INF3580/4580 – Semantic Technologies – Spring 2017

Lecture 7: Reasoners in Jena

Martin Giese

27th February 2018

Department of Informatics

University of Oslo

Today's Plan

- Recap: Reasoning with rules
- Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 6 Richer API with OntModel
- 6 External reasoners
- A worked example

Outline

- 1 Recap: Reasoning with rules
- 2 Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 5 Richer API with OntModel
- 6 External reasoners
- 7 A worked example

In a Semantic Web context, inference always means,

In a Semantic Web context, inference always means,

• adding triples,

In a Semantic Web context, inference always means,

adding triples,

In a Semantic Web context, inference always means,

adding triples,

More specifically it means,

• adding new triples to an RDF graph,

In a Semantic Web context, inference always means,

adding triples,

- adding new triples to an RDF graph,
- on the basis of the triples already in it.

In a Semantic Web context, inference always means,

adding triples,

- adding new triples to an RDF graph,
- on the basis of the triples already in it.
- 'adding' should be understood in a logical sense, indeed;

In a Semantic Web context, inference always means,

adding triples,

- adding new triples to an RDF graph,
- on the basis of the triples already in it.
- 'adding' should be understood in a logical sense, indeed;
 - new/inferred triples need not be materialized or persisted

A rule of the form

A rule of the form

$$\frac{P_1,\cdots,P_n}{P}$$

A rule of the form

$$\frac{P_1,\cdots,P_n}{P}$$

may be read as an instruction;

• "If P_1, \dots, P_n are all in the graph, add P to the graph"

A rule of the form

$$\frac{P_1,\cdots,P_n}{P}$$

- "If P_1, \dots, P_n are all in the graph, add P to the graph"
- as an instruction this may in turn be understood procedurally. . .

A rule of the form

$$\frac{P_1,\cdots,P_n}{P}$$

- "If P_1, \dots, P_n are all in the graph, add P to the graph"
- as an instruction this may in turn be understood procedurally. . .
 - in a forward sense, or

A rule of the form

$$\frac{P_1,\cdots,P_n}{P}$$

- "If P_1, \dots, P_n are all in the graph, add P to the graph"
- as an instruction this may in turn be understood procedurally. . .
 - in a forward sense, or
 - in a backward sense

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

- I. Type propagation:
 - "The 2CV is a car, and a car is a motorised vehicle, so..."

- I. Type propagation:
 - "The 2CV is a car, and a car is a motorised vehicle, so..."
- II. Property inheritance:

- I. Type propagation:
 - "The 2CV is a car, and a car is a motorised vehicle, so..."
- II. Property inheritance:
 - "Martin lectures at Ifi, and lecturers are employed by Ifi, so. . . "

- I. Type propagation:
 - "The 2CV is a car, and a car is a motorised vehicle, so..."
- II. Property inheritance:
 - "Martin lectures at Ifi, and lecturers are employed by Ifi, so..."
- III. Domain and range reasoning:

- I. Type propagation:
 - "The 2CV is a car, and a car is a motorised vehicle, so..."
- II. Property inheritance:
 - "Martin lectures at Ifi, and lecturers are employed by Ifi, so..."
- III. Domain and range reasoning:
 - "Everything written is a document. Martin wrote x, hence x..."

- I. Type propagation:
 - "The 2CV is a car, and a car is a motorised vehicle, so..."
- II. Property inheritance:
 - "Martin lectures at Ifi, and lecturers are employed by Ifi, so..."
- III. Domain and range reasoning:
 - "Everything written is a document. Martin wrote x, hence x..."
 - "All fathers are males. Martin is the father of Karl, therefore..."

Rules for property transfer

Rules for property transfer

• Transitivity:

Rules for property transfer

• Transitivity:

```
p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
p rdfs:subPropertyOf r . rdfs5
```

Rules for property transfer

• Transitivity:

```
p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
p rdfs:subPropertyOf r . rdfs
```

Reflexivity:

Rules for property transfer

• Transitivity:

Reflexivity:

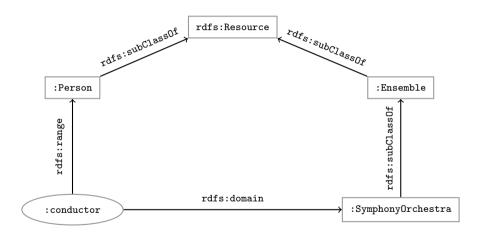
```
p rdf:type rdf:Property .
p rdfs:subPropertyOf p .rdfs6
```

Rules for property transfer

• Transitivity:

Reflexivity:

• Property transfer:


Rules for property transfer

• Transitivity:

Reflexivity:

• Property transfer:

Example: Conductors and ensembles

Example contd.

This ontolology includes

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

Example contd.

This ontolology includes

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
```

```
:conductor rdfs:domain :SymphonyOrchestra .
```

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
```

This ontolology includes

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
```

Suppose the data includes

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .

Suppose the data includes
:OsloPhilharmonic :conductor :Petrenko .
```

This ontolology includes

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .

Suppose the data includes
:OsloPhilharmonic :conductor :Petrenko .
```

then the the following triples can be inferred:

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
    :conductor rdfs:domain :SymphonyOrchestra .
    :conductor rdfs:range :Person .
Suppose the data includes
    :OsloPhilharmonic :conductor :Petrenko ...
then the following triples can be inferred:
    :OsloPhilharmonic rdf:type :SymphonyOrchestra .
```

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
    :conductor rdfs:domain :SymphonyOrchestra .
    :conductor rdfs:range :Person .
Suppose the data includes
    :OsloPhilharmonic :conductor :Petrenko ...
then the following triples can be inferred:
    :OsloPhilharmonic rdf:type :SymphonyOrchestra .
    :OsloPhilharmonic rdf:type :Ensemble .
```

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
    :conductor rdfs:domain :SymphonyOrchestra .
    :conductor rdfs:range :Person .
Suppose the data includes
    :OsloPhilharmonic :conductor :Petrenko ...
then the following triples can be inferred:
    :OsloPhilharmonic rdf:type :SymphonyOrchestra .
    :OsloPhilharmonic rdf:type :Ensemble .
    :Petrenko rdf:type :Person .
```

```
:SymphonyOrchestra rdfs:subClassOf :Ensemble .
    :conductor rdfs:domain :SymphonyOrchestra .
    :conductor rdfs:range :Person .
Suppose the data includes
    :OsloPhilharmonic :conductor :Petrenko ...
then the following triples can be inferred:
    :OsloPhilharmonic rdf:type :SymphonyOrchestra
                                                try to figure out why!
    :OsloPhilharmonic rdf:type :Ensemble .
    :Petrenko rdf:type :Person .
```

Outline

- 1 Recap: Reasoning with rules
- Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 5 Richer API with OntModel
- 6 External reasoners
- A worked example

Forward chaining:

• reasoning from premises to conclusions of rules

- reasoning from premises to conclusions of rules
- adds facts corresponding to the conclusions of rules

- reasoning from premises to conclusions of rules
- adds facts corresponding to the conclusions of rules
- entailed facts are stored and reused

- reasoning from premises to conclusions of rules
- adds facts corresponding to the conclusions of rules
- entailed facts are stored and reused
- reasoning is up front

Forward chaining:

- reasoning from premises to conclusions of rules
- adds facts corresponding to the conclusions of rules
- entailed facts are stored and reused
- reasoning is up front

Backward chaining:

Forward chaining:

- reasoning from premises to conclusions of rules
- adds facts corresponding to the conclusions of rules
- entailed facts are stored and reused
- reasoning is up front

Backward chaining:

• reasoning from conclusions to premises

Forward chaining:

- reasoning from premises to conclusions of rules
- adds facts corresponding to the conclusions of rules
- entailed facts are stored and reused
- reasoning is up front

Backward chaining:

- reasoning from conclusions to premises
- '... what needs to be true for this conclusion to hold?'

Forward chaining:

- reasoning from premises to conclusions of rules
- adds facts corresponding to the conclusions of rules
- entailed facts are stored and reused
- reasoning is up front

Backward chaining:

- reasoning from conclusions to premises
- '... what needs to be true for this conclusion to hold?'
- reasoning is on-demand

Forward chaining inference

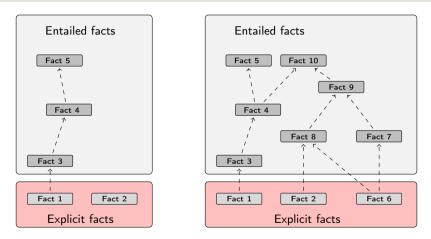


Figure: When a fact is added, all entailments are computed and stored.

Precomputing and storing answers is suitable for data which is:

• frequently accessed,

- frequently accessed,
- expensive to compute,

- frequently accessed,
- expensive to compute,
- relatively static,

- frequently accessed,
- expensive to compute,
- relatively static,
- and small enough to store efficiently.

Precomputing and storing answers is suitable for data which is:

- frequently accessed,
- expensive to compute,
- relatively static,
- and small enough to store efficiently.

Benefits:

Precomputing and storing answers is suitable for data which is:

- frequently accessed,
- expensive to compute,
- relatively static,
- and small enough to store efficiently.

Benefits:

• forward chaining optimizes retrieval

Precomputing and storing answers is suitable for data which is:

- frequently accessed,
- expensive to compute,
- relatively static,
- and small enough to store efficiently.

Benefits:

- forward chaining optimizes retrieval
- no additional inference is necessary at query time

Forward chaining and truth-maintenance

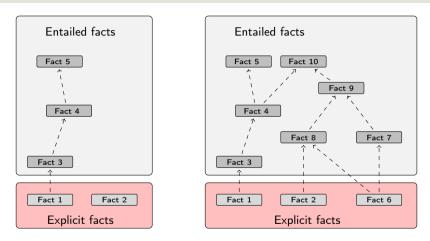


Figure: When a fact is added, all entailments are computed and stored.

Forward chaining and truth-maintenance

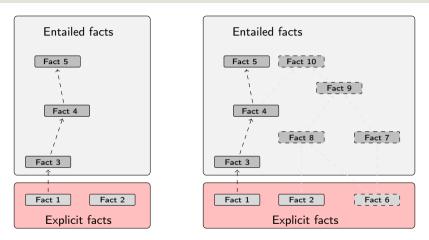


Figure: When a fact is removed, everything that comes with it must go too.

Drawbacks:

• increases storage size

- increases storage size
- increases the overhead of insertion

- increases storage size
- increases the overhead of insertion
- removal is highly problematic

- increases storage size
- increases the overhead of insertion
- removal is highly problematic
- truth maintenance usually not implemented in RDF stores

- increases storage size
- increases the overhead of insertion
- removal is highly problematic
- truth maintenance usually not implemented in RDF stores
- problematic for distributed and/or dynamic systems

- increases storage size
- increases the overhead of insertion
- removal is highly problematic
- truth maintenance usually not implemented in RDF stores
- problematic for distributed and/or dynamic systems
 - rules could apply to premisses on different disks, etc.

Backward chaining inference

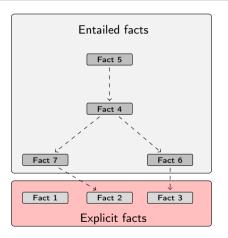


Figure: Backward chaining uses rules to expand queries.

```
ex:Mammal rdfs:subClassOf ex:Vertebrate .
ex:KillerWhale rdfs:subClassOf ex:Mammal .
ex:Lion rdfs:subClassOf ex:Mammal .
ex:Keiko rdf:type ex:KillerWhale .
ex:Simba rdf:type ex:Lion .
```

RDFS/RDF knowledge base:

```
ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Lion rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

ex:Simba rdf:type ex:Lion .

Query:

SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }
```

Inferred triples:

```
ex:Mammal rdfs:subClassOf ex:Vertebrate .
    ex:KillerWhale rdfs:subClassOf ex:Mammal .
    ex:Lion rdfs:subClassOf ex:Mammal .
                                                        A rdfs:subClassOf B . x rdf:type A .
                                                                    x rdf:type B .
    ex:Keiko rdf:type ex:KillerWhale .
    ex:Simba rdf:type ex:Lion .
Querv:
    SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }
Inferred triples:
    ?x rdf:type ex:Vertabrate .
```

```
ex:Mammal rdfs:subClassOf ex:Vertebrate .
    ex:KillerWhale rdfs:subClassOf ex:Mammal .
    ex:Lion rdfs:subClassOf ex:Mammal .
                                                        A rdfs:subClassOf B . x rdf:type A .
                                                                    x rdf:type B .
    ex:Keiko rdf:type ex:KillerWhale .
    ex:Simba rdf:type ex:Lion .
Querv:
    SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }
Inferred triples:
    ?x rdf:type ex:Vertabrate .
    ?x rdf:type ex:Mammal . (rdfs9)
```

```
ex:Mammal rdfs:subClassOf ex:Vertebrate .
    ex:KillerWhale rdfs:subClassOf ex:Mammal .
    ex:Lion rdfs:subClassOf ex:Mammal .
                                                         A rdfs:subClassOf B . x rdf:type A .
                                                                     x rdf:type B .
    ex:Keiko rdf:type ex:KillerWhale .
    ex:Simba rdf:type ex:Lion .
Querv:
    SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }
Inferred triples:
    ?x rdf:type ex:Vertabrate .
    ?x rdf:type ex:Mammal . (rdfs9)
    ?x rdf:type ex:KillerWhale . (rdfs9) \Rightarrow ?x = ex:Keiko
```

?x rdf:type ex:Lion . (rdfs9) \Rightarrow ?x = ex:Simba

Backward chaining: Example

```
ex:Mammal rdfs:subClassOf ex:Vertebrate .
    ex:KillerWhale rdfs:subClassOf ex:Mammal .
    ex:Lion rdfs:subClassOf ex:Mammal .
                                                         A rdfs:subClassOf B . x rdf:type A .
                                                                     x rdf:type B .
    ex:Keiko rdf:type ex:KillerWhale .
    ex:Simba rdf:type ex:Lion .
Querv:
    SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }
Inferred triples:
    ?x rdf:type ex:Vertabrate .
    ?x rdf:type ex:Mammal . (rdfs9)
    ?x rdf:type ex:KillerWhale . (rdfs9) \Rightarrow ?x = ex:Keiko
```

Computing answers on demand is suitable where:

Computing answers on demand is suitable where:

• there is little need for reuse of computed answers

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Benefits:

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Benefits:

only the relevant inferences are drawn

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Benefits:

- only the relevant inferences are drawn
- truth maintenance is automatic

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Benefits:

- only the relevant inferences are drawn
- truth maintenance is automatic
- no persistent storage space needed

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Benefits:

- only the relevant inferences are drawn
- truth maintenance is automatic
- no persistent storage space needed

Drawbacks:

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Benefits:

- only the relevant inferences are drawn
- truth maintenance is automatic
- no persistent storage space needed

Drawbacks:

• trades insertion overhead for access overhead

Computing answers on demand is suitable where:

- there is little need for reuse of computed answers
- answers can be efficiently computed at runtime
- answers come from multiple dynamic sources

Benefits:

- only the relevant inferences are drawn
- truth maintenance is automatic
- no persistent storage space needed

Drawbacks:

- trades insertion overhead for access overhead
- without caching, answers must be recomputed every time

Outline

- Recap: Reasoning with rules
- 2 Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 5 Richer API with OntModel
- 6 External reasoners
- A worked example

In Jena there is

In Jena there is

• a zillion ways to configure and plug-in a reasoner

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

Imposing order at the cost of precision we may say that...

• reasoners fall into one of two categories

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners
- ...and are combined with two kinds of model

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners
- ...and are combined with two kinds of model
 - models of type InfModel, and

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners
- ...and are combined with two kinds of model
 - models of type InfModel, and
 - models of type OntModel

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners
- ...and are combined with two kinds of model
 - models of type InfModel, and
 - models of type OntModel
- Different reasoners implement different logics, e.g.

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners
- ...and are combined with two kinds of model
 - models of type InfModel, and
 - models of type OntModel
- Different reasoners implement different logics, e.g.
 - Transitive reasoning,

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners
- ...and are combined with two kinds of model
 - models of type InfModel, and
 - models of type OntModel
- Different reasoners implement different logics, e.g.
 - Transitive reasoning,
 - RDFS.

In Jena there is

- a zillion ways to configure and plug-in a reasoner
- some seem rather haphazard

- reasoners fall into one of two categories
 - built-in- and
 - external reasoners
- ...and are combined with two kinds of model
 - models of type InfModel, and
 - models of type OntModel
- Different reasoners implement different logics, e.g.
 - Transitive reasoning,
 - RDFS.
 - OWL

Reasoners, Factories, Registries...

Reasoners, Factories, Registries...

• Every reasoner is an object of class Reasoner

Reasoners, Factories, Registries...

- Every reasoner is an object of class Reasoner
- These are created by ReasonerFactory objects

- Every reasoner is an object of class Reasoner
- These are created by ReasonerFactory objects
- So: one ReasonerFactory per type of reasoner

- Every reasoner is an object of class Reasoner
- These are created by ReasonerFactory objects
- So: one ReasonerFactory per type of reasoner
- All reasoner factories are stored in a global ReasonerRegistry

- Every reasoner is an object of class Reasoner
- These are created by ReasonerFactory objects
- So: one ReasonerFactory per type of reasoner
- All reasoner factories are stored in a global ReasonerRegistry
 - Allows finding a factory for reasoners by URI

- Every reasoner is an object of class Reasoner
- These are created by ReasonerFactory objects
- So: one ReasonerFactory per type of reasoner
- All reasoner factories are stored in a global ReasonerRegistry
 - Allows finding a factory for reasoners by URI
 - Also by "descriptions" which are again RDF

- Every reasoner is an object of class Reasoner
- These are created by ReasonerFactory objects
- So: one ReasonerFactory per type of reasoner
- All reasoner factories are stored in a global ReasonerRegistry
 - Allows finding a factory for reasoners by URI
 - Also by "descriptions" which are again RDF
- Example:

```
ReasonerRegistry registry = ReasonerRegistry.theRegistry();
String reasonerURI = "http://jena.hpl.hp.com/2003/RDFSExptRuleReasoner";
ReasonerFactory factory = registry.getFactory(reasonerURI);
Reasoner reasoner = factory.create(config);
```


- Every reasoner is an object of class Reasoner
- These are created by ReasonerFactory objects
- So: one ReasonerFactory per type of reasoner
- All reasoner factories are stored in a global ReasonerRegistry
 - Allows finding a factory for reasoners by URI
 - Also by "descriptions" which are again RDF
- Example:

```
ReasonerRegistry registry = ReasonerRegistry.theRegistry();
String reasonerURI = "http://jena.hpl.hp.com/2003/RDFSExptRuleReasoner";
ReasonerFactory factory = registry.getFactory(reasonerURI);
Reasoner reasoner = factory.create(config);
```

• config is a Resource that describes requested features for the reasoner.

• Now a Model with inferencing can be constructed, given

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

InfModel inf = ModelFactory.createInfModel(reasoner, rawModel);

• Depending on reasoner, this InfModel might do

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Depending on reasoner, this InfModel might do
 - forward chaining: precompute all consequences of triples in rawModel

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Depending on reasoner, this InfModel might do
 - forward chaining: precompute all consequences of triples in rawModel
 - backward chaining: triggered by SPARQL queries or list(...) calls

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Depending on reasoner, this InfModel might do
 - forward chaining: precompute all consequences of triples in rawModel
 - backward chaining: triggered by SPARQL queries or list(...) calls
- Different reasoners compute different sets of consequences:

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Depending on reasoner, this InfModel might do
 - forward chaining: precompute all consequences of triples in rawModel
 - backward chaining: triggered by SPARQL queries or list(...) calls
- Different reasoners compute different sets of consequences:
 - "transitive" reasoner: only subClassOf hierarchy, etc.

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Depending on reasoner, this InfModel might do
 - forward chaining: precompute all consequences of triples in rawModel
 - backward chaining: triggered by SPARQL queries or list(...) calls
- Different reasoners compute different sets of consequences:
 - "transitive" reasoner: only subClassOf hierarchy, etc.
 - RDFS reasoner: all RDFS inference rules

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Depending on reasoner, this InfModel might do
 - forward chaining: precompute all consequences of triples in rawModel
 - backward chaining: triggered by SPARQL queries or list(...) calls
- Different reasoners compute different sets of consequences:
 - "transitive" reasoner: only subClassOf hierarchy, etc.
 - RDFS reasoner: all RDFS inference rules
 - OWL/mini/micro: various subsets of OWL inferences

- Now a Model with inferencing can be constructed, given
 - an underlying Model with "raw" data
 - a Reasoner instance

- Depending on reasoner, this InfModel might do
 - forward chaining: precompute all consequences of triples in rawModel
 - backward chaining: triggered by SPARQL queries or list(...) calls
- Different reasoners compute different sets of consequences:
 - "transitive" reasoner: only subClassOf hierarchy, etc.
 - RDFS reasoner: all RDFS inference rules
 - OWL/mini/micro: various subsets of OWL inferences
- Most reasoners can be configured before binding them to a model, to change various details of their behaviour.

Convenience methods are used to construct standard reasoners or inference models

- Convenience methods are used to construct standard reasoners or inference models
- Get standard reasoners from ReasonerRegistry:
 Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();

- Convenience methods are used to construct standard reasoners or inference models
- Get standard reasoners from ReasonerRegistry:
 Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();
- Get inference models with standard reasoners from ModelFactory:
 InfModel inf = ModelFactory.createRDFSModel(rawModel);

- Convenience methods are used to construct standard reasoners or inference models
- Get standard reasoners from ReasonerRegistry:
 Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();
- Get inference models with standard reasoners from ModelFactory:
 InfModel inf = ModelFactory.createRDFSModel(rawModel);
- What's the point of the long winded way?

- Convenience methods are used to construct standard reasoners or inference models
- Get standard reasoners from ReasonerRegistry:
 Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();
- Get inference models with standard reasoners from ModelFactory:
 InfModel inf = ModelFactory.createRDFSModel(rawModel);
- What's the point of the long winded way?
 - Can ask for non-builtin provers, e.g. Pellet

- Convenience methods are used to construct standard reasoners or inference models
- Get standard reasoners from ReasonerRegistry:
 Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();
- Get inference models with standard reasoners from ModelFactory:
 InfModel inf = ModelFactory.createRDFSModel(rawModel);
- What's the point of the long winded way?
 - Can ask for non-builtin provers, e.g. Pellet
 - Can configure reasoners

Simplified overview

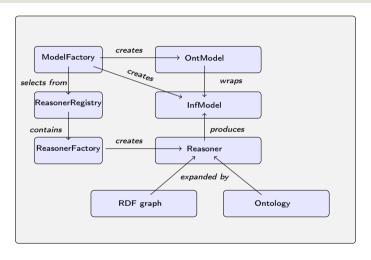


Figure: The structure of the reasoning system

Outline

- 1 Recap: Reasoning with rules
- 2 Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 5 Richer API with OntModel
- 6 External reasoners
- A worked example

Transitive reasoners:

• provides support for simple taxonomy traversal

- provides support for simple taxonomy traversal
- implements only the reflexivity and transitivity of

- provides support for simple taxonomy traversal
- implements only the reflexivity and transitivity of
 - rdfs:subPropertyOf, and

- provides support for simple taxonomy traversal
- implements only the reflexivity and transitivity of
 - rdfs:subPropertyOf, and
 - rdfs:subClassOf.

Transitive reasoners:

- provides support for simple taxonomy traversal
- implements only the reflexivity and transitivity of
 - rdfs:subPropertyOf, and
 - rdfs:subClassOf.

RDFS reasoners:

Transitive reasoners:

- provides support for simple taxonomy traversal
- implements only the reflexivity and transitivity of
 - rdfs:subPropertyOf, and
 - rdfs:subClassOf.

RDFS reasoners:

• supports (most of) the axioms and inference rules specific to RDFS.

Transitive reasoners:

- provides support for simple taxonomy traversal
- implements only the reflexivity and transitivity of
 - rdfs:subPropertyOf, and
 - rdfs:subClassOf.

RDFS reasoners:

• supports (most of) the axioms and inference rules specific to RDFS.

OWL, OWL mini/micro reasoners:

Transitive reasoners:

- provides support for simple taxonomy traversal
- implements only the reflexivity and transitivity of
 - rdfs:subPropertyOf, and
 - rdfs:subClassOf.

RDFS reasoners:

• supports (most of) the axioms and inference rules specific to RDFS.

OWL, OWL mini/micro reasoners:

• implements different subsets of the OWL specification

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

Three main ways of obtaining a built-in reasoner:

• call a convenience method on the ModelFactory

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and
 - returns an InfModel all in one go

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and
 - returns an InfModel all in one go
- 2 call a static method in the ReasonerRegistry,

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and
 - returns an InfModel all in one go
- 2 call a static method in the ReasonerRegistry,
 - the static method returns a reasoner object

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and
 - returns an InfModel all in one go
- 2 call a static method in the ReasonerRegistry,
 - the static method returns a reasoner object
 - pass it to ModelFactory.createInfModel()

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and
 - returns an InfModel all in one go
- 2 call a static method in the ReasonerRegistry,
 - the static method returns a reasoner object
 - pass it to ModelFactory.createInfModel()
 - along with a model and a dataset

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and
 - returns an InfModel all in one go
- call a static method in the ReasonerRegistry,
 - the static method returns a reasoner object
 - pass it to ModelFactory.createInfModel()
 - along with a model and a dataset
- use a reasoner factory directly

- call a convenience method on the ModelFactory
 - which calls a ReasonerFactory in the ReasonerRegistry, and
 - returns an InfModel all in one go
- call a static method in the ReasonerRegistry,
 - the static method returns a reasoner object
 - pass it to ModelFactory.createInfModel()
 - along with a model and a dataset
- use a reasoner factory directly
 - covered in connection with external reasoners later

A simple RDFS model

```
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);
InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);
```

A simple RDFS model Model sche = FileManager.get().loadModel(aURI); Model dat = FileManager.get().loadModel(bURI); InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

A simple RDFS model Model sche = FileManager.get().loadModel(aURI); Model dat = FileManager.get().loadModel(bURI); InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

method createRDFSModel() returns an InfModel

• An InfModel has a basic inference API, such as;

A simple RDFS model Model sche = FileManager.get().loadModel(aURI); Model dat = FileManager.get().loadModel(bURI); InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

- An InfModel has a basic inference API, such as;
 - getDeductionsModel() which returns the inferred triples,

A simple RDFS model Model sche = FileManager.get().loadModel(aURI); Model dat = FileManager.get().loadModel(bURI); InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

- An InfModel has a basic inference API, such as;
 - getDeductionsModel() which returns the inferred triples,
 - getRawModel() which returns the base triples,

A simple RDFS model Model sche = FileManager.get().loadModel(aURI); Model dat = FileManager.get().loadModel(bURI); InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

- An InfModel has a basic inference API, such as;
 - getDeductionsModel() which returns the inferred triples,
 - getRawModel() which returns the base triples,
 - getReasoner() which returns the RDFS reasoner,

A simple RDFS model Model sche = FileManager.get().loadModel(aURI); Model dat = FileManager.get().loadModel(bURI); InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

- An InfModel has a basic inference API, such as;
 - getDeductionsModel() which returns the inferred triples,
 - getRawModel() which returns the base triples,
 - getReasoner() which returns the RDFS reasoner,
 - getDerivation(stmt) which returns a trace of the derivation

```
using ModelFactory.createInfModel
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);
```

```
using ModelFactory.createInfModel
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);
Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);
```

```
using ModelFactory.createInfModel
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);
Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);
```

Virtues of this approach:

• we retain a reference to the reasoner,

```
using ModelFactory.createInfModel
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);
```

- we retain a reference to the reasoner,
- that can be used to configure it

```
using ModelFactory.createInfModel

Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);
```

- we retain a reference to the reasoner,
- that can be used to configure it
 - e.g. to do backwards or forwards chaining

```
using ModelFactory.createInfModel
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);
Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);
```

- we retain a reference to the reasoner,
- that can be used to configure it
 - e.g. to do backwards or forwards chaining
 - ... mind you, not all reasoners can do both

```
using ModelFactory.createInfModel

Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);
```

- we retain a reference to the reasoner,
- that can be used to configure it
 - e.g. to do backwards or forwards chaining
 - ... mind you, not all reasoners can do both
- similar for built-in and external reasoners alike

Outline

- 1 Recap: Reasoning with rules
- 2 Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 5 Richer API with OntModel
- 6 External reasoners
- A worked example

An InfModel provides

An InfModel provides

• basic functionality associated with the reasoner, and

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

An OntModel provides

• a richer view of a knowledge base

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

- a richer view of a knowledge base
- in terms of ontological concepts

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

- a richer view of a knowledge base
- in terms of ontological concepts
- mirrored by methods such as

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

- a richer view of a knowledge base
- in terms of ontological concepts
- mirrored by methods such as
 - createClass()

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

- a richer view of a knowledge base
- in terms of ontological concepts
- mirrored by methods such as
 - createClass()
 - createDatatypeProperty()

An InfModel provides

- basic functionality associated with the reasoner, and
- basic functionality to sort entailed from explicit statements
- ... but no fine-grained control over an ontology

- a richer view of a knowledge base
- in terms of ontological concepts
- mirrored by methods such as
 - createClass()
 - createDatatypeProperty()
 - getIntersectionClass()

contd.

An OntModel does not by itself compute entailments

An OntModel does not by itself compute entailments

• it is merely a wrapper

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

However,

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

However,

• an OntModel can be constructed according to a specification object

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

However,

- an OntModel can be constructed according to a specification object
- that, among other things, tells Jena which reasoner to use

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

However,

- an OntModel can be constructed according to a specification object
- that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

However,

- an OntModel can be constructed according to a specification object
- that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates

• the storage scheme,

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

However,

- an OntModel can be constructed according to a specification object
- that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates

- the storage scheme,
- language profile,

An OntModel does not by itself compute entailments

- it is merely a wrapper
- that provides a convenient API
- given that your data is described by an ontology

However,

- an OntModel can be constructed according to a specification object
- that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates

- the storage scheme,
- language profile,
- and the reasoner associated with a particular OntModel

The class OntModelSpec contains static references to prebuilt instances:

The class OntModelSpec contains static references to prebuilt instances:

OWL_DL_MEM_RDFS_INF: In-memory OWL DL model that uses the RDFS inference engine.

The class OntModelSpec contains static references to prebuilt instances:

OWL_DL_MEM_RDFS_INF: In-memory OWL DL model that uses the RDFS inference engine.

OWL_LITE_MEM: In-memory OWL Lite model. No reasoning.

The class OntModelSpec contains static references to prebuilt instances:

```
OWL_DL_MEM_RDFS_INF: In-memory OWL DL model that uses the RDFS inference engine.
```

OWL_LITE_MEM: In-memory OWL Lite model. No reasoning.

OWL_MEM_MICRO_RULE_INF: In-memory OWL model uses the OWLMicro inference engine.

The class OntModelSpec contains static references to prebuilt instances:

```
OWL_DL_MEM_RDFS_INF: In-memory OWL DL model that uses the RDFS inference engine.
```

OWL_LITE_MEM: In-memory OWL Lite model. No reasoning.

OWL_MEM_MICRO_RULE_INF: In-memory OWL model uses the OWLMicro inference engine.

OWL_DL_MEM: In-Memory OWL DL model. No reasoning.

An OntModel is created by calling a method in ModelFactory

An OntModel is created by calling a method in ModelFactory

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM); OntModel model = ModelFactory.createOntologyModel(spec, model);

An OntModel is created by calling a method in ModelFactory

```
Specifying an OntModel
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM);
OntModel model = ModelFactory.createOntologyModel(spec, model);
```

Jena currently lags behind (... and has done so for quite a while)

An OntModel is created by calling a method in ModelFactory

```
Specifying an OntModel
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM);
OntModel model = ModelFactory.createOntologyModel(spec, model);
```

Jena currently lags behind (... and has done so for quite a while)

• no spec for OWL 2

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM); OntModel model = ModelFactory.createOntologyModel(spec, model);

Jena currently lags behind (... and has done so for quite a while)

- no spec for OWL 2
- ... or any of its profiles

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM); OntModel model = ModelFactory.createOntologyModel(spec, model);

Jena currently lags behind (... and has done so for quite a while)

- no spec for OWL 2
- ...or any of its profiles
- does not mean that we cannot use OWL 2 ontologies with Jena

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel OntModelSpec = new OntModelSpec(OntModelSpec.OWL_DL_MEM);

Jena currently lags behind (...and has done so for quite a while)

- no spec for OWL 2
- ... or any of its profiles
- does not mean that we cannot use OWL 2 ontologies with Jena

OntModel model = ModelFactory.createOntologyModel(spec, model);

• but we do not have support in the API for all language constructs

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

```
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM);
OntModel model = ModelFactory.createOntologyModel(spec, model);
```

Jena currently lags behind (... and has done so for quite a while)

- no spec for OWL 2
- ... or any of its profiles
- does not mean that we cannot use OWL 2 ontologies with Jena
- but we do not have support in the API for all language constructs
- some reasoners supply their own such API, e.g. Pellet

Question

So... we learnt how to use Jena to add, retrieve, modify triples — why do we need reasoners?

Question

- So... we learnt how to use Jena to add, retrieve, modify triples
 - why do we need reasoners?

Many reasons:

- Separate logic (All symphony orchestras are ensembles) from control (when to add which triples): declarative programming.
- Can use ontology reasoners to check that the logic is OK. Much easier than checking that a Java program is OK.
- Getting the control right (and efficient) is not always easy. Using a generic reasoner reuses this know-how.

Outline

- 1 Recap: Reasoning with rules
- 2 Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 5 Richer API with OntModel
- 6 External reasoners
- A worked example

Jena's reasoning-system architecture makes it easy...

Jena's reasoning-system architecture makes it easy...

• for third party vendors to write reasoners

Jena's reasoning-system architecture makes it easy. . .

- for third party vendors to write reasoners
- that can be plugged in to Jena architecture

Jena's reasoning-system architecture makes it easy. . .

- for third party vendors to write reasoners
- that can be plugged in to Jena architecture

External reasoners usually

Jena's reasoning-system architecture makes it easy. . .

- for third party vendors to write reasoners
- that can be plugged in to Jena architecture

External reasoners usually

• check in a ReasonerFactory in the ReasonerRegistry, and

Jena's reasoning-system architecture makes it easy. . .

- for third party vendors to write reasoners
- that can be plugged in to Jena architecture

External reasoners usually

- check in a ReasonerFactory in the ReasonerRegistry, and
- supply a OntModelSpec to be handed to the ModelFactory

Some better known ones

There are many, many reasoners to choose from, e.g.

Some better known ones

There are many, many reasoners to choose from, e.g.

• FaCT++

Some better known ones

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL
- HermiT

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL
- HermiT
- Pellet

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL
- HermiT
- Pellet

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL
- HermiT
- Pellet

Reasoning algorithms vary with purpose, scope, philosophy and age (!);

• tableau reasoners (FaCT++, Pellet, Cerebra)

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL
- HermiT
- Pellet

- tableau reasoners (FaCT++, Pellet, Cerebra)
- rule-based reasoners (CEL)

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL
- HermiT
- Pellet

- tableau reasoners (FaCT++, Pellet, Cerebra)
- rule-based reasoners (CEL)
- hyper-tableaux (HermiT)

There are many, many reasoners to choose from, e.g.

- FaCT++
- Cerebra Engine
- CEL
- HermiT
- Pellet

- tableau reasoners (FaCT++, Pellet, Cerebra)
- rule-based reasoners (CEL)
- hyper-tableaux (HermiT)
- only rule reasoners have a notion of forwards vs. backwards

Using an external reasoner

• retrieve an instance of the reasoner:

```
Reasoner r;
r = PelletReasonerFactory.theInstance().create();
```

Using an external reasoner

• retrieve an instance of the reasoner:

```
Reasoner r;
r = PelletReasonerFactory.theInstance().create();
```

• associate the reasoner with an InfModel, an ontology and a dataset:

```
InfModel inf;
inf = ModelFactory.createInfModel(r, ontology, dataset);
```

Using an external reasoner

• retrieve an instance of the reasoner:

```
Reasoner r;
r = PelletReasonerFactory.theInstance().create();
```

associate the reasoner with an InfModel, an ontology and a dataset:

```
InfModel inf;
inf = ModelFactory.createInfModel(r, ontology, dataset);
```

• Or: create an OntModel for a richer API:

Outline

- Recap: Reasoning with rules
- 2 Backwards and forwards reasoning
- The Jena reasoning system
- 4 Built-in reasoners
- 5 Richer API with OntModel
- 6 External reasoners
- A worked example

Quick facts about the DBpedia project:

• aims to extract structured content from Wikipedia

- aims to extract structured content from Wikipedia
- it is a community effort, so. . .

- aims to extract structured content from Wikipedia
- it is a community effort, so. . .
- the data is not always uniform and consistent

- aims to extract structured content from Wikipedia
- it is a community effort, so. . .
- the data is not always uniform and consistent
- distinct properties for 'intuitively similar' objects not uncommon, e.g.;

- aims to extract structured content from Wikipedia
- it is a community effort, so. . .
- the data is not always uniform and consistent
- distinct properties for 'intuitively similar' objects not uncommon, e.g.;
 - dbprop:doctoralStudents

- aims to extract structured content from Wikipedia
- it is a community effort, so. . .
- the data is not always uniform and consistent
- distinct properties for 'intuitively similar' objects not uncommon, e.g.;
 - dbprop:doctoralStudents
 - dbpedia:doctoralStudent

Ullman is one of the most referenced computer scientists

• DBpedia contains info about, e.g. his

- DBpedia contains info about, e.g. his
 - education and laureates

- DBpedia contains info about, e.g. his
 - education and laureates
 - citizenship and nationality

- DBpedia contains info about, e.g. his
 - education and laureates
 - citizenship and nationality
 - scientific contributions

- DBpedia contains info about, e.g. his
 - education and laureates
 - citizenship and nationality
 - scientific contributions
- say we wish to compile a list of his collaborators, including at least

- DBpedia contains info about, e.g. his
 - education and laureates
 - citizenship and nationality
 - scientific contributions
- say we wish to compile a list of his collaborators, including at least
 - advisors, and

- DBpedia contains info about, e.g. his
 - education and laureates
 - citizenship and nationality
 - scientific contributions
- say we wish to compile a list of his collaborators, including at least
 - advisors, and
 - PhD students

• set relevant prefixes:

```
String ont = "http://dbpedia.org/ontology/";
String res = "http://dbpedia.org/resource/";
String prop = "http://dbpedia.org/property/";
String ex = "http://www.example.org/";
```

set relevant prefixes:

```
String ont = "http://dbpedia.org/ontology/";
String res = "http://dbpedia.org/resource/";
String prop = "http://dbpedia.org/property/";
String ex = "http://www.example.org/";
```

• connect to DBpedia, describe J. Ullman:

```
String dbpedia = "http://dbpedia.org/sparql";
String describe = "DESCRIBE <" + res + "Jeffrey_Ullman>";
QueryExecution qexc =
   QueryExecutionFactory.sparqlService(dbpedia, describe);
Model ullman = qexc.execDescribe();
```

• build an ontology of collaborators (or better, read it from file):

```
Model ontology = ModelFactory.createDefaultModel();
Property collab = ontology.createProperty(ex + "collaborator");
Property phds = ontology.createProperty(prop + "doctoralStudents");
Property phd = ontology.createProperty(ont + "doctoralStudent");
Property adv = ontology.createProperty(ont + "doctoralAdvisor");
ontology.add(phds, RDFS.subPropertyOf, collab);
ontology.add(phd, RDFS.subPropertyOf, collab);
ontology.add(adv, RDFS.subPropertyOf, collab);
```

• build an ontology of collaborators (or better, read it from file):

```
Model ontology = ModelFactory.createDefaultModel();
 Property collab = ontology.createProperty(ex + "collaborator");
 Property phds = ontology.createProperty(prop + "doctoralStudents");
 Property phd = ontology.createProperty(ont + "doctoralStudent");
 Property adv = ontology.createProperty(ont + "doctoralAdvisor");
  ontology.add(phds, RDFS.subPropertyOf, collab);
  ontology.add(phd, RDFS.subPropertyOf, collab);
  ontologv.add(adv, RDFS.subPropertyOf, collab);
...and reason over it:
  InfModel inf;
  inf = ModelFactory.createRDFSModel(ontology, ullman);
```

• build an ontology of collaborators (or better, read it from file):

```
Model ontology = ModelFactory.createDefaultModel();
 Property collab = ontology.createProperty(ex + "collaborator");
 Property phds = ontology.createProperty(prop + "doctoralStudents");
 Property phd = ontology.createProperty(ont + "doctoralStudent");
 Property adv = ontology.createProperty(ont + "doctoralAdvisor");
  ontology.add(phds, RDFS.subPropertyOf, collab);
  ontology.add(phd, RDFS.subPropertyOf, collab);
  ontologv.add(adv, RDFS.subPropertyOf, collab);
...and reason over it:
  InfModel inf;
  inf = ModelFactorv.createRDFSModel(ontology, ullman);

    wrap it in an OntModel if you need a richer API
```

• write the query:

```
String qStr =
"PREFIX ont: <" + ont + ">" +
"PREFIX res: <" + res + ">" +
"PREFIX ex: <" + ex + ">" +
"SELECT ?collaborator WHERE {" +
" res:Jeffrey_Ullman ex:collaborator ?collaborator." +
"}":
```

• write the query: String qStr = "PREFIX ont: <" + ont + ">" + "PREFIX res: <" + res + ">" + "PREFIX ex: <" + ex + ">" + "SELECT ?collaborator WHERE {" + " res:Jeffrey_Ullman ex:collaborator ?collaborator." + "}": execute it... Query query = QueryFactory.create(qStr); QueryExecution qe = QueryExecutionFactory.create(query, inf); ResultSet res = qe.execSelect();

• write the query:

```
String qStr =
"PREFIX ont: <" + ont + ">" +
"PREFIX res: <" + res + ">" +
"PREFIX ex: <" + ex + ">" +
"SELECT ?collaborator WHERE {" +
" res:Jeffrey_Ullman ex:collaborator ?collaborator." +
"}";
```

execute it...

```
Query query = QueryFactory.create(qStr);
QueryExecution qe = QueryExecutionFactory.create(query, inf);
ResultSet res = ge.execSelect();
```

and, if, you like, print out the results
 ResultSetFormatter.out(res, query);

• backwards reasoning often suitable for stuff in memory

- backwards reasoning often suitable for stuff in memory
- you need a reasoner capable of doing backwards reasoning

- backwards reasoning often suitable for stuff in memory
- you need a reasoner capable of doing backwards reasoning
- i.e. a rule reasoner

- backwards reasoning often suitable for stuff in memory
- you need a reasoner capable of doing backwards reasoning
- i.e. a rule reasoner
- and a way to configure it

- backwards reasoning often suitable for stuff in memory
- you need a reasoner capable of doing backwards reasoning
- i.e. a rule reasoner
- and a way to configure it
- let's use the built-in RDFSRuleReasoner

- backwards reasoning often suitable for stuff in memory
- you need a reasoner capable of doing backwards reasoning
- i.e. a rule reasoner
- and a way to configure it
- let's use the built-in RDFSRuleReasoner
- first create a configuration specification:
 - # A config spec is itself an RDF graph
 Resource config = ontology.createResource();

• ReasonerVocabulary holds terms for configuration purposes:

config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");

• ReasonerVocabulary holds terms for configuration purposes:

```
config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");
```

• now create a rule reasoner and pass it the configuration

```
Reasoner r;
r = RDFSRuleReasonerFactory.theInstance().create(config);
```

• ReasonerVocabulary holds terms for configuration purposes:

```
config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");
```

• now create a rule reasoner and pass it the configuration

```
Reasoner r;
r = RDFSRuleReasonerFactory.theInstance().create(config);
```

• proceed as before...

Next Weeks

- (Simplified) Model Semantics for RDF and RDFS
- ullet Relationship Reasoning \Longleftrightarrow Semantics
- OWL, semantics of that, etc.