POLPAÇÃO SEMI-QUÍMICA

Ref. básica para estudo: Capítulos 5 e 6: Ek M, Gellerstedt G, Henriksson G. *Pulping Chemistry and Technology* (Volume 2). Berlin, Walter de Gruyter, 2009

Polpação semi-química - Característica principal: tratamento químico *em digestor*, seguido de desfibramento/refino em um refinador de disco

POLPAÇÃO SEMI-QUÍMICA (ou quimiomecânica)

Característica principal: tratamento químico seguido de desfibramento/refino em um refinador de disco

- >> O processo semiquímico mais desenvolvido é o NSSC (Neutral Sulfite Semi-Chemical). Esse processo é aplicado principalmente para madeiras duras e proporciona rendimentos entre 65-85%.
- >> O princípio químico no processo NSSC é uma sulfonação da lignina (principalmente da lamela média), o que causa a dissolução parcial da lignina, além de gerar carga superficial na lignina residual. A s duas alterações enfraquecem as ligações entre as fibras e facilitam o desfibramento mecânico posterior

PRINCIPAIS ETAPAS DO PROCESSO NSSC

- >> impregnação da madeira com licor contendo sulfito de sódio cerca de 1h a 125°C e pressão
- >> cozimento a temperatura entre 160 e 190°C
- (licor de cozimento contém: Na₂SO₃ em água, tamponado com NaOH, Na₂CO₃ ou NaHSO₃. Pode ser ainda uma solução de Na₂CO₃ gaseificada com SO₂)
- >> tempo de cozimento: 15 min 4h, depende do tipo de digestor e da polpa desejada
- >> desfibramento do material pré-cozido em um refinador de disco

Reações químicas no processo sulfito – reações da lignina

O processo NSSC usualmente é conduzido com sulfito de sódio dissolvido em meio aquoso [151 pm] : 72—

$$SO_3^{2-} + H_2O \implies HSO_3^{-} + OH^{-}$$

 $HSO_3^{-} \implies SO_3^{2-} + H^{+}$ $pKa = 6,97$

Vários grupos funcionais dos componentes da madeira reagem com íons OH⁻. Por isso, usualmente se adiciona álcali ao meio reacional

Reações possíveis da lignina no processo NSSC

Figure 5.38. Mechanism for the sulphonation of lignin in neutral sulphite pulping.

Reações secundárias no processo NSSC

>> Usualmente, a reação é conduzida em meio neutro ou levemente alcalino

>> Quando não há adição de agente alcalinizante (OH- ou CO₃²⁻), o consumo de OH- proveniente da hidrólise do sulfito pode levar a um pH final levemente ácido

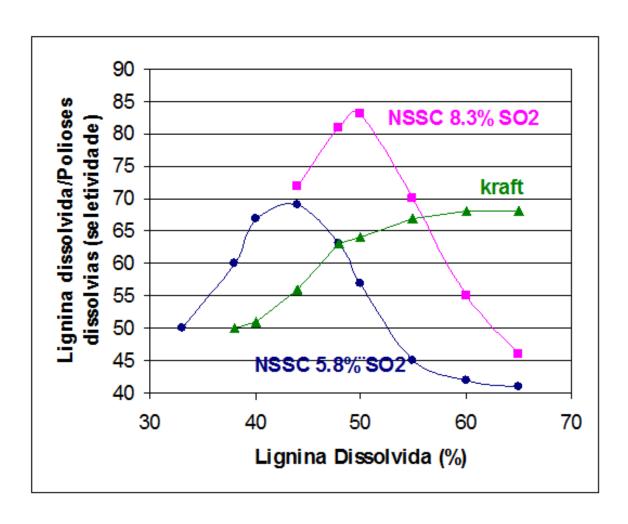
Figure 5.37. Mechanism for the sulphonation of lignin in acidic sulphite pulping.

VANTAGENS comparativas do processo NSSC:

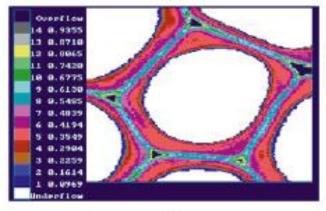
>> Alto rendimento, baixo consumo de produtos químicos a um determinado teor de lignina residual, factível em pequena escala

DESVANTAGENS

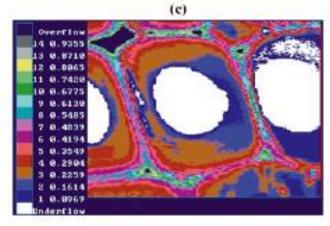
>> O licor de saída (após a polpação) do processo NSSC não é utilizável para geração de calor, pois contém baixo teor de matéria orgânica.

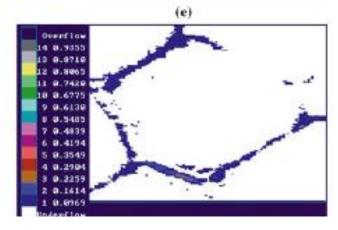

>> A dificuldade básica de recuperar sulfito é a oxidação de sulfeto a sultifo $(S^{2-} \rightarrow SO_3^{2-})$ sem gerar tiosulfato $(S_2O_3^{2-})$ que é conhecido por causar problemas de corrosão

TIPOS DE MADEIRA EMPREGADOS NO PROCESSO NSSC


>> O processo NSSC é preferencialmente aplicado para madeiras de folhosas, pois estas contêm baixo teor de lignina e são mais facilmente deslignificadas. Madeiras de coníferas requerem alta dosagem de produtos químicos (sulfito) para produzir polpas adequadas.

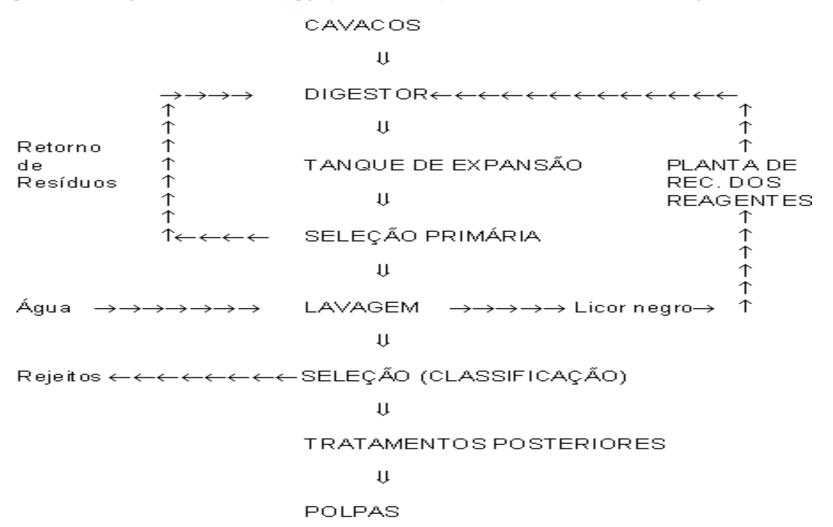
>> O princípio no processo NSSC é a remoção seletiva de lignina (maior que 50%) preservando as polioses (cerca de 40% é retida). O teor de lignina residual nas polpas NSSC está entre 10-15%.


SELETIVIDADE NA DISSOLUÇÃO DE LIGNINA Comparativo com o processo kraft


Topoquímica da deslignificação com sulfito alcalino (SO₃²-/OH⁻)

Untreated *P. taeda*

Partially delignified *P. taeda*



Delignified P. taeda

Diagrama simplificado do processo kraft

próxima aula

Ref. básica para estudo: Capítulos 6: Ek M, Gellerstedt G, Henriksson G. Pulping Chemistry and Technology (Volume 2). Berlin, Walter de Gruyter, 2009

https://www.youtube.com/watch?v=2Uh3Xladm1A