
INF3580/4580 – Semantic Technologies – Spring 2018
Lecture 6: Introduction to Reasoning with RDF

Leif Harald Karlsen

20th February 2018

Department of
Informatics

University of
Oslo

Mandatory exercises

Oblig 4 published after this lecture.

Hand-in by Tuesday in two weeks.

Exercises mostly from this week’s lecture, but one from next week’s lecture, Reasoning
with Jena.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 2 / 55

Mandatory exercises

Oblig 4 published after this lecture.

Hand-in by Tuesday in two weeks.

Exercises mostly from this week’s lecture, but one from next week’s lecture, Reasoning
with Jena.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 2 / 55

Mandatory exercises

Oblig 4 published after this lecture.

Hand-in by Tuesday in two weeks.

Exercises mostly from this week’s lecture, but one from next week’s lecture, Reasoning
with Jena.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 2 / 55

Today’s Plan

1 Inference rules

2 RDFS Basics

3 Open world semantics

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 3 / 55

Inference rules

Outline

1 Inference rules

2 RDFS Basics

3 Open world semantics

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 4 / 55

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.

We introduced interpretations:

Idea: put all letters that are “true” into a set.

Define: An interpretation I is a set of letters.

Letter p is true in interpretation I if p ∈ I.

E.g., in I1 = {p, q}, p is true, but r is false. p rrq

I1 I2

But in I2 = {q, r}, p is false, but r is true.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 5 / 55

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.

We introduced interpretations:

Idea: put all letters that are “true” into a set.

Define: An interpretation I is a set of letters.

Letter p is true in interpretation I if p ∈ I.

E.g., in I1 = {p, q}, p is true, but r is false. p rrq

I1 I2

But in I2 = {q, r}, p is false, but r is true.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 5 / 55

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.

We introduced interpretations:

Idea: put all letters that are “true” into a set.

Define: An interpretation I is a set of letters.

Letter p is true in interpretation I if p ∈ I.

E.g., in I1 = {p, q}, p is true, but r is false. p rrq

I1 I2

But in I2 = {q, r}, p is false, but r is true.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 5 / 55

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.

We introduced interpretations:

Idea: put all letters that are “true” into a set.

Define: An interpretation I is a set of letters.

Letter p is true in interpretation I if p ∈ I.

E.g., in I1 = {p, q}, p is true, but r is false. p rrq

I1 I2

But in I2 = {q, r}, p is false, but r is true.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 5 / 55

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for Propositional Logic.

We introduced interpretations:

Idea: put all letters that are “true” into a set.

Define: An interpretation I is a set of letters.

Letter p is true in interpretation I if p ∈ I.

E.g., in I1 = {p, q}, p is true, but r is false. p rrq

I1 I2

But in I2 = {q, r}, p is false, but r is true.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 5 / 55

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 6 / 55

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 6 / 55

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 6 / 55

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 6 / 55

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 6 / 55

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 6 / 55

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 6 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),

a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,

relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks.

Interpretations will consist of

a set D of resources (possibly infinite),
a function mapping each URI to an object in D,
relations on D giving meaning for each property.

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 7 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.

But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,

and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time

this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 8 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 9 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 10 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 11 / 55

Inference rules

Inference rules in propositional logic

(Part of) Natural dedcution calclulus for propositional logic:

A (A→ B)
→ E

B

(A ∧ B)
∧ElA

(A ∧ B)
∧ErB

A B ∧I
(A ∧ B)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 12 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store.”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 13 / 55

RDFS Basics

Outline

1 Inference rules

2 RDFS Basics

3 Open world semantics

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 14 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 15 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.

rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.

rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.

rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.

rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.

rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.

rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 16 / 55

RDFS Basics

Example

rdfs:Class

rdfs:Resource

foaf:Person rdf:Property thinkpad:L420

:owns
:me :myComp

rdf:type rdf:type rdf:type

rdf
s:s
ub
Cl
as
sO
f

rd
fs
:s
u
b
C
la
ss
O
f rdfs:subClassOf

rdf:type

rdf:type rdf:type

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 17 / 55

RDFS Basics

Intuition: Classes as Sets

We can think of an rdfs:Class as denoting a set of Resources.

Not quite correct, but OK for intuition.

RDFS Set Theory

A rdf:type rdfs:Class A is a set of resources
x rdf:type A x ∈ A

A rdfs:subClassOf B A ⊆ B

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 18 / 55

RDFS Basics

Intuition: Classes as Sets

We can think of an rdfs:Class as denoting a set of Resources.

Not quite correct, but OK for intuition.

RDFS Set Theory

A rdf:type rdfs:Class A is a set of resources
x rdf:type A x ∈ A

A rdfs:subClassOf B A ⊆ B

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 18 / 55

RDFS Basics

Intuition: Classes as Sets

We can think of an rdfs:Class as denoting a set of Resources.

Not quite correct, but OK for intuition.

RDFS Set Theory

A rdf:type rdfs:Class A is a set of resources
x rdf:type A x ∈ A

A rdfs:subClassOf B A ⊆ B

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 18 / 55

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”
“All fathers of people are males. James is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 19 / 55

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”
“All fathers of people are males. James is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 19 / 55

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”
“All fathers of people are males. James is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 19 / 55

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”
“All fathers of people are males. James is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 19 / 55

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”
“All fathers of people are males. James is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 19 / 55

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”

“All fathers of people are males. James is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 19 / 55

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”
“All fathers of people are males. James is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 19 / 55

RDFS Basics

Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,

and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
rdfs9

x rdf:type B .

Reflexivity of sub-class relation

A rdf:type rdfs:Class .
rdfs10

A rdfs:subClassOf A .

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
rdfs11

A rdfs:subClassOf C .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 20 / 55

RDFS Basics

Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,
and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
rdfs9

x rdf:type B .

Reflexivity of sub-class relation

A rdf:type rdfs:Class .
rdfs10

A rdfs:subClassOf A .

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
rdfs11

A rdfs:subClassOf C .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 20 / 55

RDFS Basics

Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,
and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
rdfs9

x rdf:type B .

Reflexivity of sub-class relation

A rdf:type rdfs:Class .
rdfs10

A rdfs:subClassOf A .

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
rdfs11

A rdfs:subClassOf C .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 20 / 55

RDFS Basics

Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,
and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
rdfs9

x rdf:type B .

Reflexivity of sub-class relation

A rdf:type rdfs:Class .
rdfs10

A rdfs:subClassOf A .

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
rdfs11

A rdfs:subClassOf C .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 20 / 55

RDFS Basics

Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,
and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
rdfs9

x rdf:type B .

Reflexivity of sub-class relation

A rdf:type rdfs:Class .
rdfs10

A rdfs:subClassOf A .

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
rdfs11

A rdfs:subClassOf C .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 20 / 55

RDFS Basics

Set Theory Analogy

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .

x rdf:type B .

A ⊆ B x ∈ A

x ∈ B

Reflexivity of sub-class relation

A rdf:type rdfs:Class .

A rdfs:subClassOf A .

A is a set
A ⊆ A

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
A rdfs:subClassOf C .

A ⊆ B B ⊆ C

A ⊆ C

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 21 / 55

RDFS Basics

Set Theory Analogy

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .

x rdf:type B .

A ⊆ B x ∈ A

x ∈ B

Reflexivity of sub-class relation

A rdf:type rdfs:Class .

A rdfs:subClassOf A .

A is a set
A ⊆ A

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
A rdfs:subClassOf C .

A ⊆ B B ⊆ C

A ⊆ C

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 21 / 55

RDFS Basics

Set Theory Analogy

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .

x rdf:type B .

A ⊆ B x ∈ A

x ∈ B

Reflexivity of sub-class relation

A rdf:type rdfs:Class .

A rdfs:subClassOf A .

A is a set
A ⊆ A

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
A rdfs:subClassOf C .

A ⊆ B B ⊆ C

A ⊆ C

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 21 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 22 / 55

RDFS Basics

A typical taxonomy

Vertebrate

Reptile

Crocodilia

Amphibian

Salamander

Mammal

Bat Whale

KillerWhale

Figure: A typical taxonomy

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 23 / 55

RDFS Basics

Multiple Inheritance

A set is a subset of many other sets:

{2, 3} ⊆ {1, 2, 3} {2, 3} ⊆ {2, 3, 4} {2, 3} ⊆ N {2, 3} ⊆ P

Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

Whale

This is usually not called a taxonomy, but it’s no problem for RDFS.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 24 / 55

RDFS Basics

Multiple Inheritance

A set is a subset of many other sets:

{2, 3} ⊆ {1, 2, 3} {2, 3} ⊆ {2, 3, 4} {2, 3} ⊆ N {2, 3} ⊆ P

Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

Whale

This is usually not called a taxonomy, but it’s no problem for RDFS.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 24 / 55

RDFS Basics

Multiple Inheritance

A set is a subset of many other sets:

{2, 3} ⊆ {1, 2, 3} {2, 3} ⊆ {2, 3, 4} {2, 3} ⊆ N {2, 3} ⊆ P

Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

Whale

This is usually not called a taxonomy, but it’s no problem for RDFS.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 24 / 55

RDFS Basics

Multiple Inheritance

A set is a subset of many other sets:

{2, 3} ⊆ {1, 2, 3} {2, 3} ⊆ {2, 3, 4} {2, 3} ⊆ N {2, 3} ⊆ P

Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

Whale

This is usually not called a taxonomy, but it’s no problem for RDFS.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 24 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 25 / 55

RDFS Basics

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

. . . then an rdf:Property is like a relation on resources.

Remember: not quite correct, but OK for intuition.

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
x r y 〈x , y〉 ∈ r

r rdfs:subPropertyOf s r ⊆ s

Rules:
p ⊆ q q ⊆ r

p ⊆ r

p a relation

p ⊆ p

p ⊆ q 〈u, v〉 ∈ p

〈u, v〉 ∈ q

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 26 / 55

RDFS Basics

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

. . . then an rdf:Property is like a relation on resources.

Remember: not quite correct, but OK for intuition.

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
x r y 〈x , y〉 ∈ r

r rdfs:subPropertyOf s r ⊆ s

Rules:
p ⊆ q q ⊆ r

p ⊆ r

p a relation

p ⊆ p

p ⊆ q 〈u, v〉 ∈ p

〈u, v〉 ∈ q

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 26 / 55

RDFS Basics

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

. . . then an rdf:Property is like a relation on resources.

Remember: not quite correct, but OK for intuition.

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
x r y 〈x , y〉 ∈ r

r rdfs:subPropertyOf s r ⊆ s

Rules:
p ⊆ q q ⊆ r

p ⊆ r

p a relation

p ⊆ p

p ⊆ q 〈u, v〉 ∈ p

〈u, v〉 ∈ q

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 26 / 55

RDFS Basics

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

. . . then an rdf:Property is like a relation on resources.

Remember: not quite correct, but OK for intuition.

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
x r y 〈x , y〉 ∈ r

r rdfs:subPropertyOf s r ⊆ s

Rules:
p ⊆ q q ⊆ r

p ⊆ r

p a relation

p ⊆ p

p ⊆ q 〈u, v〉 ∈ p

〈u, v〉 ∈ q

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 26 / 55

RDFS Basics

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

. . . then an rdf:Property is like a relation on resources.

Remember: not quite correct, but OK for intuition.

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
x r y 〈x , y〉 ∈ r

r rdfs:subPropertyOf s r ⊆ s

Rules:
p ⊆ q q ⊆ r

p ⊆ r

p a relation

p ⊆ p

p ⊆ q 〈u, v〉 ∈ p

〈u, v〉 ∈ q

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 26 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 27 / 55

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .

:author rdf:type rdf:Property .

:author rdfs:subPropertyOf dcterms:creator .

:writer rdfs:subPropertyOf dcterms:creator .

And Facts:

ex:knausgård :writer ex:minKamp .

ex:hamsun :author ex:sult .

Infer:

ex:knausgård dcterms:creator ex:minKamp .

ex:hamsun dcterms:creator ex:sult .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 28 / 55

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .

:author rdf:type rdf:Property .

:author rdfs:subPropertyOf dcterms:creator .

:writer rdfs:subPropertyOf dcterms:creator .

And Facts:

ex:knausgård :writer ex:minKamp .

ex:hamsun :author ex:sult .

Infer:

ex:knausgård dcterms:creator ex:minKamp .

ex:hamsun dcterms:creator ex:sult .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 28 / 55

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .

:author rdf:type rdf:Property .

:author rdfs:subPropertyOf dcterms:creator .

:writer rdfs:subPropertyOf dcterms:creator .

And Facts:

ex:knausgård :writer ex:minKamp .

ex:hamsun :author ex:sult .

Infer:

ex:knausgård dcterms:creator ex:minKamp .

ex:hamsun dcterms:creator ex:sult .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 28 / 55

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .

:author rdf:type rdf:Property .

:author rdfs:subPropertyOf dcterms:creator .

:writer rdfs:subPropertyOf dcterms:creator .

And Facts:

ex:knausgård :writer ex:minKamp .

ex:hamsun :author ex:sult .

Infer:

ex:knausgård dcterms:creator ex:minKamp .

ex:hamsun dcterms:creator ex:sult .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 28 / 55

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .

:author rdf:type rdf:Property .

:author rdfs:subPropertyOf dcterms:creator .

:writer rdfs:subPropertyOf dcterms:creator .

And Facts:

ex:knausgård :writer ex:minKamp .

ex:hamsun :author ex:sult .

Infer:

ex:knausgård dcterms:creator ex:minKamp .

ex:hamsun dcterms:creator ex:sult .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 28 / 55

RDFS Basics

Consequences

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 29 / 55

RDFS Basics

Consequences

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 29 / 55

RDFS Basics

Consequences

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 29 / 55

RDFS Basics

Consequences

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 29 / 55

RDFS Basics

Consequences

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 29 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 30 / 55

RDFS Basics

Organising the properties

:empBy

:permEmp

:tenAt

:profAt

:tempEmp

:fundBy

:recSchol

:conTo

Figure: A hierarchy of employment relations

Note: doesn’t have to be tree-shaped.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 31 / 55

RDFS Basics

Organising the properties

:empBy

:permEmp

:tenAt

:profAt

:tempEmp

:fundBy

:recSchol

:conTo

Figure: A hierarchy of employment relations

Note: doesn’t have to be tree-shaped.
INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 31 / 55

RDFS Basics

Querying the inferred model

Formalising the tree:

:profAt rdf:type rdfs:Property .

:tenAt rdf:type rdfs:Property .

:profAt rdfs:subPropertyOf :tenAt

..... and so forth.

Given a data set such as:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

:empBy

:permEmp

:tenAt

:profAt

:tempEmp

:fundBy

:recSchol

:conTo

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 32 / 55

RDFS Basics

Querying the inferred model

Formalising the tree:

:profAt rdf:type rdfs:Property .

:tenAt rdf:type rdfs:Property .

:profAt rdfs:subPropertyOf :tenAt

..... and so forth.

Given a data set such as:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

:empBy

:permEmp

:tenAt

:profAt

:tempEmp

:fundBy

:recSchol

:conTo

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 32 / 55

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT ?emp WHERE {?emp :tempEmp :x .}

→ Audun, Steve, Trond

Permanent employees

SELECT ?emp WHERE {?emp :permEmp :x .}

→ Arild, Jenny

All employees

SELECT ?emp WHERE {?emp :empBy :x .}

→ Arild, Jenny, Audun, Steve, Trond

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 33 / 55

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT ?emp WHERE {?emp :tempEmp :x .}

→ Audun, Steve, Trond

Permanent employees

SELECT ?emp WHERE {?emp :permEmp :x .}

→ Arild, Jenny

All employees

SELECT ?emp WHERE {?emp :empBy :x .}

→ Arild, Jenny, Audun, Steve, Trond

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 33 / 55

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT ?emp WHERE {?emp :tempEmp :x .}

→ Audun, Steve, Trond

Permanent employees

SELECT ?emp WHERE {?emp :permEmp :x .}

→ Arild, Jenny

All employees

SELECT ?emp WHERE {?emp :empBy :x .}

→ Arild, Jenny, Audun, Steve, Trond

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 33 / 55

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 34 / 55

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 34 / 55

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 34 / 55

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 34 / 55

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 34 / 55

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 34 / 55

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 34 / 55

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,
therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 35 / 55

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,
therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 35 / 55

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,
therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 35 / 55

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,
therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 35 / 55

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,
therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 35 / 55

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,

therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 35 / 55

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,
therefore an application of p suffices to type that resource.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 35 / 55

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

dom R = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
dom R = {1, 2}
rg R = {4,�,♦}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 36 / 55

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

dom R = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
dom R = {1, 2}
rg R = {4,�,♦}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 36 / 55

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

dom R = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
dom R = {1, 2}
rg R = {4,�,♦}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 36 / 55

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

dom R = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
dom R = {1, 2}
rg R = {4,�,♦}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 36 / 55

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

dom R = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}

dom R = {1, 2}
rg R = {4,�,♦}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 36 / 55

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

dom R = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
dom R = {1, 2}

rg R = {4,�,♦}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 36 / 55

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

dom R = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
dom R = {1, 2}
rg R = {4,�,♦}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 36 / 55

RDFS Basics

Set intuitions for rdfs:domain and rdfs:range

If an rdfs:Class is like a set of resources and an rdf:Property is like a relation on
resources. . .

RDFS Set Theory

r rdfs:domain A dom r ⊆ A
r rdfs:range B rg r ⊆ B

Rules:
dom p ⊆ A 〈x , y〉 ∈ p

x ∈ A

rg p ⊆ B 〈x , y〉 ∈ p

y ∈ B

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 37 / 55

RDFS Basics

Set intuitions for rdfs:domain and rdfs:range

If an rdfs:Class is like a set of resources and an rdf:Property is like a relation on
resources. . .

RDFS Set Theory

r rdfs:domain A dom r ⊆ A
r rdfs:range B rg r ⊆ B

Rules:
dom p ⊆ A 〈x , y〉 ∈ p

x ∈ A

rg p ⊆ B 〈x , y〉 ∈ p

y ∈ B

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 37 / 55

RDFS Basics

Set intuitions for rdfs:domain and rdfs:range

If an rdfs:Class is like a set of resources and an rdf:Property is like a relation on
resources. . .

RDFS Set Theory

r rdfs:domain A dom r ⊆ A
r rdfs:range B rg r ⊆ B

Rules:
dom p ⊆ A 〈x , y〉 ∈ p

x ∈ A

rg p ⊆ B 〈x , y〉 ∈ p

y ∈ B

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 37 / 55

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type:Ensemble .

:Petrenko rdf:type :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 38 / 55

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type:Ensemble .

:Petrenko rdf:type :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 38 / 55

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type:Ensemble .

:Petrenko rdf:type :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 38 / 55

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type:Ensemble .

:Petrenko rdf:type :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 38 / 55

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type:Ensemble .

:Petrenko rdf:type :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 38 / 55

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type:Ensemble .

:Petrenko rdf:type :Person .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 38 / 55

RDFS Basics

Conductors and ensembles

rdfs:Resource

:Person :Ensemble

:conductor :SymphonyOrchestra

rdf
s:s

ubC
las

sOf
rdfs:subClassOf

r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

rdfs:domain

r
d
f
s
:
r
a
n
g
e

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 39 / 55

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 40 / 55

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 40 / 55

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 40 / 55

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 40 / 55

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 40 / 55

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:
:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 40 / 55

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:
:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 40 / 55

RDFS Basics

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Steve :conTo :OLF .
rdfs2

:Steve rdf:type :Freelancer

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?freelancer WHERE {

?freelancer rdf:type :Freelancer .

}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 41 / 55

RDFS Basics

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Steve :conTo :OLF .
rdfs2

:Steve rdf:type :Freelancer

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?freelancer WHERE {

?freelancer rdf:type :Freelancer .

}

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 41 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:

rdf:type rdfs:domain rdfs:Resource .

types are classes:

rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:

rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:

rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:
rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:
rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 42 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 43 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,

enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,

write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,

introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.

E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:

1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:
1 :OsloPhilharmonic :conductor :Petrenko . – P

2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:
1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P

3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:
1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2

4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:
1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P

5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:
1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 44 / 55

Open world semantics

Outline

1 Inference rules

2 RDFS Basics

3 Open world semantics

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 45 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”, “non-valid document”

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Beethovens9th :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database, it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Beethovens9th :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 46 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency,

but rather just add the missing information

This is the most important difference between relational DBs and RDF.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 47 / 55

Open world semantics

Ramifications

This fact has two important consequences:

1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,

since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,

it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,

and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.

Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all

For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,

ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred.
Note though, that validation functionality beyond RDFS is often implemented in RDFS
reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Joe rdf:type ex:Smoker .,
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 48 / 55

Open world semantics

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 49 / 55

Open world semantics

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 49 / 55

Open world semantics

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 49 / 55

Open world semantics

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 49 / 55

Open world semantics

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 49 / 55

Open world semantics

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 49 / 55

Open world semantics

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 49 / 55

Open world semantics

A conspicuous non-pattern

Suppose we elaborate on our music example in the following way:

rdfs:Resource

:Person :Ensemble

:x :SymphonyOrchestra

:conductor

rdfs:domain

r
d
f
s
:
r
a
n
g
e

rdfs:subPropertyOf

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 50 / 55

Open world semantics

The incompleteness of RDFS

That is:

We make :conductor a subproperty of :x,

:x is a generic relation between people and orchestras,

to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

1 :Oslo :cond :Abadi . – P

2 :cond rdfs:subProp :x . – P

3 :Oslo :x :Abadi . – rdfs7, 1, 2

4 :x rdfs:domain :Person . – P

5 :Abadi rdfs:type :Person . – rdfs2, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 51 / 55

Open world semantics

The incompleteness of RDFS

That is:

We make :conductor a subproperty of :x,

:x is a generic relation between people and orchestras,

to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

1 :Oslo :cond :Abadi . – P

2 :cond rdfs:subProp :x . – P

3 :Oslo :x :Abadi . – rdfs7, 1, 2

4 :x rdfs:domain :Person . – P

5 :Abadi rdfs:type :Person . – rdfs2, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 51 / 55

Open world semantics

The incompleteness of RDFS

That is:

We make :conductor a subproperty of :x,

:x is a generic relation between people and orchestras,

to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

1 :Oslo :cond :Abadi . – P

2 :cond rdfs:subProp :x . – P

3 :Oslo :x :Abadi . – rdfs7, 1, 2

4 :x rdfs:domain :Person . – P

5 :Abadi rdfs:type :Person . – rdfs2, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 51 / 55

Open world semantics

The incompleteness of RDFS

That is:

We make :conductor a subproperty of :x,

:x is a generic relation between people and orchestras,

to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

1 :Oslo :cond :Abadi . – P

2 :cond rdfs:subProp :x . – P

3 :Oslo :x :Abadi . – rdfs7, 1, 2

4 :x rdfs:domain :Person . – P

5 :Abadi rdfs:type :Person . – rdfs2, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 51 / 55

Open world semantics

The incompleteness of RDFS

That is:

We make :conductor a subproperty of :x,

:x is a generic relation between people and orchestras,

to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

1 :Oslo :cond :Abadi . – P

2 :cond rdfs:subProp :x . – P

3 :Oslo :x :Abadi . – rdfs7, 1, 2

4 :x rdfs:domain :Person . – P

5 :Abadi rdfs:type :Person . – rdfs2, 3, 4

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 51 / 55

Open world semantics

Contd.

However, we cannot use rdfs2 and rdfs7 in this way,

since it requires putting a blank in predicate position,

which is not legitimate RDF.

Hence, the conclusion is not derivable.

Nevertheless,

this really is a semantically valid inference,

thus the RDFS rules are incomplete wrt. RDFS semantics.

There are also other cases where the RDFS rules are not sufficient for deriving all entailed
triples (e.g. deriving domains and ranges), more on this in three weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 52 / 55

Open world semantics

Contd.

However, we cannot use rdfs2 and rdfs7 in this way,

since it requires putting a blank in predicate position,

which is not legitimate RDF.

Hence, the conclusion is not derivable.

Nevertheless,

this really is a semantically valid inference,

thus the RDFS rules are incomplete wrt. RDFS semantics.

There are also other cases where the RDFS rules are not sufficient for deriving all entailed
triples (e.g. deriving domains and ranges), more on this in three weeks.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 52 / 55

Open world semantics

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules, so

they do not guarantee complete reasoning.

Better therefore;

if all you need is the three RDFS reasoning patterns,

to use OWL and OWL reasoners instead.

Unless, of course

you need to talk about properties and classes as objects,

that is, you need the meta-modelling facilities of RDFS,

but people rarely do.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 53 / 55

Open world semantics

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules, so

they do not guarantee complete reasoning.

Better therefore;

if all you need is the three RDFS reasoning patterns,

to use OWL and OWL reasoners instead.

Unless, of course

you need to talk about properties and classes as objects,

that is, you need the meta-modelling facilities of RDFS,

but people rarely do.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 53 / 55

Open world semantics

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules, so

they do not guarantee complete reasoning.

Better therefore;

if all you need is the three RDFS reasoning patterns,

to use OWL and OWL reasoners instead.

Unless, of course

you need to talk about properties and classes as objects,

that is, you need the meta-modelling facilities of RDFS,

but people rarely do.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 53 / 55

Open world semantics

Conclusion

We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf:type, rdfs:subClassOf, rdfs:range), the computer can derive
new triples, that follows from our original triples.

The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x

rdf:type B).

However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

Example of large ontology, BabelNet: http://www.babelnet.org/

OWL will also allow us to express more complex statements and use more complex types
of reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 54 / 55

http://www.babelnet.org/

Open world semantics

Conclusion

We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf:type, rdfs:subClassOf, rdfs:range), the computer can derive
new triples, that follows from our original triples.

The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x

rdf:type B).

However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

Example of large ontology, BabelNet: http://www.babelnet.org/

OWL will also allow us to express more complex statements and use more complex types
of reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 54 / 55

http://www.babelnet.org/

Open world semantics

Conclusion

We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf:type, rdfs:subClassOf, rdfs:range), the computer can derive
new triples, that follows from our original triples.

The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x

rdf:type B).

However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

Example of large ontology, BabelNet: http://www.babelnet.org/

OWL will also allow us to express more complex statements and use more complex types
of reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 54 / 55

http://www.babelnet.org/

Open world semantics

Conclusion

We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf:type, rdfs:subClassOf, rdfs:range), the computer can derive
new triples, that follows from our original triples.

The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x

rdf:type B).

However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

Example of large ontology, BabelNet: http://www.babelnet.org/

OWL will also allow us to express more complex statements and use more complex types
of reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 54 / 55

http://www.babelnet.org/

Open world semantics

Conclusion

We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf:type, rdfs:subClassOf, rdfs:range), the computer can derive
new triples, that follows from our original triples.

The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x

rdf:type B).

However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

Example of large ontology, BabelNet: http://www.babelnet.org/

OWL will also allow us to express more complex statements and use more complex types
of reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 54 / 55

http://www.babelnet.org/

Open world semantics

Conclusion

We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf:type, rdfs:subClassOf, rdfs:range), the computer can derive
new triples, that follows from our original triples.

The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x

rdf:type B).

However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

Example of large ontology, BabelNet: http://www.babelnet.org/

OWL will also allow us to express more complex statements and use more complex types
of reasoning.

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 54 / 55

http://www.babelnet.org/

Open world semantics

That’s it for today!

Remember the oblig!

INF3580/4580 :: Spring 2018 Lecture 6 :: 20th February 55 / 55

	Inference rules
	RDFS Basics
	Open world semantics

