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Equations of motion for systems of material points

* Newton’s laws

15t law (inertia): there are special observers (called inertial observers)
with respect to whom isolated material points (that is, those subjected to
null resultant force) are at rest or perform URM (uniform rectilinear
motion).

2"d Jaw (fundamental): the resultant force acting on a material point is
proportional to its acceleration with respect to an inertial observer

(F = ma). The constant of proportionality is a material point property
called mass, m>0

3" Jaw (action and reaction): to every action of a material point over
another one it corresponds a reaction of same intensity and direction,
although In opposite sense.



Physical space: afine Euclidian space of dimension 3.
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Configuration space: afine Euclidian space of dimension 3N (if the 3N
coordinates are independent).
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* a “point” in this space fully characterizes
the material point system in time t
(coordinates of material points obtained by
“projections’)



* If there are c constraint equations relating the coordinates it is
possible to use a configuration space os dimension n = 3N-c (called
number of “degrees of freedom™)

Example: a material point moving on a parabole
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» Generalized coordinates Q,(t), Q,(t), ..., Q,(t), where n = number of
degrees of freedom, are conveniently chosen scalar quantities that allow
for stablishing a bi-univocal relationship with the 3N coordinates of the

material point system.

X =x%(Q,Qy,, Q1)
12:X(Q11Q2’ Qn1t)

3N holonomic (reonomic) constraint
equations

=53 (Q, Q1 Qi t)

« the functions fo(Ql,QZ,...,Qn,t) are finite of class Ct

e Transformation matrix

 Non-null Jacobian



» Particular case of holonomic constraint: scleronomic constraint
X; = X(ix(Ql’QZ""’Qn)

Example: a material point moving on a parabole
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Let it be T = Fi}

J=detT=1



Virtual displacements — holonomic constraint
XA
Q/ fz(xl, X, x3,t2): 0
constraint equation in t,

X X fl(xl,xz,x3,tl):0 constraint equation in t;
R, real displacement
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* Virtual displacements are kinematically admissible displacements in a
fixed time t, that Is, satisfy the constraint equations for that time t.

» The class of real displacements do not necessarily coincide with that of
the virtual displacements for holonomic constraints.

» However, for scleronomic constraints, since the constraint equations are
Independent of t, the class of real displacements coincides with that of
virtual displacements, that Is, the real displacements are a particular case
of the virtual displacements.

» Ideal constraint reactions are orthogonal to the respective virtual
displacements. Hence, ideal constraint reactions do not give rise to virtual
work:

SW=F" 5R =0



D’ Alembert’s Principle
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+F"+F " = resultant force

non-ideal constraint

i — R, = Inertial force

The sum of the resultant
and the inertial forces Is
the null vector

(“closing” of force
polygon, as in statics)

Generalized
D’ Alembert’s Principle



« Remark 1  Effective force Ifae = Ifaa + IfaVn

 Remark 2  System of ideal constraints, only:
\

Y (Fe+E!).oR, =0

a=1

(it Is not necessary to know the constraint forces to
formulate the equations of statics/dynamics)

 Remark 3  Principle of virtual displacements in statics Is a particular
case:

\
D F2.0R, =0 < equilibrium
a=1



Hamilton’s Principle
2"d Newton’s law<— D’Alembert’s Principle <= Hamilton’s Principle
t 0T = variation of kinetic energy

-“(51- SV +5W ”C)dt _g OV = variation of potential energy

t OSW M = virtual work of non-
conservative forces

X .
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Lagrange’s Equations

Hamilton’s Principle <= Lagrange’s Equations

d [ oT _G_T—_ﬁ_v_|_|\|

dtloQ, ) oQ  oQ

T:T(Ql,Qz,...,Qn,Ql,Qz,...,Qn,t) Kinetic energy

V =V(Q,0,....Q,,t) potential energy N B
= OR

N, = generalized non-conservative force =) F°. i

a=1 a(2|

e Remark

_N'Cne o5 L rc  Virtual work of non-
Z NioQ; = Z P o0 iy =OW conservative forces



Formulation of equations of motion
Example 1: One-degree-of-freedom linear oscillator
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28 Newton’s law:

p(t)-kQ-cQ =mQ

D’ Alembert’s Principle:

p(t)-kQ-cQ-mQ =0

Generalized D’ Alembert’s Principle:

p(t)-kQ-cQ-mOlsQ=0¥5Q

mQ +¢Q +kQ = p(t)




It{amllton s Principle:
2

[T -6V +ow™)dt=0
1

%:EmQZ — 6T =mQ 5 Q

vzész — 5V =kQsQ

SW™=NsQ =(p(t)- CQ)5Q

Substituting: ij(SQde[ kQ + p(t)-cO |5 Qdt =

tl
‘ mtegratlng by parts

5Q(t)=60Q(t,)=0 — mQs L —“mQ+cQ+kQ— p(t)]s Qdt =

Hence, J%[mQJrCQ'J,kQ—p(t)]&th:O VoQ
: mQ +¢Q +kQ = p(t)




Lagrange’s equation:
d(oT ) oT oV

— |- =——+N
dt{0Q ) 0Q 0Q

o 0 T e o 9T
T_2mQ 3G mQ ; 50 0
d(oT X
dt(an_mQ
1 oV
= ZkO? — — =Kk
v sz 50 Q
SW™=N5Q=(p(t)-cq)sQ — N =p(t)-cQ
Substituting: mQ = -kQ + p(t)— cQ

mQ +¢Q +kQ = p(t)




Example 2

p(x,t) = P=C (1)
M |

B m,
AA \E O @ F%C -

g, ikl i c, 2k, AB e BC rigid bars

7 e 7 BC massless bar

a 78 1| &l 2 & a
.
| \ Q

A ‘ -

Linear dynamics: horizontal displacements at B and C are neglected,
which Is reasonable for small Q.
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N =-cQ+p’(t)
with ¢ =2+ and p*(t):Eﬁag“(t)
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Lagrange’s equation:
d(oT | oT oV

— |- =——+N
dt{0Q ) 0Q 0Q

mQ+cQ+kQ=np;+pt)



Example 3: Simple pendulum

1 .\
P T= Em(LQ)
mQO [ JL(1-cosQ) V= +mg|—(]——COSQ)
vmg
Lagrange’s equation: ( j GV 8V
t\aQ) B~ aq,

mL’Q = -mgLsen Q
Q + %sen Q=0 (non-linear)

o %Q =0 (linear)



Example 4: Simple pendulum subjected to support excitation

R = LsenQi +(f-LcosQ)j
R=LQcosQi +(f+LQsenQ)]

V =mg[f+L(1-cosQ)
T :%m(L2Q2c032Q+ L’Q%sen’Q +2LfQsenQ + fz)

T :%mL2Q2+%mf2+mLstenQ



Lagrange’s equation:
d(oT) oT oV /fy
dt\ 60 ) 60  4Q

d(oT )  ,« . L
dt(aQ]—mLQ+mLfsenQ+mLchosQ

oT . oV
—— = mLfO cos —— = maqLsen
50 QcosQ 0 g Q

Substituting:

mL%Q + mLf senQ + mLfQ cosQ- le%'cosQ = -mgLsenQ
mL2Q +mL(g + f)senQ =0

ou Q+=— ! (g +f)senQ =0 (non-linear)

Q+%(g+f)Q:O ~ (linear)



Example 5: Rigid bar with non-linear rotational spring and imperfection,
subjected to dynamical load p(t) and static pre-loading mg

(D)
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Non-linear

L . Vmg/ M (Q ) =K (Q - 5)[1 - (Q - ‘9)2] “constitutive” law

Imperfection ¢ <<<1

1 .
T = —-mL°Q?
> Q

F Q-¢f Q-¢)f
| |

V = jK&[l—@z]dﬁ—mgL(COSg—cosQ): K| = :

0
~mgL(cose —cosQ)




SW™=N5sQ=P(t)LsenQ6Q —= N =P(t)LsenQ

Lagrange’s equation:
d(oT ) oT oV
= |-—=——+1
dt\0Q ) 0Q 50

UG = -K(Q-e)ft-(Q - e)f [+[mg + P(t)]LsenQ

UG + K (Q - )i- (Q - ) |=[mg+P(t)]Lseng



