INF3580/4580 — Semantic Technologies — Spring 2018

Lecture 6: Introduction to Reasoning with RDF

Leif Harald Karlsen
20th February 2018

hd d DEPARTMENT OF
c INFORMATICS

UNIVERSITY OF
OsLo

__
Mandatory exercises

@ Oblig 4 published after this lecture.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

__
Mandatory exercises

@ Oblig 4 published after this lecture.

@ Hand-in by Tuesday in two weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Mandatory exercises

@ Oblig 4 published after this lecture.

@ Hand-in by Tuesday in two weeks.

@ Exercises mostly from this week's lecture, but one from next week’s lecture, Reasoning
with Jena.

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

__
Today's Plan

© Inference rules
© RDFS Basics

© Open world semantics

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Outline

© Inference rules

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.
We introduced interpretations:

@ ldea: put all letters that are “true” into a set.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.
We introduced interpretations:

@ ldea: put all letters that are “true” into a set.

@ Define: An interpretation T is a set of letters.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.

We introduced interpretations:

@ ldea: put all letters that are “true” into a set.
@ Define: An interpretation T is a set of letters.

@ Letter p is true in interpretation Z if p € 7.

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.

We introduced interpretations:

Idea: put all letters that are “true” into a set.
Define: An interpretation T is a set of letters.
Letter p is true in interpretation Z if p € 7.
E.g., in Zy = {p, q}, pis true, but r is false.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.
We introduced interpretations:

Idea: put all letters that are “true” into a set.

Define: An interpretation T is a set of letters.

Letter p is true in interpretation Z if p € 7.

E.g., in Zy = {p, q}, pis true, but r is false.

But in Z, = {q, r}, p is false, but r is true.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

@ when a formula is true in an interpretation: Z = A

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way
@ when a formula is true in an interpretation: Z = A

@ when a formula is a tautology (true in all interps.): = A

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way
@ when a formula is true in an interpretation: Z = A
@ when a formula is a tautology (true in all interps.): = A

@ and when one formula entails another: A = B.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way
@ when a formula is true in an interpretation: Z = A
@ when a formula is a tautology (true in all interps.): = A

@ and when one formula entails another: A = B.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way
@ when a formula is true in an interpretation: Z = A
@ when a formula is a tautology (true in all interps.): = A
@ and when one formula entails another: A = B.
Model-theoretic semantics is well-suited for

@ studying the behaviour of a logic, since

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way
@ when a formula is true in an interpretation: Z = A
@ when a formula is a tautology (true in all interps.): = A
@ and when one formula entails another: A = B.
Model-theoretic semantics is well-suited for
@ studying the behaviour of a logic, since

@ it is specified in terms of familiar mathematical objects, such as

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way
@ when a formula is true in an interpretation: Z = A
@ when a formula is a tautology (true in all interps.): = A
@ and when one formula entails another: A = B.
Model-theoretic semantics is well-suited for
@ studying the behaviour of a logic, since
@ it is specified in terms of familiar mathematical objects, such as

e sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of
e a set D of resources (possibly infinite),

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of

e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of

e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,
e relations on D giving meaning for each property.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of

e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,
e relations on D giving meaning for each property.

@ Everything else will be defined in terms of these interpretations.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of

e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,
e relations on D giving meaning for each property.

@ Everything else will be defined in terms of these interpretations.

@ Entailment of RDF graphs, etc.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of
e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,
e relations on D giving meaning for each property.
@ Everything else will be defined in terms of these interpretations.
@ Entailment of RDF graphs, etc.

@ Remember: interpretations for Propositional Logic could be listed in truth tables.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of
e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,
e relations on D giving meaning for each property.
@ Everything else will be defined in terms of these interpretations.
@ Entailment of RDF graphs, etc.

@ Remember: interpretations for Propositional Logic could be listed in truth tables.
e Only 2" possibilities for n letters.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of
e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,
e relations on D giving meaning for each property.
@ Everything else will be defined in terms of these interpretations.
@ Entailment of RDF graphs, etc.

@ Remember: interpretations for Propositional Logic could be listed in truth tables.
e Only 2" possibilities for n letters.

Not possible for RDF:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Preview: Model Semantics for RDF

@ We will look at semantics for RDF in two weeks.
@ Interpretations will consist of
e a set D of resources (possibly infinite),
e a function mapping each URI to an object in D,
e relations on D giving meaning for each property.
@ Everything else will be defined in terms of these interpretations.
@ Entailment of RDF graphs, etc.

@ Remember: interpretations for Propositional Logic could be listed in truth tables.
e Only 2" possibilities for n letters.
Not possible for RDF:

e oo many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.

@ Much less does it provide an algorithmic means for computing it,
that is

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.

@ Much less does it provide an algorithmic means for computing it,
that is

e for actually doing the reasoning,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.

@ Much less does it provide an algorithmic means for computing it,
that is

e for actually doing the reasoning,

@ In order to directly use the model-theoretic semantics,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.

@ Much less does it provide an algorithmic means for computing it,
that is

e for actually doing the reasoning,
@ In order to directly use the model-theoretic semantics,

e in principle all interpretations would have to be considered.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.

@ Much less does it provide an algorithmic means for computing it,
that is

e for actually doing the reasoning,
@ In order to directly use the model-theoretic semantics,

e in principle all interpretations would have to be considered.
e But as there are always infinitely many such interpretations,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.
@ Much less does it provide an algorithmic means for computing it,
that is
e for actually doing the reasoning,
@ In order to directly use the model-theoretic semantics,

e in principle all interpretations would have to be considered.
e But as there are always infinitely many such interpretations,
e and an algorithm should terminate in finite time

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

@ But it isn't easy to read off from it what exactly is to be implemented.

@ Much less does it provide an algorithmic means for computing it,
that is

e for actually doing the reasoning,
@ In order to directly use the model-theoretic semantics,

e in principle all interpretations would have to be considered.
e But as there are always infinitely many such interpretations,
e and an algorithm should terminate in finite time

e this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Syntactic reasoning

We therefore need means to decide entailment syntactically:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is

@ on its concrete grammatical structure,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,

@ without recurring to interpretations,

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,

@ syntactic reasoning is, in other words, computation.

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,

@ syntactic reasoning is, in other words, computation.

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,

@ syntactic reasoning is, in other words, computation.
Interpretations still figure as the theoretical backdrop, as one typically

@ strives to define syntactical methods that are provably equivalent to checking all
interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,

@ syntactic reasoning is, in other words, computation.
Interpretations still figure as the theoretical backdrop, as one typically

@ strives to define syntactical methods that are provably equivalent to checking all
interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,

@ syntactic reasoning is, in other words, computation.
Interpretations still figure as the theoretical backdrop, as one typically

@ strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

@ we will show that first.

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

@ the P; are premises

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

@ the P; are premises
@ and P is the conclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

@ the P; are premises
@ and P is the conclusion.

An inference rule may have,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

@ the P; are premises
@ and P is the conclusion.
An inference rule may have,
@ any number of premises (typically one or two),

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

@ the P; are premises
@ and P is the conclusion.
An inference rule may have,
@ any number of premises (typically one or two),
@ but only one conclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,
@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

@ the P; are premises
@ and P is the conclusion.
An inference rule may have,
@ any number of premises (typically one or two),
@ but only one conclusion.

Where |= is the entailment relation, - is the inference relation. We write ' = P if we can
deduce P from the assumptions I'.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

@ One proves that,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

@ One proves that,

|. every conclusion P derivable in the calculus from a set of premises I, is true in
all interpretations that satisfy . (TP =T = P)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

@ One proves that,
|. every conclusion P derivable in the calculus from a set of premises I, is true in
all interpretations that satisfy . (TP =T = P)
[I. and conversely that every statement P entailed by -interpretations is derivable in the
calculus when the elements of I are used as premises. (I' =P =T+ P)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

@ One proves that,

|. every conclusion P derivable in the calculus from a set of premises I, is true in
all interpretations that satisfy . (TP =T = P)

[I. and conversely that every statement P entailed by -interpretations is derivable in the
calculus when the elements of I are used as premises. (I' =P =T+ P)

We say that the calculus is

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

@ One proves that,

|. every conclusion P derivable in the calculus from a set of premises I, is true in
all interpretations that satisfy . (TP =T = P)

[I. and conversely that every statement P entailed by -interpretations is derivable in the
calculus when the elements of I are used as premises. (I' =P =T+ P)

We say that the calculus is

@ sound wrt the semantics, if (I) holds, and

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

@ One proves that,

|. every conclusion P derivable in the calculus from a set of premises I, is true in
all interpretations that satisfy . (TP =T = P)

[I. and conversely that every statement P entailed by -interpretations is derivable in the
calculus when the elements of I are used as premises. (I' =P =T+ P)

We say that the calculus is

@ sound wrt the semantics, if (I) holds, and

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

@ One proves that,

|. every conclusion P derivable in the calculus from a set of premises I, is true in
all interpretations that satisfy . (TP =T = P)

[I. and conversely that every statement P entailed by -interpretations is derivable in the
calculus when the elements of I are used as premises. (I' =P =T+ P)

We say that the calculus is

@ sound wrt the semantics, if (I) holds, and

e complete wrt the semantics, if (Il) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules in propositional logic

(Part of) Natural dedcution calclulus for propositional logic:

A (A—B)
B
(AN B) (AN B) A B
——4 B 5 NEr (A B) A

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference for RDF

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference for RDF

In a Semantic Web context, inference always means,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference for RDF

In a Semantic Web context, inference always means,

@ adding triples.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference for RDF

In a Semantic Web context, inference always means,
@ adding triples.

More specifically it means,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference for RDF

In a Semantic Web context, inference always means,
@ adding triples.

More specifically it means,

@ adding new triples to an RDF graph,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference for RDF

In a Semantic Web context, inference always means,
@ adding triples.

More specifically it means,

@ adding new triples to an RDF graph,

@ on the basis of the triples already in it.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference for RDF

In a Semantic Web context, inference always means,
@ adding triples.

More specifically it means,

@ adding new triples to an RDF graph,

@ on the basis of the triples already in it.

From this point of view a rule

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,
@ adding triples.

More specifically it means,

@ adding new triples to an RDF graph,

@ on the basis of the triples already in it.

From this point of view a rule

may be read as an instruction;

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,
@ adding triples.

More specifically it means,

@ adding new triples to an RDF graph,

@ on the basis of the triples already in it.

From this point of view a rule

may be read as an instruction;

@ "If P1,..., Py are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Outline

© RDFS Basics

80 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

@ RDF Schema is a vocabulary defined by W3C.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

@ RDF Schema is a vocabulary defined by W3C.

@ Namespace:
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

@ RDF Schema is a vocabulary defined by W3C.

@ Namespace:
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

@ Originally though of as a “schema language” like XML Schema.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn't — doesn't describe “valid” RDF graphs.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn't — doesn't describe “valid” RDF graphs.
@ Comes with some inference rules

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn't — doesn't describe “valid” RDF graphs.
@ Comes with some inference rules
o Allows to derive new triples mechanically.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn't — doesn't describe “valid” RDF graphs.
@ Comes with some inference rules
o Allows to derive new triples mechanically.

@ A very simple modeling language

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn't — doesn't describe “valid” RDF graphs.
@ Comes with some inference rules
o Allows to derive new triples mechanically.

@ A very simple modeling language

@ and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.

@ The RDFS vocabulary allows statements about classes.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.

@ The RDFS vocabulary allows statements about classes.
@ Defined resources:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.

@ The RDFS vocabulary allows statements about classes.
@ Defined resources:
e rdfs:Resource: The class of resources, everything.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.
@ The RDFS vocabulary allows statements about classes.

@ Defined resources:

e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.

@ The RDFS vocabulary allows statements about classes.
@ Defined resources:

e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.
@ The RDFS vocabulary allows statements about classes.
@ Defined resources:
e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf).
o Defined properties:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.
@ The RDFS vocabulary allows statements about classes.
@ Defined resources:
e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf).
o Defined properties:

e rdf:type: relate resources to classes they are members of.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.
@ The RDFS vocabulary allows statements about classes.
@ Defined resources:
e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf).
o Defined properties:

e rdf:type: relate resources to classes they are members of.
e rdfs:domain: The domain of a relation.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.
@ The RDFS vocabulary allows statements about classes.
@ Defined resources:
e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf).
o Defined properties:

e rdf:type: relate resources to classes they are members of.
e rdfs:domain: The domain of a relation.
e rdfs:range: The range of a relation.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.
@ The RDFS vocabulary allows statements about classes.
@ Defined resources:
e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf).
o Defined properties:

e rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.

rdfs:range: The range of a relation.

rdfs:subClass0f: Class inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.
@ The RDFS vocabulary allows statements about classes.
@ Defined resources:
e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf).
o Defined properties:

e rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.

rdfs:range: The range of a relation.

rdfs:subClass0f: Class inclusion.
rdfs:subProperty0f: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Example
rdfs:Class
rdf:type
Resource
rdf:type rdf:type

rdfs:subClassOf

rdf:type rdf:type rdf:type

@ Croms &

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Classes as Sets

@ We can think of an rdfs:Class as denoting a set of Resources.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Classes as Sets

@ We can think of an rdfs:Class as denoting a set of Resources.

@ Not quite correct, but OK for intuition.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Classes as Sets

@ We can think of an rdfs:Class as denoting a set of Resources.

@ Not quite correct, but OK for intuition.

RDFS Set Theory
A rdf:type rdfs:Class A is a set of resources
x rdf:type A x€A
A rdfs:subClass0Of B ACB

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
I. Type propagation:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:
e “The 2CV is a car, and all cars are motorised vehicles, so..."

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:
e “The 2CV is a car, and all cars are motorised vehicles, so..."
[I. Property inheritance:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
I. Type propagation:
e “The 2CV is a car, and all cars are motorised vehicles, so..."

[I. Property inheritance:
e "“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so..."

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
I. Type propagation:
e “The 2CV is a car, and all cars are motorised vehicles, so..."
[I. Property inheritance:
e "“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so..."
I1l. Domain and range reasoning:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
I. Type propagation:
e “The 2CV is a car, and all cars are motorised vehicles, so..."
[I. Property inheritance:
e "“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so..."
I1l. Domain and range reasoning:

e “Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. .."

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
I. Type propagation:
e “The 2CV is a car, and all cars are motorised vehicles, so..."
[I. Property inheritance:
e "“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so..."
I1l. Domain and range reasoning:

e “Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. .."
e "All fathers of people are males. James is the father of Karl, therefore...”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Type propagation with rdfs:subClass0f

The type propagation rules apply
@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Type propagation with rdfs:subClass0f

The type propagation rules apply

@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,
@ and trigger recursive inheritance in a class taxonomy.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Type propagation with rdfs:subClass0f

The type propagation rules apply
@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,
@ and trigger recursive inheritance in a class taxonomy.

Type propagation rules:
@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

rdfs9

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Type propagation with rdfs:subClass0f

The type propagation rules apply
@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,
@ and trigger recursive inheritance in a class taxonomy.

Type propagation rules:
@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

rdfs9

@ Reflexivity of sub-class relation

A rdf:type rdfs:Class .
A rdfs:subClassOf A .

rdfs10

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Type propagation with rdfs:subClassOf

The type propagation rules apply

@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,
@ and trigger recursive inheritance in a class taxonomy.

Type propagation rules:
@ Members of subclasses
A rdfs:subClassOf B . x rdf:type A .

x rdf:type B . rdfs
@ Reflexivity of sub-class relation
A rdf:type rdfs:Class . .
A rdfs:subClassOf A . rdfs10
@ Transitivity of sub-class relation
A rdfs:subClassOf B . B rdfs:subClass0f C .
rdfs1l

A rdfs:subClass0Of C .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Set Theory Analogy

@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

ACB xeA
xeB

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Set Theory Analogy

@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .
ACB x€EA
x€eB
@ Reflexivity of sub-class relation
A rdf:type rdfs:Class . Als a set
A rdfs:subClass0f A . ACA

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Set Theory Analogy

@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .
ACB x€EA
x€eB
@ Reflexivity of sub-class relation
A rdf:type rdfs:Class . Ais a set
A rdfs:subClassOf A . ACA
@ Transitivity of sub-class relation
A rdfs:subClassOf B . B rdfs:subClass0f C .

A rdfs:subClass0f C .

ACB BCC
ACC

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:
ex:Vertebrate rdf:type rdfs:Class

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale
Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .
ex:Keiko rdf:type ex:KillerWhale

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)
ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)
ex:Keiko rdf:type ex:Vertebrate . (rdfs9)
ex:KillerWhale rdfs:subClass0f ex:Vertebrate . (rdfsll)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale
Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)
ex:KillerWhale rdfs:subClass0f ex:Vertebrate . (rdfsll)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfsl0)

(... and also for the other classes)
INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

A typical taxonomy

Vertebrate
Reptile Amphibian Mammal
Crocodilia Salamander Bat Whale

KillerWhale

Figure: A typical taxonomy

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Multiple Inheritance

@ A set is a subset of many other sets:

{2,3} € {1,2,3} {2,31C{2,3,4} {2,3}CN {2,3}CP

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Multiple Inheritance

@ A set is a subset of many other sets:
2,3} C{1,2,3} {23} C {234} {23}CN {23}CP

@ Similarly, a class is usually a subclass of many other classes.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Multiple Inheritance

@ A set is a subset of many other sets:
{23} C{1,2,3} {23}C{2,3,4} {23}CN {23} CP

@ Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

\

Whale

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Multiple Inheritance

@ A set is a subset of many other sets:
{23} C{1,2,3} {23}C{2,3,4} {23}CN {23} CP

@ Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

\

@ This is usually not called a taxonomy, but it's no problem for RDFS.

Whale

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of

@ rdfs:subProperty0f,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

I - 1 o <
Second: Property transfer with rdfs:subProperty0f
Reasoning with properties depends on certain combinations of

@ rdfs:subProperty0f,
e rdf:type, and

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

Rules for property reasoning:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

Rules for property reasoning:

@ Transitivity:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

Rules for property reasoning:

@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .

p rdfs:subProperty0f r . rdfs5

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

Rules for property reasoning:

@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .

p rdfs:subProperty0f r . rdfs5

@ Reflexivity:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

Rules for property reasoning:

@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r . dfs5
rdfs

p rdfs:subProperty0f r .
@ Reflexivity:
p rdf:type rdf:Property .

p rdfs:subProperty0f p . rdfs6

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

Rules for property reasoning:

@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r . dfs5
rdfs

p rdfs:subProperty0f r .
@ Reflexivity:
p rdf:type rdf:Property .

p rdfs:subProperty0f p . rdfs6

@ Property transfer:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
e rdf:type, and
@ rdf:Property

Rules for property reasoning:

@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r . dfs5
rdfs

p rdfs:subProperty0f r .
@ Reflexivity:
p rdf:type rdf:Property .

p rdfs:subProperty0f p . rdfs6

@ Property transfer:

p rdfs:subProperty0f q . upv
uqv.

rdfs7

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Properties as Relations

@ If an rdfs:Class is like a set of resources. ..

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Properties as Relations

@ If an rdfs:Class is like a set of resources. ..

@ ...then an rdf :Property is like a relation on resources.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Properties as Relations

@ If an rdfs:Class is like a set of resources. ..
@ ...then an rdf :Property is like a relation on resources.

@ Remember: not quite correct, but OK for intuition.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Properties as Relations

@ If an rdfs:Class is like a set of resources. ..
@ ...then an rdf:Property is like a relation on resources.

@ Remember: not quite correct, but OK for intuition.

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
X ry (x,y)er

r rdfs:subProperty0f s rCs

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Intuition: Properties as Relations

o If an rdfs:Class is like a set of resources. ..
@ ...then an rdf:Property is like a relation on resources.
@ Remember: not quite correct, but OK for intuition.
RDFS Set Theory
r rdf:type rdf:Property r is a relation on resources
X ry (x,y)er
r rdfs:subProperty0f s rcs
@ Rules:
pCq qgCr p a relation pCq (u,v) €p
pCr pCp (u,v) €q

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:

@ Harmonisation of the data under a common vocabulary.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:
@ Harmonisation of the data under a common vocabulary.

The aim is to

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:
@ Harmonisation of the data under a common vocabulary.
The aim is to

@ make similar data answer to the same standardised queries,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:
@ Harmonisation of the data under a common vocabulary.
The aim is to

@ make similar data answer to the same standardised queries,

@ thus making queries independent of the terminology of the sources.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:

@ Harmonisation of the data under a common vocabulary.

The aim is to
@ make similar data answer to the same standardised queries,

@ thus making queries independent of the terminology of the sources.

For instance:

Lecture 6 :: 20th February

INF3580/4580 :: Spring 2018

RDFS Basics

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:
@ Harmonisation of the data under a common vocabulary.
The aim is to

@ make similar data answer to the same standardised queries,

@ thus making queries independent of the terminology of the sources.

For instance:
@ Suppose that a legacy bibliography system S uses :author, where

Lecture 6 :: 20th February

INF3580/4580 :: Spring 2018

RDFS Basics

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:

@ Harmonisation of the data under a common vocabulary.

The aim is to

@ make similar data answer to the same standardised queries,

@ thus making queries independent of the terminology of the sources.
For instance:

@ Suppose that a legacy bibliography system S uses :author, where

@ another system T uses :writer.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:

@ Harmonisation of the data under a common vocabulary.

The aim is to
@ make similar data answer to the same standardised queries,

@ thus making queries independent of the terminology of the sources.

For instance:
@ Suppose that a legacy bibliography system S uses :author, where
@ another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Example |: Harmonizing terminology

Integrating data from multiple sources in general requires:

@ Harmonisation of the data under a common vocabulary.

The aim is to
@ make similar data answer to the same standardised queries,
@ thus making queries independent of the terminology of the sources.
For instance:
@ Suppose that a legacy bibliography system S uses :author, where
@ another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

@ for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Solution

From Ontology:

580 :: Spring 2018 Lecture 6 :: 20th February

Solution

From Ontology:

:writer rdf:type rdf:Property
rauthor rdf:type rdf:Property
rauthor rdfs:subProperty0f dcterms:creator

:writer rdfs:subProperty0f dcterms:creator

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .
:author rdf:type rdf:Property .
rauthor rdfs:subProperty0f dcterms:creator .
:writer rdfs:subProperty0f dcterms:creator .

And Facts:

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Solution

From Ontology:
:writer rdf:type rdf:Property
rauthor rdf:type rdf:Property

rauthor rdfs:subProperty0f dcterms:creator

:writer rdfs:subProperty0f dcterms:creator
And Facts:

ex:knausgdrd :writer ex:minKamp

ex:hamsun :author ex:sult

Infer:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Solution

From Ontology:

:writer rdf:type rdf:Property
rauthor rdf:type rdf:Property
rauthor rdfs:subProperty0f dcterms:creator

:writer rdfs:subProperty0f dcterms:creator
And Facts:

ex:knausgdrd :writer ex:minKamp

ex:hamsun :author ex:sult

Infer:
ex:knausgird dcterms:creator ex:minKamp

ex:hamsun dcterms:creator ex:sult

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Consequences

@ Any individual for which :author or :writer is defined,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Consequences

@ Any individual for which :author or :writer is defined,

@ will have the same value for the dcterms:creator property.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Consequences

@ Any individual for which :author or :writer is defined,
@ will have the same value for the dcterms:creator property.

@ The work of integrating the data is thus done by the reasoning engine,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Consequences

@ Any individual for which :author or :writer is defined,
@ will have the same value for the dcterms:creator property.
@ The work of integrating the data is thus done by the reasoning engine,

@ instead of by a manual editing process.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Consequences
o
o
o
o
o

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,
instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),

e for research associates (Post Docs),

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
o for PhD students,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
o for PhD students,

@ for subcontracting.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
o for PhD students,

@ for subcontracting.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
o for PhD students,

@ for subcontracting.

Employer/employee information can be read off from properties such as:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),

o for PhD students,

@ for subcontracting.

Employer/employee information can be read off from properties such as:

e :profAt (professorship at),

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
o for PhD students,

@ for subcontracting.
Employer/employee information can be read off from properties such as:

e :profAt (professorship at),

e :tenAt (tenure at),

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;
e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
o for PhD students,
@ for subcontracting.

Employer/employee information can be read off from properties such as:
e :profAt (professorship at),
e :tenAt (tenure at),

e :conTo (contracts to),

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
o for PhD students,

@ for subcontracting.
Employer/employee information can be read off from properties such as:

:profAt (professorship at),
:tenAt (tenure at),
:conTo (contracts to),
:funBy (is funded by) ,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example |I: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),

o for PhD students,

@ for subcontracting.

Employer/employee information can be read off from properties such as:
:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Organising the properties

:empBy
:permEmp ‘tempEmp
‘tenAt :fundBy :conTo
:profAt :recSchol

Figure: A hierarchy of employment relations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Organising the properties

:empBy
:permEmp ‘tempEmp
‘tenAt :fundBy :conTo
:profAt :recSchol

Figure: A hierarchy of employment relations

@ Note: doesn’t have to be tree-shaped.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Querying the inferred model

Formalising the tree:
:profAt rdf:type rdfs:Property .
:tenAt rdf:type rdfs:Property .
:profAt rdfs:subProperty0f :tenAt
..... and so forth.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Querying the inferred model

Formalising the tree:
:profAt rdf:type rdfs:Property
:tenAt rdf:type rdfs:Property
:profAt rdfs:subProperty0f :tenAt
..... and so forth.

Given a data set such as:

:Arild :profAt :Ui0 .
:Audun :fundBy :UiO .

:Steve :conTo :0LF .

| :tenAt | | :fundByl | :conTo |

:Trond :recSchol :BI .

:Jenny :tenAt :SSB . [iprofac] [irecschol |

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT 7emp WHERE {7emp :tempEmp _:x .}
— Audun, Steve, Trond

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

cont.

We may now query on different levels of abstraction :
Temporary employees

SELECT 7emp WHERE {7emp :tempEmp _:x .}
— Audun, Steve, Trond

Permanent employees

SELECT 7emp WHERE {7emp :permEmp _:x

3
— Arild, Jenny

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT 7emp WHERE {7emp :tempEmp _:x .}
— Audun, Steve, Trond

Permanent employees

SELECT 7emp WHERE {7emp :permEmp _:x .}
— Arild, Jenny

All employees

SELECT 7emp WHERE {?emp :empBy _:x .}
— Arild, Jenny, Audun, Steve, Trond

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Third pattern: Typing data based on their use

Triggered by combinations of

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Third pattern: Typing data based on their use

Triggered by combinations of

@ rdfs:range

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Third pattern: Typing data based on their use
Triggered by combinations of

@ rdfs:range

@ rdfs:domain

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Third pattern: Typing data based on their use

Triggered by combinations of
@ rdfs:range
@ rdfs:domain

@ rdf:type

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Third pattern: Typing data based on their use

Triggered by combinations of
@ rdfs:range
@ rdfs:domain

@ rdf:type
Rules for domain and range reasoning :

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Third pattern: Typing data based on their use

Triggered by combinations of
@ rdfs:range
@ rdfs:domain

@ rdf:type
Rules for domain and range reasoning :

@ Typing first coordinates:

rdfs:domain A . X .
P Py rdfs2

x rdf:type A .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of
@ rdfs:range
@ rdfs:domain
@ rdf:type

Rules for domain and range reasoning :

@ Typing first coordinates:

p rdfs:domain A .

Xpy .
x rdf:type A . rdfs2
@ Typing second coordinates:
p rdfs:range B . XPYy -
y rdf:type B . rdfs3

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.

o rdfs:domain types the possible subjects of these triples,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.
o rdfs:domain types the possible subjects of these triples,

@ whereas rdfs:range types the possible objects,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.
o rdfs:domain types the possible subjects of these triples,

@ whereas rdfs:range types the possible objects,

@ When we assert that property p has domain C, we are saying

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.
o rdfs:domain types the possible subjects of these triples,
@ whereas rdfs:range types the possible objects,

@ When we assert that property p has domain C, we are saying
e that whatever is linked to anything by p

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.
o rdfs:domain types the possible subjects of these triples,
@ whereas rdfs:range types the possible objects,

@ When we assert that property p has domain C, we are saying

e that whatever is linked to anything by p
e must be an object of type C,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.
o rdfs:domain types the possible subjects of these triples,
@ whereas rdfs:range types the possible objects,

@ When we assert that property p has domain C, we are saying

e that whatever is linked to anything by p
e must be an object of type C,
e therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and Range of Relations

@ Given a relation R from Ato B (R C A x B)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and Range of Relations

@ Given a relation R from Ato B (R C A x B)

@ The domain of R is the set of all x with xR ---:

domR = {x € A| xRy for some y € B}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and Range of Relations

@ Given a relation R from Ato B (R C A x B)

@ The domain of R is the set of all x with xR ---:
domR = {x € A| xRy for some y € B}
@ The range of R is the set of all y with --- R y:

rg R = {y € B | xRy for some x € A}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and Range of Relations

@ Given a relation R from Ato B (R C A x B)

@ The domain of R is the set of all x with xR ---:
domR = {x € A| xRy for some y € B}
@ The range of R is the set of all y with --- R y:
rg R = {y € B | xRy for some x € A}

@ Example:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and Range of Relations

@ Given a relation R from Ato B (R C A x B)

@ The domain of R is the set of all x with xR ---:
domR = {x € A| xRy for some y € B}
@ The range of R is the set of all y with --- R y:
rg R = {y € B | xRy for some x € A}

@ Example:
o R= {<17A>) <17D>) <2’<>>}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and Range of Relations

@ Given a relation R from Ato B (R C A x B)

@ The domain of R is the set of all x with xR ---:
domR = {x € A| xRy for some y € B}
@ The range of R is the set of all y with --- R y:
rg R = {y € B | xRy for some x € A}
@ Example:

o R= {<17A>) <17D>) <2’<>>}
o domR = {1, 2}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Domain and Range of Relations

@ Given a relation R from Ato B (R C A x B)

@ The domain of R is the set of all x with xR ---:
domR = {x € A| xRy for some y € B}
@ The range of R is the set of all y with --- R y:
rg R = {y € B | xRy for some x € A}
@ Example:
o R={(1,4),(1,00),(2,0)}

o domR ={1,2}
e rgR={A,00}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Set intuitions for rdfs:domain and rdfs:range

@ If an rdfs:Class is like a set of resources and an rdf :Property is like a relation on
resources. . .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Set intuitions for rdfs:domain and rdfs:range

@ If an rdfs:Class is like a set of resources and an rdf :Property is like a relation on

resources. . .
RDFS Set Theory
r rdfs:domain A domr CA

r rdfs:range B rgr CB

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Set intuitions for rdfs:domain and rdfs:range

@ If an rdfs:Class is like a set of resources and an rdf :Property is like a relation on

resources. . .
RDFS Set Theory
r rdfs:domain A domr CA
r rdfs:range B rgr CB
@ Rules:
dompC A (x,y)€p
x €A
rgpC B (x,y)€Ep
yeB

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example I: Combining domain, range and subClassOf

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClass0f :Ensemble .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example I: Combining domain, range and subClassOf
Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClass0f :Ensemble .

and a property :conductor whose domain and range are:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .

and a property :conductor whose domain and range are:
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .

and a property :conductor whose domain and range are:
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert
:0sloPhilharmonic :conductor :Petrenko .

we may infer;

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .

and a property :conductor whose domain and range are:
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .
Now, if we assert
:0sloPhilharmonic :conductor :Petrenko
we may infer;
:0sloPhilharmonic rdf:type :SymphonyOrchestra .

:0sloPhilharmonic rdf:type:Ensemble .

:Petrenko rdf:type :Person .

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Conductors and ensembles

:Person :Ensemble

rdfs:range
rdfs:subClass0f

_——““\\\ rdfs:domain

:conductor :SymphonyOrchestra

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example Il: Filtering information based on use

Consider once more the dataset:
:Arild :profAt :UiO .
:Audun :fundBy :Ui0 .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example Il: Filtering information based on use

Consider once more the dataset:
:Arild :profAt :UiO .
:Audun :fundBy :Ui0 .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example Il: Filtering information based on use

Consider once more the dataset:
:Arild :profAt :UiO .
:Audun :fundBy :Ui0 .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

@ State that only freelancers :conTo an organisation,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example Il: Filtering information based on use

Consider once more the dataset:
:Arild :profAt :UiO .
:Audun :fundBy :Ui0 .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

@ State that only freelancers :conTo an organisation,
@ i.e. introduce a class :Freelancer,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example Il: Filtering information based on use

Consider once more the dataset:
:Arild :profAt :UiO .
:Audun :fundBy :Ui0 .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

@ State that only freelancers :conTo an organisation,

@ i.e. introduce a class :Freelancer,
@ and declare it to be the domain of :conTo:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example Il: Filtering information based on use

Consider once more the dataset:
:Arild :profAt :UiO .
:Audun :fundBy :Ui0 .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

@ State that only freelancers :conTo an organisation,

@ i.e. introduce a class :Freelancer,
@ and declare it to be the domain of :conTo:
:Freelancer rdf:type rdfs:Class .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Example Il: Filtering information based on use

Consider once more the dataset:
:Arild :profAt :UiO .
:Audun :fundBy :Ui0 .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

@ State that only freelancers :conTo an organisation,

@ i.e. introduce a class :Freelancer,
@ and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .
:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Steve :conTo :OLF .

:Steve rdf:type :Freelancer rdfs2

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Steve :conTo :OLF .
:Steve rdf:type :Freelancer

rdfs2

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT 7freelancer WHERE {
?freelancer rdf:type :Freelancer .

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:
rdf:type rdfs:domain rdfs:Resource .
@ types are classes:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
@ types are classes:

rdf:type rdfs:range rdfs:Class .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
@ types are classes:

rdf:type rdfs:range rdfs:Class .
@ Ranges apply only to properties:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
@ types are classes:

rdf:type rdfs:range rdfs:Class .
@ Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
@ types are classes:

rdf:type rdfs:range rdfs:Class .
@ Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .
@ Ranges are classes:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
@ types are classes:

rdf:type rdfs:range rdfs:Class .
@ Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .
@ Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
types are classes:

rdf:type rdfs:range rdfs:Class .
Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .
Ranges are classes:

rdfs:range rdfs:range rdfs:Class .
Only properties have subproperties:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:
rdf:type rdfs:domain rdfs:Resource .
types are classes:
rdf:type rdfs:range rdfs:Class .
Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .
Ranges are classes:
rdfs:range rdfs:range rdfs:Class .
Only properties have subproperties:
rdfs:subProperty0f rdfs:domain rdf:Property .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
types are classes:

rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subProperty0f rdfs:domain rdf:Property .

Only classes have subclasses:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
types are classes:

rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subProperty0f rdfs:domain rdf:Property .

Only classes have subclasses:
rdfs:subClass0f rdfs:domain rdfs:Class .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
types are classes:

rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subProperty0f rdfs:domain rdf:Property .

Only classes have subclasses:
rdfs:subClass0f rdfs:domain rdfs:Class .

@ ... (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person
@ We can derive:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person
@ We can derive:
e :conductor rdf:type rdf:Property

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person
@ We can derive:

e :conductor rdf:type rdf:Property
o :Person rdf:type rdfs:Class

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person
@ We can derive:

e :conductor rdf:type rdf:Property
o :Person rdf:type rdfs:Class
e :conductor rdf:type rdfs:Resource

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

RDFS Basics

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person
@ We can derive:
e :conductor rdf:type rdf:Property
o :Person rdf:type rdfs:Class

e :conductor rdf:type rdfs:Resource
o rdf:Property rdf:type rdfs:Class

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

RDFS Basics

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person
@ We can derive:

e :conductor rdf:type rdf:Property
:Person rdf:type rdfs:Class
:conductor rdf:type rdfs:Resource
rdf :Property rdf:type rdfs:Class
:Person rdfs:type rdfs:Resource

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

RDFS Basics

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person

@ We can derive:
e :conductor rdf:type rdf:Property
o :Person rdf:type rdfs:Class
e :conductor rdf:type rdfs:Resource
o rdf:Property rdf:type rdfs:Class
@ :Person rdfs:type rdfs:Resource
o rdfs:Class rdfs:type rdfs:Class

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person
@ We can derive:

e :conductor rdf:type rdf:Property
:Person rdf:type rdfs:Class
:conductor rdf:type rdfs:Resource
rdf :Property rdf:type rdfs:Class
:Person rdfs:type rdfs:Resource
rdfs:Class rdfs:type rdfs:Class

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person

@ We can derive:
e :conductor rdf:type rdf:Property
o :Person rdf:type rdfs:Class
e :conductor rdf:type rdfs:Resource
o rdf:Property rdf:type rdfs:Class
@ :Person rdfs:type rdfs:Resource
o rdfs:Class rdfs:type rdfs:Class

@ In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Writing proofs

When writing proofs, we:
@ write one triple per line,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Writing proofs

When writing proofs, we:
@ write one triple per line,
@ enumerate the lines,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Writing proofs

When writing proofs, we:
@ write one triple per line,
@ enumerate the lines,
@ write the rule name along with the line numbers corresponding to the assumptions,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:
@ write one triple per line,
@ enumerate the lines,
@ write the rule name along with the line numbers corresponding to the assumptions,
@ introduce triples from the knowledge base with the rule name P.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,

°
@ write the rule name along with the line numbers corresponding to the assumptions,
@ introduce triples from the knowledge base with the rule name P.
o E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClass0f :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:0sloPhilharmonic :conductor :Petrenko .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
:0sloPhilharmonic :conductor :Petrenko .
We write:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
:0sloPhilharmonic :conductor :Petrenko .
We write:
@ :0sloPhilharmonic :conductor :Petrenko . — P

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
:0sloPhilharmonic :conductor :Petrenko .

o We write:
@ :0sloPhilharmonic :conductor :Petrenko . — P
© :conductor rdfs:domain :SymphonyOrchestra . — P

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

@ enumerate the lines,

@ write the rule name along with the line numbers corresponding to the assumptions,
°

°

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
:0sloPhilharmonic :conductor :Petrenko .

o We write:
@ :0sloPhilharmonic :conductor :Petrenko . — P
© :conductor rdfs:domain :SymphonyOrchestra . — P

© :0sloPhilharmonic rdf:type :SymphonyOrchestra . —rdfs3, 1,2

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:
write one triple per line,
enumerate the lines,

°
@ write the rule name along with the line numbers corresponding to the assumptions,
@ introduce triples from the knowledge base with the rule name P.
o E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClass0f :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:0sloPhilharmonic :conductor :Petrenko .

o We write:
@ :0sloPhilharmonic :conductor :Petrenko . — P
© :conductor rdfs:domain :SymphonyOrchestra . — P

© :0sloPhilharmonic rdf:type :SymphonyOrchestra . —rdfs3, 1,2
© :SymphonyOrchestra rdfs:subClass0f :Ensemble . — P

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
:0sloPhilharmonic :conductor :Petrenko .

°
@ write the rule name along with the line numbers corresponding to the assumptions,
°
°

o We write:
:0sloPhilharmonic :conductor :Petrenko . —P
:conductor rdfs:domain :SymphonyOrchestra . —P

:0sloPhilharmonic rdf:type :SymphonyOrchestra . — rdfs3, 1, 2
:SymphonyOrchestra rdfs:subClass0f :Ensemble . — P
:0sloPhilharmonic rdf:type :Ensemble . —rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Outline

© Open world semantics

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”
@ Example: Say we have the following triples;

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”
@ Example: Say we have the following triples;
:isRecordedBy rdfs:range :0rchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”
@ Example: Say we have the following triples;

:isRecordedBy rdfs:range :0rchestra .
:Beethovens9th :isRecordedBy :Boston .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :0rchestra .
:Beethovens9th :isRecordedBy :Boston .

@ Suppose now that Boston is not defined to be an Orchestra:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :0rchestra .
:Beethovens9th :isRecordedBy :Boston .

@ Suppose now that Boston is not defined to be an Orchestra:
@ i.e, there is no triple :Boston rdf:type :0rchestra . in the data.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :0rchestra .
:Beethovens9th :isRecordedBy :Boston .

@ Suppose now that Boston is not defined to be an Orchestra:

@ i.e, there is no triple :Boston rdf:type :0rchestra . in the data.

@ in a standard relational database, it would follow that :Boston is not an :0rchestra,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :0rchestra .
:Beethovens9th :isRecordedBy :Boston .

@ Suppose now that Boston is not defined to be an Orchestra:

@ i.e, there is no triple :Boston rdf:type :0rchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :0rchestra,

which contradicts the rule rdfs7:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :0rchestra .
:Beethovens9th :isRecordedBy :Boston .

@ Suppose now that Boston is not defined to be an Orchestra:

@ i.e, there is no triple :Boston rdf:type :0rchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :0rchestra,

which contradicts the rule rdfs7:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”
@ Example: Say we have the following triples;

:isRecordedBy rdfs:range :0rchestra .
:Beethovens9th :isRecordedBy :Boston

@ Suppose now that Boston is not defined to be an Orchestra:

@ i.e, there is no triple :Boston rdf:type :0rchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :0rchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :0Orchestra . :Beethovens9th :isRecordedBy :Boston .

dfs7
:Boston rdf:type :0rchestra . rats

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.

INF3580/4580 :: Spring 2 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .

@ which is precisely what rdfs7 is designed to do.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .

@ which is precisely what rdfs7 is designed to do.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .

@ which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .

@ which is precisely what rdfs7 is designed to do.
This is open world reasoning in action:

@ Instead of saying “I know that :Boston is not an :0Orchestra”,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .
@ which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

@ Instead of saying “I know that :Boston is not an :0Orchestra”,

@ RDFS says “:Boston /s an :0rchestra, | just didn't know it.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .

@ which is precisely what rdfs7 is designed to do.
This is open world reasoning in action:

@ Instead of saying “I know that :Boston is not an :0Orchestra”,
@ RDFS says “:Boston /s an :0rchestra, | just didn't know it.”

@ RDFS will not signal an inconsistency,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .

@ which is precisely what rdfs7 is designed to do.
This is open world reasoning in action:

Instead of saying “l know that :Boston is not an :0rchestra”,
RDFS says “:Boston is an :0rchestra, | just didn't know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

Instead;

@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .

@ which is precisely what rdfs7 is designed to do.
This is open world reasoning in action:

Instead of saying “l know that :Boston is not an :0rchestra”,
RDFS says “:Boston is an :0rchestra, | just didn't know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Ramifications

This fact has two important consequences:

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,
e ... understood as sorting conformant from non-conformant documents,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,

e ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,

e ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,
e it just goes along with anything,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,

. understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,

e ... understood as sorting conformant from non-conformant documents,

@ since it never signals an inconsistency in the data,

e it just goes along with anything,

e and adds triples whenever they are inferred.

o Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,

e ... understood as sorting conformant from non-conformant documents,

@ since it never signals an inconsistency in the data,

e it just goes along with anything,

e and adds triples whenever they are inferred.

e Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

@ RDFS has no notion of negation at all

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

Ramifications

This fact has two important consequences:

@ RDFS is useless for validation,
e ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,
e it just goes along with anything,
e and adds triples whenever they are inferred.
e Note though, that validation functionality beyond RDFS is often implemented in RDFS

reasoners.

@ RDFS has no notion of negation at all

e For instance, the two triples

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

Ramifications

This fact has two important consequences:

@ RDFS is useless for validation,
e ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,
e it just goes along with anything,
e and adds triples whenever they are inferred.
e Note though, that validation functionality beyond RDFS is often implemented in RDFS

reasoners.

@ RDFS has no notion of negation at all

e For instance, the two triples

ex:Joe rdf:type ex:Smoker

L]

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

Ramifications

This fact has two important consequences:

@ RDFS is useless for validation,
e ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,
e it just goes along with anything,
e and adds triples whenever they are inferred.
e Note though, that validation functionality beyond RDFS is often implemented in RDFS

reasoners.

@ RDFS has no notion of negation at all

e For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,
e ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,
e it just goes along with anything,
e and adds triples whenever they are inferred.
e Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.
@ RDFS has no notion of negation at all
e For instance, the two triples
ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .
are not inconsistent.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,
e ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,
e it just goes along with anything,
e and adds triples whenever they are inferred.
e Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.
@ RDFS has no notion of negation at all
e For instance, the two triples
ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .
are not inconsistent.

@ (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Expressive limitations of RDFS

Hence,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Expressive limitations of RDFS

Hence,

@ RDFS cannot express inconsistencies,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Expressive limitations of RDFS

Hence,

@ RDFS cannot express inconsistencies,

@ so any RDFS graph is consistent.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Expressive limitations of RDFS

Hence,

@ RDFS cannot express inconsistencies,

@ so any RDFS graph is consistent.

Therefore,

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Expressive limitations of RDFS

Hence,

@ RDFS cannot express inconsistencies,

@ so any RDFS graph is consistent.
Therefore,

@ RDFS supports no reasoning services that require consistency-checking.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Expressive limitations of RDFS

Hence,

@ RDFS cannot express inconsistencies,

@ so any RDFS graph is consistent.
Therefore,

@ RDFS supports no reasoning services that require consistency-checking.

@ If consistency-checks are needed, one must turn to OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Expressive limitations of RDFS

Hence,

@ RDFS cannot express inconsistencies,

@ so any RDFS graph is consistent.
Therefore,

@ RDFS supports no reasoning services that require consistency-checking.
@ If consistency-checks are needed, one must turn to OWL.

@ More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Open world semantics

A conspicuous non-pattern

Suppose we elaborate on our music example in the following way:

rdfs:Resource

rdfs:range

rdfs:domain
:SymphonyOrchestra

el
ars;
° ubpr°P ery
YOr

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

The incompleteness of RDFS

That is:

@ We make :conductor a subproperty of _:x,
@ _:x is a generic relation between people and orchestras,

@ to be used whenever we want the associated restrictions.
We would then want to be able to reason as follows (names abbreviated):

@ :0slo :cond :Abadi . - P

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

The incompleteness of RDFS

That is:

@ We make :conductor a subproperty of _:x,
@ _:x is a generic relation between people and orchestras,
@ to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

@ :0slo :cond :Abadi . - P
© :cond rdfs:subProp _:x . -P

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

The incompleteness of RDFS

That is:

@ We make :conductor a subproperty of _:x,
@ _:x is a generic relation between people and orchestras,

@ to be used whenever we want the associated restrictions.
We would then want to be able to reason as follows (names abbreviated):
@ :0slo :cond :Abadi . - P

© :cond rdfs:subProp _:x . —P
© :0slo _:x :Abadi . —rdfs7, 1, 2

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

The incompleteness of RDFS

That is:

@ We make :conductor a subproperty of _:x,
@ _:x is a generic relation between people and orchestras,

@ to be used whenever we want the associated restrictions.
We would then want to be able to reason as follows (names abbreviated):

@ :0slo :cond :Abadi . - P
© :cond rdfs:subProp _:x . —P
© :0slo _:x :Abadi . —rdfs7, 1, 2

Q@ _:x rdfs:domain :Person . — P

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

The incompleteness of RDFS

That is:

@ We make :conductor a subproperty of _:x,
@ _:x is a generic relation between people and orchestras,

@ to be used whenever we want the associated restrictions.
We would then want to be able to reason as follows (names abbreviated):
© :0slo :cond :Abadi . —P
© :cond rdfs:subProp _:x . —P
© :0slo _:x :Abadi . —rdfs7, 1, 2
Q@ _:x rdfs:domain :Person . — P
© :Abadi rdfs:type :Person . —rdfs2, 3,4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

@ However, we cannot use rdfs2 and rdfs7 in this way,
@ since it requires putting a blank in predicate position,
@ which is not legitimate RDF.

@ Hence, the conclusion is not derivable.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Contd.

@ However, we cannot use rdfs2 and rdfs7 in this way,
@ since it requires putting a blank in predicate position,
@ which is not legitimate RDF.

@ Hence, the conclusion is not derivable.
Nevertheless,

o this really is a semantically valid inference,
@ thus the RDFS rules are incomplete wrt. RDFS semantics.

@ There are also other cases where the RDFS rules are not sufficient for deriving all entailed
triples (e.g. deriving domains and ranges), more on this in three weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules, so

@ they do not guarantee complete reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules, so
@ they do not guarantee complete reasoning.
Better therefore;

@ if all you need is the three RDFS reasoning patterns,
@ to use OWL and OWL reasoners instead.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules, so
@ they do not guarantee complete reasoning.
Better therefore;

@ if all you need is the three RDFS reasoning patterns,
@ to use OWL and OWL reasoners instead.
Unless, of course
@ you need to talk about properties and classes as objects,
@ that is, you need the meta-modelling facilities of RDFS,

@ but people rarely do.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

Conclusion

@ We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf :type, rdfs:subClass0f, rdfs:range), the computer can derive
new triples, that follows from our original triples.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

http://www.babelnet.org/

Open world semantics

Conclusion

@ We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf :type, rdfs:subClass0f, rdfs:range), the computer can derive
new triples, that follows from our original triples.

@ The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x
rdf:type B).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

http://www.babelnet.org/

Open world semantics

Conclusion

@ We have seen that by modelling knowledge using the URIs in the RDF and RDFS

vocabularies (e.g. rdf :type, rdfs:subClass0f, rdfs:range), the computer can derive
new triples, that follows from our original triples.

@ The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x
rdf:type B).

@ However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

INF3580/4580 :: Spring 2018

Lecture 6 :: 20th February

http://www.babelnet.org/

Open world semantics

Conclusion

@ We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf :type, rdfs:subClass0f, rdfs:range), the computer can derive
new triples, that follows from our original triples.

@ The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x
rdf:type B).

@ However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

@ It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

http://www.babelnet.org/

Open world semantics

Conclusion

@ We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf :type, rdfs:subClass0f, rdfs:range), the computer can derive
new triples, that follows from our original triples.

@ The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x
rdf:type B).

@ However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

@ It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

@ Example of large ontology, BabelNet: http://www.babelnet.org/

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

http://www.babelnet.org/

Conclusion

@ We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf :type, rdfs:subClass0f, rdfs:range), the computer can derive
new triples, that follows from our original triples.

@ The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x
rdf:type B).

@ However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

@ It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

@ Example of large ontology, BabelNet: http://www.babelnet.org/

o OWL will also allow us to express more complex statements and use more complex types
of reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

http://www.babelnet.org/

Open world semantics

That's it for today!

Remember the oblig!

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February

	Inference rules
	RDFS Basics
	Open world semantics

