart, Lisa, Maggie $\}$
- :SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Creating concepts using individuals

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called closed classes in OWL.
- Syntax:
- DL: $\{a, b, \ldots\}$
- RDF/OWL: owl:oneOf + rdf:List++
- Manchester: $\{\mathrm{a}, \mathrm{b}, \ldots\}$
- Example:
- SimpsonFamily \equiv \{Homer, Marge, Bart, Lisa, Maggie $\}$
- :SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .
- Note:
- The individuals does not necessarily represent different objects,
- we still need $=$ and \neq to say that members are the same/different.
- "Closed classes of data values" are datatypes.

Axioms involving individuals: Negative Property Assertions

- New ABox axiom.
- Syntax:
- DL: $\neg R(a, b)$,
- RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
- Manchester: a not R b.

Axioms involving individuals: Negative Property Assertions

- New ABox axiom.
- Syntax:
- DL: $\neg R(a, b)$,
- RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
- Manchester: a not R b.
- Semantics:
- $\mathcal{I} \models \neg R(a, b)$ iff $\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \notin R^{\mathcal{I}}$,

Axioms involving individuals: Negative Property Assertions

- New ABox axiom.
- Syntax:
- DL: $\neg R(a, b)$,
- RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
- Manchester: a not R b.
- Semantics:
- $\mathcal{I} \models \neg R(a, b)$ iff $\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \notin R^{\mathcal{I}}$,
- Notes:
- Works both for object properties and datatype properties.

Axioms involving individuals: Negative Property Assertions

- New ABox axiom.
- Syntax:
- DL: $\neg R(a, b)$,
- RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
- Manchester: a not R b.
- Semantics:
- $\mathcal{I} \models \neg R(a, b)$ iff $\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \notin R^{\mathcal{I}}$,
- Notes:
- Works both for object properties and datatype properties.
- Examples:
- :Bart not :hasFather :NedFlanders
- :Bart not :hasAge "2"~^xsd:int

Outline

(1) Reminder: $\mathcal{A L C}$
(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

Recap of existential and universal restrictions

- Existential restrictions
- have the form $\exists R . D$,
- typically used to connect classes,
- $C \sqsubseteq \exists R . D$: $\mathrm{A} C$ is R-related to (at least) some D :
- Example: A person has a female parent: Person $\sqsubseteq \exists h a s P a r e n t . W o m a n . ~$
- Note that C-objects can be R-related to other things:
- A person may have other parents who are not women-but there should be one who's a woman.

Recap of existential and universal restrictions

- Existential restrictions
- have the form $\exists R . D$,
- typically used to connect classes,
- $C \sqsubseteq \exists R . D$: $\mathrm{A} C$ is R-related to (at least) some D :
- Example: A person has a female parent: Person $\sqsubseteq \exists h a s P a r e n t . W o m a n . ~$
- Note that C-objects can be R-related to other things:
- A person may have other parents who are not women-but there should be one who's a woman.
- Universal restrictions
- have the form $\forall R . D$,
- restrict the things an object can be connected to,
- $C \sqsubseteq \forall R . D$: C is R-related to D's only:
- Example: A horse eats only chocolate: Horse $\sqsubseteq \forall$ eats. Chocolate.
- Note that C-objects may not be R-related to anything at all:
- A horse does not have to eat something-but if it does it must be chocolate.

Cardinality restrictions

- New concept builder.
- Syntax:
- DL: $\leq_{n} R . D$ and $\geq_{n} R . D$ (and $={ }_{n} R . D$).
- RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
- Manchester: min, max, exactly.

Cardinality restrictions

- New concept builder.
- Syntax:
- DL: $\leq_{n} R . D$ and $\geq_{n} R . D$ (and $={ }_{n} R . D$).
- RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
- Manchester: min, max, exactly.
- Semantics:
- $\left(\leq_{n} R . D\right)^{\mathcal{I}}=\left\{a \in \Delta^{\mathcal{I}}:\left|\left\{b:\langle a, b\rangle \in R^{\mathcal{I}} \wedge b \in D^{\mathcal{I}}\right\}\right| \leq n\right\}$
- $\left(\geq_{n} R . D\right)^{\mathcal{I}}=\left\{a \in \Delta^{\mathcal{I}}:\left|\left\{b:\langle a, b\rangle \in R^{\mathcal{I}} \wedge b \in D^{\mathcal{I}}\right\}\right| \geq n\right\}$
- Restricts the number of relations a type of object can/must have.

Cardinality restrictions

- New concept builder.
- Syntax:
- DL: $\leq_{n} R . D$ and $\geq_{n} R . D$ (and $={ }_{n} R . D$).
- RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
- Manchester: min, max, exactly.
- Semantics:
- $\left(\leq_{n} R . D\right)^{\mathcal{I}}=\left\{a \in \Delta^{\mathcal{I}}:\left|\left\{b:\langle a, b\rangle \in R^{\mathcal{I}} \wedge b \in D^{\mathcal{I}}\right\}\right| \leq n\right\}$
- $\left(\geq_{n} R . D\right)^{\mathcal{I}}=\left\{a \in \Delta^{\mathcal{I}}:\left|\left\{b:\langle a, b\rangle \in R^{\mathcal{I}} \wedge b \in D^{\mathcal{I}}\right\}\right| \geq n\right\}$
- Restricts the number of relations a type of object can/must have.
- TBox axioms read:
- $C \sqsubseteq \square_{n} R . D:$ "A C is R-related to n number of D's."
- \leq : at most
- \geq : at least
- =: exactly

Example cardinality restriction

- Car $\sqsubseteq \leq{ }_{2}$ driveAxle. \top
- "A car has at most two drive axles."

Example cardinality restriction

- Car $\sqsubseteq \leq{ }_{2}$ driveAxle. \top
- "A car has at most two drive axles."
- RangeRover $\sqsubseteq={ }_{1}$ driveAxle.FrontAxle $\sqcap={ }_{1}$ driveAxle.RearAxle
- "A Range Rover has one front axle as drive axle and one rear axle as drive axle".

Example cardinality restriction

- Car $\sqsubseteq \leq{ }_{2}$ driveAxle. \top
- "A car has at most two drive axles."
- RangeRover $\sqsubseteq={ }_{1}$ driveAxle.FrontAxle $\Pi={ }_{1}$ driveAxle.RearAxle
- "A Range Rover has one front axle as drive axle and one rear axle as drive axle".
- Human $\sqsubseteq={ }_{2}$ hasBiologicalParent. \top
- "A human has two biological parents."

Example cardinality restriction

- Car $\sqsubseteq \leq{ }_{2}$ driveAxle. \top
- "A car has at most two drive axles."
- RangeRover $\sqsubseteq={ }_{1}$ driveAxle.FrontAxle $\Pi={ }_{1}$ driveAxle.RearAxle
- "A Range Rover has one front axle as drive axle and one rear axle as drive axle".
- Human $\sqsubseteq={ }_{2}$ hasBiologicalParent. T
- "A human has two biological parents."
- Mammal $\sqsubseteq={ }_{1}$ hasParent.Female $\Pi={ }_{1}$ hasParent.Male
- "A mammal has one parent that is a female and one parent that is a male."

Example cardinality restriction

- Car $\sqsubseteq \leq{ }_{2}$ driveAxle. \top
- "A car has at most two drive axles."
- RangeRover $\sqsubseteq={ }_{1}$ driveAxle.FrontAxle $\sqcap={ }_{1}$ driveAxle.RearAxle
- "A Range Rover has one front axle as drive axle and one rear axle as drive axle".
- Human $\sqsubseteq={ }_{2}$ hasBiologicalParent. \top
- "A human has two biological parents."
- Mammal $\sqsubseteq={ }_{1}$ hasParent.Female $\Pi={ }_{1}$ hasParent.Male
- "A mammal has one parent that is a female and one parent that is a male."
- \geq_{2} owns.Houses $\sqcup \geq_{5}$ own.Car \sqsubseteq Rich
- "Everyone who owns more than two houses or five cars is rich."

One more value restriction

- Restrictions of the form $\forall R . D, \exists R . D, \leq_{n} R . D, \geq_{n} R . D$ are called qualified when D is not T.
- We can also qualify with a closed class.

One more value restriction

- Restrictions of the form $\forall R . D, \exists R . D, \leq_{n} R . D, \geq_{n} R . D$ are called qualified when D is not T.
- We can also qualify with a closed class.
- Syntax:
- RDF/OWL: hasValue,
- DL, Manchester: just use: $\{\ldots\}$.

One more value restriction

- Restrictions of the form $\forall R . D, \exists R . D, \leq_{n} R . D, \geq_{n} R . D$ are called qualified when D is not T.
- We can also qualify with a closed class.
- Syntax:
- RDF/OWL: hasValue,
- DL, Manchester: just use: $\{\ldots\}$.
- Example:
- Bieberette \equiv Girl $\sqcap \exists$ loves. $\{$ J.Bieber\}
- T $\sqsubseteq ~ \exists l o v e s .\{M a r y\}$
- Norwegian \equiv Person $\sqcap \exists$ citizenOf. $\{$ Norway $\}$

Self restriction

- New construct builder.
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
- DL: $\exists R$.Self
- RDF/OWL: owl:hasSelf,
- Manchester: Self

Self restriction

- New construct builder.
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
- DL: $\exists R$.Self
- RDF/OWL: owl:hasSelf,
- Manchester: Self
- Semantics:
- $(\exists R . S e l f)^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid\langle x, x\rangle \in R^{\mathcal{I}}\right\}$

Self restriction

- New construct builder.
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
- DL: $\exists R$.Self
- RDF/OWL: owl:hasSelf,
- Manchester: Self
- Semantics:
- $(\exists R . \text { Self })^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid\langle x, x\rangle \in R^{\mathcal{I}}\right\}$
- Examples:
- AutoregulatingProcess $\sqsubseteq \exists$ regulate.Self
- \exists hasBoss.Self \sqsubseteq SelfEmployed

Outline

(1) Reminder: $\mathcal{A L C}$
(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

Restrictions, non-unique names and open worlds

Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

> Orchestra \sqsubseteq Ensemble
> ChamberEnsemble \sqsubseteq Ensemble
> ChamberEnsemble $\sqsubseteq \leq_{1}$ firstViolin. \top

Restrictions, non-unique names and open worlds

Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

> Orchestra \sqsubseteq Ensemble
> ChamberEnsemble \sqsubseteq Ensemble
> ChamberEnsemble $\sqsubseteq \leq_{1}$ firstViolin. \top

ABox:

Ensemble(oslo)
firstViolin(oslo, skolem)

firstViolin(oslo, lie)

Restrictions, non-unique names and open worlds

Restrictions + the OWA and the NUNA can be tricky, consider:
TBox:

$$
\text { Orchestra } \sqsubseteq \text { Ensemble }
$$

ChamberEnsemble \sqsubseteq Ensemble
ChamberEnsemble $\sqsubseteq \leq_{1}$ firstViolin. \top

ABox:

Ensemble(oslo)
firstViolin(oslo, skolem)
 firstViolin(oslo, lie)

- Orchestras and Chamber ensembles are Ensembles.
- Chamber ensembles have only one instrument on each voice,
- in particular, only one first violin.

Restrictions, non-unique names and open worlds

Restrictions + the OWA and the NUNA can be tricky, consider:
TBox:

$$
\text { Orchestra } \sqsubseteq \text { Ensemble }
$$

ChamberEnsemble \sqsubseteq Ensemble
ChamberEnsemble $\sqsubseteq \leq_{1}$ firstViolin. \top

ABox:

Ensemble(oslo)
firstViolin(oslo, skolem)
 firstViolin(oslo, lie)

- Orchestras and Chamber ensembles are Ensembles.
- Chamber ensembles have only one instrument on each voice,
- in particular, only one first violin.
- oslo has two first violins; is oslo an Orchestra?

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" Ensemble \sqsubseteq Orchestra \sqcup ChamberEnsemble:
- An ensemble is an orchestra or a chamber ensemble.

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" Ensemble \sqsubseteq Orchestra \sqcup ChamberEnsemble:
- An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

- This is due to the NUNA.
- We cannot assume that skolem and lie are distinct.
- The statement skolem owl:differentFrom lie, i.e., skolem \neq lie, makes oslo an orchestra.

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" Ensemble \sqsubseteq Orchestra \sqcup ChamberEnsemble:
- An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

- This is due to the NUNA.
- We cannot assume that skolem and lie are distinct.
- The statement skolem owl:differentFrom lie, i.e., skolem \neq lie, makes oslo an orchestra.
If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" Ensemble \sqsubseteq Orchestra \sqcup ChamberEnsemble:
- An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

- This is due to the NUNA.
- We cannot assume that skolem and lie are distinct.
- The statement skolem owl:differentFrom lie, i.e., skolem \neq lie, makes oslo an orchestra.
If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?
- it does not follow that oslo is a ChamberEnsemble.
- This is due to the OWA:
- oslo may have other first violinists.

Protégé demo of previous slide

- Make class Ensemble.
- Make subclass Orchestra.
- Make subclass ChamberEnsemble.
- Make object property firstViolin.
- Make firstViolin max 1 superclass of ChamberEnsemble.
- Make an Ensemble oslo
- Make a Thing skolem
- Make a Thing lie
- Add firstViolin skolem to oslo
- Add firstViolin lie to oslo
- Classify! Nothing happens.
- Add covering axiom: Orchestra or ChamberEnsemble superclass of Ensemble.
- Classify! Nothing happens.
- skolem is different from lie
- Classify! Bingo! oslo is an Orchestra!

Outline

(1) Reminder: $\mathcal{A L C}$
(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

Role characteristics and relationships (RBox)

Vocabulary
Given the roles $\left\{R_{1}, R_{2}, \ldots\right\}$

Role characteristics and relationships (RBox)

Vocabulary
Given the roles $\left\{R_{1}, R_{2}, \ldots\right\}$

Role descriptions

$$
\begin{array}{ll|l}
R, S \rightarrow & R_{i} & \text { (atomic role) } \\
& \top_{\text {role }} & \text { (universal role) } \\
& \perp_{\text {role }} & \text { (bottom role) }
\end{array}
$$

Role characteristics and relationships (RBox)

Vocabulary

Given the roles $\left\{R_{1}, R_{2}, \ldots\right\}$

Role descriptions

$R, S \rightarrow$	R_{i}	(atomic role)
	$T_{\text {role }}$	(universal role)
	$\perp_{\text {role }}$	(bottom role)
	$\neg R$	(complement role)
	R^{-}	(inverse role)
	$R \sqcap S$	(role intersection)
	$R \circ S$	(role chain)

Rbox (cont.)

- Role axioms: Let R and S be roles, then we can assert
- subsumption: $R \sqsubseteq S$ $\left(R^{\mathcal{I}} \subseteq S^{\mathcal{I}}\right)$,
- equivalence: $R \equiv S$
$\left(R^{\mathcal{I}}=S^{\mathcal{I}}\right)$,
- disjointness: $R \sqcap S \sqsubseteq \perp_{\text {role }} \quad\left(R^{\mathcal{I}} \cap S^{\mathcal{I}} \subseteq \emptyset\right)$,
- key: R is a key for concept C.

[^2]
Rbox (cont.)

- Role axioms: Let R and S be roles, then we can assert
- subsumption: $R \sqsubseteq S$ $\left(R^{\mathcal{I}} \subseteq S^{\mathcal{I}}\right)$,
- equivalence: $R \equiv S$
$\left(R^{\mathcal{I}}=S^{\mathcal{I}}\right)$,
- disjointness: $R \sqcap S \sqsubseteq \perp_{\text {role }} \quad\left(R^{\mathcal{I}} \cap S^{\mathcal{I}} \subseteq \emptyset\right)$,
- key: R is a key for concept C.
- A role can have the characteristics (axioms):
- reflexive, irreflexive,
- symmetric, asymmetric,
- transitive, or/and ${ }^{2}$
- functional, inverse functional.

[^3]
New roles

- The universal role, and the empty role-for both object roles and data roles.
- Syntax:
- (DL: U (universal object role), D (universal data value role))
- RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty

New roles

- The universal role, and the empty role-for both object roles and data roles.
- Syntax:
- (DL: U (universal object role), D (universal data value role))
- RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty
- Semantics:
- $U^{\mathcal{I}}=\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- $\mathcal{D}^{\mathcal{I}}=\Delta^{\mathcal{I}} \times \Lambda$

New roles

- The universal role, and the empty role-for both object roles and data roles.
- Syntax:
- (DL: U (universal object role), D (universal data value role))
- RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty
- Semantics:
- $U^{\mathcal{I}}=\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- $\mathcal{D}^{\mathcal{I}}=\Delta^{\mathcal{I}} \times \Lambda$
- Reads:
- all pairs of individuals are connected by owl:topObjectProperty,
- no individuals are connected by owl:bottomObjectProperty.
- all possible individuals are connected with all literals by owl:topDataProperty,
- no individual is connected by owl:bottomDataProperty to a literal.

Corresponding mathematical properties and operations

If R and S are binary relations on X then

- $\left(R^{-}\right)^{\mathcal{I}}=\left\{\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \mid\left\langle b^{\mathcal{I}}, a^{\mathcal{I}}\right\rangle \in R^{\mathcal{I}}\right\}$

Corresponding mathematical properties and operations

If R and S are binary relations on X then

- $\left(R^{-}\right)^{\mathcal{I}}=\left\{\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \mid\left\langle b^{\mathcal{I}}, a^{\mathcal{I}}\right\rangle \in R^{\mathcal{I}}\right\}$
- $(R \circ S)^{\mathcal{I}}=\left\{\left\langle a^{\mathcal{I}}, c^{\mathcal{I}}\right\rangle \mid\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \in R^{\mathcal{I}},\left\langle b^{\mathcal{I}}, c^{\mathcal{I}}\right\rangle \in S^{\mathcal{I}}\right\}$

Role chaining and inverses illustrated

Role chaining and inverses illustrated

Role chaining and inverses illustrated

Role chaining and inverses illustrated

Common properties of roles

A relation R over a set $X(R \subseteq X \times X)$ is
Reflexive:

$$
\text { if }\langle a, a\rangle \in R \text { for all } a \in X
$$

$$
(X \sqsubseteq \exists R . S e l f)
$$

Common properties of roles

A relation R over a set $X(R \subseteq X \times X)$ is

Reflexive:
Irreflexive:
if $\langle a, a\rangle \in R$ for all $a \in X$
if $\langle a, a\rangle \notin R$ for all $a \in X$

$$
\begin{aligned}
& (X \sqsubseteq \exists R . \text { Self }) \\
& (X \sqsubseteq \neg \exists R . S e l f)
\end{aligned}
$$

Common properties of roles

A relation R over a set $X(R \subseteq X \times X)$ is
Reflexive:
Irreflexive:
Symmetric:

$$
\begin{array}{ll}
\text { if }\langle a, a\rangle \in R \text { for all } a \in X & (X \sqsubseteq \exists R \text {.Self }) \\
\text { if }\langle a, a\rangle \notin R \text { for all } a \in X & (X \sqsubseteq \neg \exists R \text {.Self }) \\
\text { if }\langle a, b\rangle \in R \text { implies }\langle b, a\rangle \in R & \left(R^{-} \sqsubseteq R\right)
\end{array}
$$

Common properties of roles

A relation R over a set $X(R \subseteq X \times X)$ is
Reflexive:
Irreflexive:
Symmetric:
Asymmetric:
if $\langle a, a\rangle \in R$ for all $a \in X$
($X \sqsubseteq \exists$ R.Self)
if $\langle a, a\rangle \notin R$ for all $a \in X$
if $\langle a, b\rangle \in R$ implies $\langle b, a\rangle \in R$
if $\langle a, b\rangle \in R$ implies $\langle b, a\rangle \notin R$
($X \sqsubseteq \neg \exists R$.Self)
($R^{-} \sqsubseteq R$)
$\left(R^{-} \sqsubseteq \neg R\right)$

Common properties of roles

A relation R over a set $X(R \subseteq X \times X)$ is

```
Reflexive:
Irreflexive:
Symmetric:
Asymmetric:
Transitive:
\[
\begin{array}{ll}
\text { if }\langle a, a\rangle \in R \text { for all } a \in X & (X \sqsubseteq \exists R \text {.Self }) \\
\text { if }\langle a, a\rangle \notin R \text { for all } a \in X & (X \sqsubseteq \neg \exists R \text {.Self }) \\
\text { if }\langle a, b\rangle \in R \text { implies }\langle b, a\rangle \in R & \left(R^{-} \sqsubseteq R\right) \\
\text { if }\langle a, b\rangle \in R \text { implies }\langle b, a\rangle \notin R & \left(R^{-} \sqsubseteq \neg R\right) \\
\text { if }\langle a, b\rangle,\langle b, c\rangle \in R \text { implies }\langle a, c\rangle \in R & (R \circ R \sqsubseteq R)
\end{array}
\]
```


Common properties of roles

A relation R over a set $X(R \subseteq X \times X)$ is

```
Reflexive:
Irreflexive:
Symmetric:
Asymmetric:
Transitive:
Functional:
\[
\begin{array}{ll}
\text { if }\langle a, a\rangle \in R \text { for all } a \in X & (X \sqsubseteq \exists R \text {. Self }) \\
\text { if }\langle a, a\rangle \notin R \text { for all } a \in X & (X \sqsubseteq \neg \exists R \text {.Self }) \\
\text { if }\langle a, b\rangle \in R \text { implies }\langle b, a\rangle \in R & \left(R^{-} \sqsubseteq R\right) \\
\text { if }\langle a, b\rangle \in R \text { implies }\langle b, a\rangle \notin R & \left(R^{-} \sqsubseteq \neg R\right) \\
\text { if }\langle a, b\rangle,\langle b, c\rangle \in R \text { implies }\langle a, c\rangle \in R & (R \circ R \sqsubseteq R) \\
\text { if }\langle a, b\rangle,\langle a, c\rangle \in R \text { implies } b=c & (\top \sqsubseteq \leq 1 R \text {.丁) }
\end{array}
\]
```


Common properties of roles

A relation R over a set $X(R \subseteq X \times X)$ is
Reflexive: \quad if $\langle a, a\rangle \in R$ for all $a \in X \quad(X \sqsubseteq \exists R$. Self $)$
Irreflexive: \quad if $\langle a, a\rangle \notin R$ for all $a \in X$
($X \sqsubseteq \neg \exists$ R.Self)
Symmetric:
Asymmetric:
Transitive:
Functional:
if $\langle a, b\rangle \in R$ implies $\langle b, a\rangle \in R$
($R^{-} \sqsubseteq R$)
if $\langle a, b\rangle \in R$ implies $\langle b, a\rangle \notin R$
$\left(R^{-} \sqsubseteq \neg R\right)$
if $\langle a, b\rangle,\langle b, c\rangle \in R$ implies $\langle a, c\rangle \in R$
$(R \circ R \sqsubseteq R)$
if $\langle a, b\rangle,\langle a, c\rangle \in R$ implies $b=c$
($\left.\top \sqsubseteq \leq_{1} R . \top\right)$
Inverse functional:
if $\langle a, b\rangle,\langle c, b\rangle \in R$ implies $a=c$
$\left(T \sqsubseteq \leq_{1} R^{-} . T\right)$

Properties in OWL

Remember: three kinds of mutually disjoint properties in OWL:
(1) owl:DatatypeProperty

- link individuals to data values, e.g., xsd:string.
- Examples: :hasAge, :hasSurname.
(2) owl:ObjectProperty
- link individuals to individuals.
- Example: :hasFather, :driveAxle.
(3) owl:AnnotationProperty
- has no logical implication, ignored by reasoners.
- Examples: rdfs:label, dc:creator.

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric-as above,

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric—as above,
- inverses-as above,

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric—as above,
- inverses-as above,
- inverse functional-for computational reasons,

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric—as above,
- inverses-as above,
- inverse functional-for computational reasons,
- part of chains-as above,

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric—as above,
- inverses-as above,
- inverse functional-for computational reasons,
- part of chains-as above,
- so, what remains is: functionality,

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric—as above,
- inverses-as above,
- inverse functional-for computational reasons,
- part of chains-as above,
- so, what remains is: functionality,
- (and subsumption, equivalence and disjointness).

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric—as above,
- inverses-as above,
- inverse functional-for computational reasons,
- part of chains-as above,
- so, what remains is: functionality,
- (and subsumption, equivalence and disjointness).

Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
- reflexive-or they would not be datatype properties,
- transitive-since no property takes data values in 1. position,
- symmetric—as above,
- inverses-as above,
- inverse functional-for computational reasons,
- part of chains-as above,
- so, what remains is: functionality,
- (and subsumption, equivalence and disjointness).
- (Annotation properties have no logical implication, so nothing can be said about them.)

Some relations from ordinary language

- Symmetric relations:

Some relations from ordinary language

- Symmetric relations:
- hasSibling

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf
- Transitive relations:

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf
- Transitive relations:
- olderThan

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf
- Transitive relations:
- olderThan
- hasSibling

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf
- Transitive relations:
- olderThan
- hasSibling
- Functional relations:

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf
- Transitive relations:
- olderThan
- hasSibling
- Functional relations:
- hasBiologicalMother

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf
- Transitive relations:
- olderThan
- hasSibling
- Functional relations:
- hasBiologicalMother
- Inverse functional relations:

Some relations from ordinary language

- Symmetric relations:
- hasSibling
- differentFrom
- Non-symmetric relations:
- hasBrother
- Asymmetric relations:
- olderThan
- memberOf
- Transitive relations:
- olderThan
- hasSibling
- Functional relations:
- hasBiologicalMother
- Inverse functional relations:
- gaveBirthTo

Examples inverses and chains

Some inverses:

- hasParent \equiv hasChild $^{-}$
- hasBiologicalMother \equiv gaveBirthTo-
- olderThan \equiv youngerThan ${ }^{-}$

Examples inverses and chains

Some inverses:

- hasParent \equiv hasChild $^{-}$
- hasBiologicalMother \equiv gaveBirthTo-
- olderThan \equiv youngerThan ${ }^{-}$

Some role chains:

- hasParent \circ hasParent $\sqsubseteq ~ h a s G r a n d P a r e n t ~$
- hasAncestor ○ hasAncestor $\sqsubseteq ~ h a s A n c e s t o r ~$
- hasParent \circ hasBrother \sqsubseteq hasUncle

Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
- transitive roles cannot be irreflexive or asymmetric,

Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
- transitive roles cannot be irreflexive or asymmetric,
- role inclusions are not allowed to cycle, i.e. not
hasParent \circ hasHusband \sqsubseteq hasFather hasFather \sqsubseteq hasParent.

Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
- transitive roles cannot be irreflexive or asymmetric,
- role inclusions are not allowed to cycle, i.e. not
hasParent \circ hasHusband \sqsubseteq hasFather
hasFather \sqsubseteq hasParent.
- transitive roles R and S cannot be declared disjoint

Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
- transitive roles cannot be irreflexive or asymmetric,
- role inclusions are not allowed to cycle, i.e. not
hasParent \circ hasHusband \sqsubseteq hasFather
hasFather \sqsubseteq hasParent.
- transitive roles R and S cannot be declared disjoint
- Note:
- these restrictions can be hard to keep track of
- the reason they exist are computational, not logical

Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
- transitive roles cannot be irreflexive or asymmetric,
- role inclusions are not allowed to cycle, i.e. not
hasParent \circ hasHusband \sqsubseteq hasFather
hasFather \sqsubseteq hasParent.
- transitive roles R and S cannot be declared disjoint
- Note:
- these restrictions can be hard to keep track of
- the reason they exist are computational, not logical
- Fortunately:
- There are also simple patterns
- that are quite useful.

Outline

(1) Reminder: $\mathcal{A L C}$
(2) Important assumptions
(3) OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

Creating datatypes

- Many predefined datatypes are available in OWL:
- all common XSD datatypes: xsd:string, xsd:int, ...
- a few from RDF: rdf:PlainLiteral,
- and a few of their own: owl:real and owl:rational.

Creating datatypes

- Many predefined datatypes are available in OWL:
- all common XSD datatypes: xsd:string, xsd:int, ...
- a few from RDF: rdf:PlainLiteral,
- and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations: \neg, \sqcap, \sqcup :
- owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.

Creating datatypes

- Many predefined datatypes are available in OWL:
- all common XSD datatypes: xsd:string, xsd:int, ...
- a few from RDF: rdf:PlainLiteral,
- and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations: \neg, \sqcap, \sqcup :
- owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.
- Datatypes may be restricted with constraining facets, borrowed from XML Schema.
- For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
- For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.

Creating datatypes

- Many predefined datatypes are available in OWL:
- all common XSD datatypes: xsd:string, xsd:int, ...
- a few from RDF: rdf:PlainLiteral,
- and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations: \neg, \sqcap, \sqcup :
- owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.
- Datatypes may be restricted with constraining facets, borrowed from XML Schema.
- For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
- For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.
- Example:
- Teenager is equivalent to: (Manchester)

Person and (age some positiveInteger[>= 13, <= 19])

- "A teenager is a person of age 13 to 19 ."

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\sqcap \geq_{2}$ hasMember.Child $\sqcap \exists$ hasMember.Dog)

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq=2$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary.

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists l o v e s .\{$ mary $\}$ or Person $\sqsubseteq \exists l o v e s .\{m a r y\})$

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists$ loves. $\{$ mary \} or Person $\sqsubseteq \exists l o v e s .\{$ mary \})
\checkmark Adam is not Eve (and vice versa).

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists$ loves. $\{$ mary \} or Person $\sqsubseteq \exists l o v e s .\{$ mary $\}$)
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists$ loves. $\{$ mary \} or Person $\sqsubseteq \exists l o v e s .\{$ mary $\}$)
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists$ loves. $\{$ mary \} or Person $\sqsubseteq \exists l o v e s .\{$ mary $\}$)
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle.

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists l o v e s .\{$ mary or Person $\sqsubseteq \exists l o v e s .\{m a r y\})$
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother \sqsubseteq hasUncle)

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. (T§ \ddagger loves. $\{$ mary or Person $\sqsubseteq \exists l o v e s .\{m a r y\})$
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother \sqsubseteq hasUncle)
\checkmark My friend's friends are also my friends.

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. (T§ \ddagger loves. $\{$ mary or Person $\sqsubseteq \exists l o v e s .\{m a r y\})$
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother $\sqsubseteq ~ h a s U n c l e) ~$
\checkmark My friend's friends are also my friends. (hasFriend \circ hasFriend \sqsubseteq hasFriend)

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists$ loves. $\{$ mary or Person $\sqsubseteq \exists l o v e s .\{$ mary \})
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother \sqsubseteq hasUncle)
\checkmark My friend's friends are also my friends. (hasFriend \circ hasFriend \sqsubseteq hasFriend)
\checkmark If Homer is married to Marge, then Marge is married to Homer.

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists$ loves. $\{$ mary or Person $\sqsubseteq \exists l o v e s .\{$ mary \})
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother \sqsubseteq hasUncle)
\checkmark My friend's friends are also my friends. (hasFriend \circ hasFriend \sqsubseteq hasFriend)
\checkmark If Homer is married to Marge, then Marge is married to Homer. (marriedTo- \sqsubseteq marriedTo)

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists$ loves. $\{$ mary or Person $\sqsubseteq \exists l o v e s .\{$ mary \})
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother $\sqsubseteq ~ h a s U n c l e) ~$
\checkmark My friend's friends are also my friends. (hasFriend \circ hasFriend \sqsubseteq hasFriend)
\checkmark If Homer is married to Marge, then Marge is married to Homer. (marriedTo- \sqsubseteq marriedTo)
\checkmark If Homer is a parent of Bart, then Bart is a child of Homer.

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists l o v e s .\{$ mary or Person $\sqsubseteq \exists l o v e s .\{m a r y\})$
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother $\sqsubseteq ~ h a s U n c l e) ~$
\checkmark My friend's friends are also my friends. (hasFriend \circ hasFriend \sqsubseteq hasFriend)
\checkmark If Homer is married to Marge, then Marge is married to Homer. (marriedTo- \sqsubseteq marriedTo)
\checkmark If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf- \sqsubseteq childOf)

Modelling patterns

So, what can we say now?
\checkmark A person has a mother.
\checkmark A penguin eats only fish. A horse eats only chocolate.
\checkmark A nuclear family has two parents, at least two children and a dog.
(NuclearFam $\sqsubseteq={ }_{2}$ hasMember.Parent $\square \geq_{2}$ hasMember. Child $\sqcap \exists$ hasMember.Dog)
\checkmark A smoker is not a non-smoker (and vice versa).
\checkmark Everybody loves Mary. ($\top \sqsubseteq \exists l o v e s .\{$ mary or Person $\sqsubseteq \exists l o v e s .\{m a r y\})$
\checkmark Adam is not Eve (and vice versa). (adam \neq eve)
\checkmark Everything is black or white.
\checkmark The brother of my father is my uncle. (hasFather o hasBrother \sqsubseteq hasUncle)
\checkmark My friend's friends are also my friends. (hasFriend \circ hasFriend \sqsubseteq hasFriend)
\checkmark If Homer is married to Marge, then Marge is married to Homer. (marriedTo- \sqsubseteq marriedTo)
\checkmark If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf- \sqsubseteq childOf)
... and more!

DL: Family of languages

http://www.cs.man.ac.uk/~ezolin/dl/

Next week

- More modelling with OWL/OWL 2.
- What cannot be expressed in OWL/OWL 2?

[^0]: ${ }^{1}$ Attributive Concept Language with Complements

[^1]: ${ }^{1}$ Attributive Concept Language with Complements

[^2]: ${ }^{2}$ Restrictions apply

[^3]: ${ }^{2}$ Restrictions apply

