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• Newton’s laws 

1st law (inertia): there are special observers (called inertial observers) 

with respect to whom isolated material points (that is, those subjected to 

null resultant force)  are at rest or perform URM (uniform rectilinear 

motion). 

 

 

3rd law (action and reaction): to every action of a material point over 

another one it corresponds a reaction of same intensity and direction, 

although in opposite sense. 

Equations of motion for systems of material points 

 

2nd law (fundamental): the resultant force acting on a material point is 

proportional to its acceleration with respect to an inertial observer            

(              ). The constant of proportionality is a material point property 

called mass,  m>0 
amF






Physical space: afine Euclidian space of dimension 3. 

Configuration space: afine Euclidian space of dimension 3N (if the 3N 

coordinates are independent). 

• N material points mi 

• position of mi caracterized by 3 

coordinates: xi
1, xi

2, xi
3 

• a “point” in this space fully characterizes 

the material point system in time t 

(coordinates of material points obtained by 

“projections”) 



Example: a material point moving on a parabole 

x3
  = 0 

x2 =  (x1)2 

c = 2 constraint 

equations 

Configuration space of dim 3N = 3 

Configuration space of dim n = 3N-c 

                                                   n = 1 

                                                                                                   

• if there are c constraint equations relating the coordinates it is 

possible to use a configuration space os dimension n = 3N-c (called 

number of “degrees of freedom”) 



• Generalized coordinates Q1(t), Q2(t), ... , Qn(t), where n = number of 

degrees of freedom, are conveniently chosen scalar quantities that allow 

for stablishing a bi-univocal relationship with the 3N coordinates of the 

material point system. 
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3N holonomic (reonomic) constraint 

equations 

• the functions                                   are finite of class C1  tQQQx n

i ,,...,, 21

• Transformation matrix 

• Non-null Jacobian 

... 



• Particular case of holonomic constraint: scleronomic constraint 
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 a transformation “matrix” T (of 

order n = 1) with det T  0 

 

Let it be  

 n

ii QQQxx ,...,, 21 

Example: a material point moving on a parabole 
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J= det T = 1 
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constraint equation in t2 
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constraint equation in t1 

real displacement 

virtual displacement 
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Virtual displacements – holonomic constraint 



• Virtual displacements are kinematically admissible displacements in a 

fixed time t, that is, satisfy the constraint equations for that time t. 

• The class of real displacements do not necessarily coincide with that of 

the virtual displacements for holonomic constraints. 

• However, for scleronomic constraints, since the constraint equations are 

independent of t, the class of real displacements coincides with that of 

virtual displacements, that is, the real displacements are a particular case 

of the virtual displacements. 

• Ideal constraint reactions are orthogonal to the respective virtual 

displacements. Hence, ideal constraint reactions do not give rise to virtual 

work: 
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2nd Newton’s law 

D’Alembert’s Principle 

 = 1 a N 

0
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dt
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 = 1 a N 

resultante força vnvia FFFF 



active ideal 

constraint 

non-ideal constraint 

inércia deforça 
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dt
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The sum of the resultant 

and the inertial forces is 

the null vector 

(“closing” of force 

polygon, as in statics) 

  0.0.
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 Generalized 

D’Alembert’s Principle 

resultant force 

inertial force 



vnae FFF 


• Remark 1 Effective force 

(it is not necessary to know the constraint forces to 

formulate the equations of statics/dynamics) 

equilibrium 

• Remark 2 System of ideal constraints, only: 
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• Remark 3 Principle of virtual displacements in statics is a particular 

  case:            
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2nd Newton’s law 

Hamilton’s Principle 
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D’Alembert’s Principle Hamilton’s Principle 
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kinetic energy 

notation 

virtual work of conservative forces 

virtual work of non-conservative forces 



Hamilton’s Principle 

Lagrange’s Equations 
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Lagrange’s Equations 

  p o tencial energia,,...,, 21 tQQQVV n
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• Remark 
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 virtual work of non-

conservative forces 

kinetic energy 

potential energy 

generalized non-conservative force 



Example 1: One-degree-of-freedom linear oscillator 

Formulation of equations of motion 



  QmQck Qtp  

 2a Newton’s law: 
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 D’Alembert’s Principle: 
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 Generalized D’Alembert’s Principle: 
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Lagrange’s equation:  
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Example 2 

AB e BC rigid bars 

BC massless bar 

Linear dynamics: horizontal displacements at B and C are neglected, 

which is reasonable for small Q.  
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 Lagrange’s equation: 
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Example 3: Simple pendulum 

N
Q

V

Q

T

Q

T

dt

d

























 Lagrange’s equation: 
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Example 4: Simple pendulum subjected to support excitation 
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 Lagrange’s equation: 
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Example 5: Rigid bar with non-linear rotational spring and imperfection, 

subjected to dynamical load p(t) and static pre-loading mg 

Non-linear 

“constitutive” law  
1oimp e rfe içã   
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Lagrange’s equation: 
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