University of São Paulo São Carlos School of Engineering Department of Aeronautical Engineering

Integration and differentiation

Ricardo Afonso Angélico raa@sc.usp.br

Finite differences

Forward
$$\Delta_h^n[f](x) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(x + (n-i)h),$$
Backward

$$abla_h^n[f](x) = \sum_{i=0}^n (-1)^i {n \choose i} f(x-ih),$$

Central

$$\delta_h^n[f](x) = \sum_{i=0}^n (-1)^i {n \choose i} f\left(x + \left(rac{n}{2} - i
ight)h
ight).$$

$$rac{d^n f}{dx^n}(x) = rac{\Delta_h^n[f](x)}{h^n} + O(h) = rac{
abla_h^n[f](x)}{h^n} + O(h) = rac{\delta_h^n[f](x)}{h^n} + O(h) = rac{\delta_h^n[f](x)}{h^n} + O(h^2).$$

Central finite differences

Derivative	Accuracy	-4	-3	-2	-1	0	1	2	3	4
1	2				-1/2	0	1/2			
	4			1/12	-2/3	0	2/3	-1/12		
	6		-1/60	3/20	-3/4	0	3/4	-3/20	1/60	
	8	1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280
2	2				1	-2	1			
	4			-1/12	4/3	-5/2	4/3	-1/12		
Z	6		1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90	
	8	-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560
3	2			-1/2	1	0	-1	1/2		
	4		1/8	-1	13/8	0	-13/8	1	-1/8	
	6	-7/240	3/10	-169/120	61/30	0	-61/30	169/120	-3/10	7/240
4	2			1	-4	6	-4	1		
	4		-1/6	2	-13/2	28/3	-13/2	2	-1/6	
	6	7/240	-2/5	169/60	-122/15	91/8	-122/15	169/60	-2/5	7/240
5	2		-1/2	2	-5/2	0	5/2	-2	1/2	
6	2		1	-6	15	-20	15	-6	1	

Forward and backward finite differences

Derivative	Accuracy	0	1	2	3	4	5	6	7	8
1	1	-1	1							
	2	-3/2	2	-1/2						
	3	-11/6	3	-3/2	1/3					
	4	-25/12	4	-3	4/3	-1/4				
	5	-137/60	5	-5	10/3	- 5/4	1/5			
	6	-49/20	6	-15/2	20/3	-15/4	6/5	-1/6		
2	1	1	-2	1						
	2	2	-5	4	-1					
	3	35/12	-26/3	19/2	-14/3	11/12				
	4	15/4	-77/6	107/6	-13	61/12	-5/6			
	5	203/45	-87/5	117/4	-254/9	33/2	-27/5	137/180		
	6	469/90	-223/10	879/20	-949/18	41	-201/10	1019/180	-7/10	
3	1	-1	3	-3	1					
	2	-5/2	9	-12	7	-3/2				
	3	-17/4	71/4	- 59/2	49/2	-41/4	7/4			
	4	-49/8	29	-461/8	62	-307/8	13	-15/8		
	5	-967/120	638/15	-3929/40	389/3	-2545/24	268/5	-1849/120	29/15	
	6	-801/80	349/6	-18353/120	2391/10	-1457/6	4891/30	-561/8	527/30	-469/240

University of São Paulo - São Carlos School of Engineering - Department of Aeronautical Engineering

Integration

Quadrature rules

$$\int_{-1}^{1} f(x) \, dx = \sum_{i=1}^n w_i f(x_i)$$

 $\omega(x) = \frac{1}{\sqrt{1 - x^2}}$ Gauss-Chebyshev $\omega(x) = e^{-x^2}$ Gauss-Hermite

Gauss-Legendre

n	$P_n(x)$
1	x
2	$\frac{1}{2}[3x^2-1]$
3	$\frac{1}{2}[5x^3-3x]$
4	$\frac{1}{8}[35x^4 - 30x^2 + 3]$
5	$\frac{1}{-}[63x^5 - 70x^3 + 15x]$

$$w_i = rac{2}{\left(1-x_i^2
ight)\,[P_n'(x_i)]^2}$$

Change of interval

$$\int_a^b f(x)\,dx=rac{b-a}{2}\int_{-1}^1 f\left(rac{b-a}{2}x+rac{a+b}{2}
ight)\,dx$$

University of São Paulo - São Carlos School of Engineering - Department of Aeronautical Engineering

n	wi	x_i	n	พ	x i
1	2.0	0.0	8	0.1012285363	± 0.9602898565
2	1.0	± 0.5773502692]	0.2223810345	± 0.7966664774
3	0.5555555556	± 0.7745966692]	0.3137066459	± 0.5255324099
	0.8888888889	0.0		0.3626837834	± 0.1834346425
4	0.3478548451	± 0.8611363116	9	0.0812743883	± 0.9681602395
	0.6521451549	± 0.3399810436		0.1806481607	± 0.8360311073
5	0.2369268851	± 0.9061798459	1	0.2606106964	± 0.6133714327
	0.4786286705	± 0.5384693101		0.3123470770	± 0.3242534234
	0.5688888889	0.0		0.3302393550	0.0
6	0.1713244924	± 0.9324695142	10	0.0666713443	± 0.9739065285
	0.3607615730	± 0.6612093865		0.1494513492	± 0.8650633667
	0.4679139346	± 0.2386191861		0.2190863625	± 0.6794095683
7	0.1294849662	± 0.9491079123	1	0.2692667193	± 0.4333953941
	0.2797053915	± 0.7415311856		0.2955242247	± 0.1488743390
	0.3818300505	± 0.4058451514			
	0.4179591837	0.0			

Integration in 2D

✓ Quadrature rules
$$\int_{-1}^{1} \int_{-1}^{1} g(\xi, \eta) \, \mathrm{d}\xi \mathrm{d}\eta \approx \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j g(\xi_i, \xi_j)$$

$$\begin{aligned} x &= P(\xi, \eta) = \sum_{i=1}^{4} x_i N_i(\xi, \eta) = x_1 N_1(\xi, \eta) + x_2 N_2(\xi, \eta) + x_3 N_3(\xi, \eta) + x_4 N_4(\xi, \eta), \\ y &= Q(\xi, \eta) = \sum_{i=1}^{4} y_i N_i(\xi, \eta) = y_1 N_1(\xi, \eta) + y_2 N_2(\xi, \eta) + y_3 N_3(\xi, \eta) + y_4 N_4(\xi, \eta). \end{aligned}$$

$$\iint_{K} F(x,y) \, \mathrm{d}x \mathrm{d}y = \iint_{R_{\mathrm{st}}} F\left(P(\xi,\eta), Q(\xi,\eta)\right) \left|J(\xi,\eta)\right| \, \mathrm{d}\xi \mathrm{d}\eta \qquad J(\xi,\eta) = \left|\frac{\partial(x,y)}{\partial(\xi,\eta)}\right| = \left|\begin{array}{c}\frac{\partial w}{\partial\xi} & \frac{\partial y}{\partial\xi} \\ \frac{\partial x}{\partial\eta} & \frac{\partial y}{\partial\eta} \end{array}\right|$$

University of São Paulo - São Carlos School of Engineering - Department of Aeronautical Engineering