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Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue 
accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner 
for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of 
cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable 
and arises from the interplay of multiple genes and environmental factors. Recent advancements in 
Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks 
and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. 
According to the 12th update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for 
obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of 
individual ethnic and racial variations in obesity is an active area of research. Further, understanding its 
complexity as to how these variations could influence ones susceptibility to become or remain obese will 
lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this 
condition. In this review, various strategies adapted for such an analysis based on the recent advances in 
genome wide and functional variations in human obesity are discussed. 
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Introduction 

 obesity is considered as a metabolic syndrome 
resulting from a chronic imbalance of energy intake 
versus energy expenditure, leading to storage of 
excessive amounts of triglycerides in adipose tissue1. 
It is a major risk factor for multiple disorders, such as 
type 2 diabetes, cancer, fatty liver disease, hormonal 
disturbances, hypertension, cardiovascular diseases 
(CvD), increased and morbidity and mortality rates, 
etc2-7. According to the current estimates, by 2015 
more than 700 million individuals worldwide will be 
obese8. obesity rates are also increasing in children 

and adolescents all over the world, predisposing them 
to poor health from an early age8,9.

 In clinical practice, it is measured in terms of 
body mass index (BMI), which gives a surrogate 
measure of overall obesity and, accordingly the World 
Health Organization (WHO) classifies a person with 
a BMI ≥25 kg/m2 as obese and a BMI ≥40 kg/m2 as 
extremely obese8. It is important to note that sex and 
age are associated with differences in obesity and 
body composition. For example, women tend to store 
more fat subcutaneously rather than in visceral adipose 
tissue. So at the same BMI, women will tend to carry 
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more body fat than men9. Two general patterns of fat 
distribution have been observed viz., android type or 
central obesity (adipose deposition in the abdominal 
area) common in males and gynoid type (adipose 
deposition around the hips) common in females10. 
Android/central obesity is an established independent 
risk factor for CvD and type 2 diabetes, whereas the 
gynoid pattern is thought to be protective or inversely 
correlated11. To account for these differences in fat 
distribution, waist-to-hip ratio (WHR) is commonly 
used and BMI and WHR are correlated (r2~0.6)12. 

 The current lifestyle has driven obesity prevalence 
to epidemic proportions with a substantial genetic 
contribution of 40-70 per cent approximately13,14. 
Since human obesity occurs due to sedentary lifestyle, 
epigenetics (mitotically and meiotically heritable 
changes in gene expression without any change in the 
DNA sequence15) also play an important role in its 
establishment. There are two important mechanisms 
involved in epigenetics regulations viz. DNA cytosine 
methylation and histone modifications16. It has also 
been observed that microRNAs (miRNAs) extended 
their role to epigenetic regulation17. Thus, dietary 
methyl-groups (choline, methionine, genistein and 
folate) intake during critical periods of developmental 
stages can alter promoter DNA and histone methylation 
resulting in the lifelong changes in gene expression 
and thereby altering the epigenome towards obesity in 
adulthood18,19. 

Genetics

 Being a very complex disease, obesity does 
not appear to be limited to a single gene disorder 
(Table I) but rather found to occur as symptoms of 
other disorders (Table II) or as a result of multiple 
gene disorders (Table III). Hence, depending on the 

suspected aetiology obesity could be classified into 
three subgroups: Monogenic, Syndromic and Polygenic 
or Common obesity. The first single gene defect causing 
monogenic obesity was first described in 199720, and to 
date, about 20 such disorders have been reported for an 
autosomal form of obesity1 (Table I). Interestingly, all 
these mutations lie in the leptin/melanocortin pathway 
of the central nervous system (CNS) which are critical 
in the regulation of whole-body energy homeostasis68.
obesity in these cases appears to be extremely severe 
due to increased appetite and diminished satiety. The 
second type, syndromic obesity arises from discrete 
genetic defects or chromosomal abnormalities at 
several genes, and can be autosomal or X-linked69 
(Table II). The third, polygenic/common obesity is 
due to the simultaneous presence of DNA variations 
in multiple genes. Potentially, many such polygenic 
variants (mostly >100) play a role in body weight 
regulation70 (Table III). If an individual harbours 
many such polygenic variants for increased body 
weight, obesity can ensue and each variant will have 
a higher frequency than in normal/lean individuals70. A 
polygenic basis of obesity also implies that a specific 
set of polygenic variants relevant for obesity can vary 
from individual to individual. 

Strategic approaches for detection of obese genes 

 Human obesity, usually arises from the combined 
effects of the interactions among multiple genes, 
environmental factors and behaviour, and this complex 
aetiology makes the management and prevention 
of human obesity especially challenging. A genetic 
basis for obesity exists and has been proven to be a 
dreadful task. Genetic epidemiologic methods for the 
gene discovery of complex traits, such as obesity, can 
be divided into two broad classes: hypothesis-driven 
(candidate gene or biologic pathway) and hypothesis-

Table I. List of genes responsible for monogenic obesity: Autosomal reccessive form of obesity

S.No. Locus mutated Encoded proteins Usual physiological functions References
1. LEP Leptin (LEP) Protein hormone produced by adipocytes and regulates 

eating behaviour
20, 21

2. LEPR Leptin receptor (LEPR)  
in hypothalamus 

Binds leptin and activates the synthesis of  
pro-opiomelanocortin (PoMC)

22

3. POMC Pro-opiomelanocortin 
(PoMC) 

Precursor protein α-melanocyte stimulating hormone 
(α-MSH) along with other protein hormones

23, 24

4. PC 1 Prohormone convertase-1 
(PC 1) 

Catalyzes post-translational cleavage of PoMC  
into α-MSH

25, 26

5. MC4R Melanocortin-4 receptor 
(MC4R) 

Binds of MC4R to α-MSH receptor, expressed in 
hypothalamus to activate anorexigenic signals

27-37
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free (genome-wide linkage and genome-wide 
association) approaches.

Candidate gene single nucleotide polymorphism (SNP) 
analyses: The hypothesis-driven approach (candidate 
gene or biologic pathway analysis) needs a prior 
knowledge of the cause(s) for the genetic polymorphisms 
in a candidate gene or a biologic pathway being studied 
and their effect(s) on a particular phenotype of interest. 
This approach has been considered to be an efficient 
strategy for identifying genetic variants with small or 
modest effects that underlie susceptibility to common 
disease, including obesity. The selection of candidate 
gene(s) should, therefore, consider both the significance 

of the candidate gene to the pathogenesis of the disease 
of interest and its functional effects due to a particular 
polymorphism. So the design of the candidate gene 
approach is simple; the fundamental requirements 
are the identification of a gene that is involved in the 
disease phenotype, a polymorphic marker within that 
gene and a suitable set of subjects to genotype for that 
marker. But the identification of the potential candidate 
gene(s) is the main stumbling block. 

 There are two main types of candidate genes that 
are generally considered in such studies: functional 
and positional. Functional candidates are the genes 
with products that are involved in the pathogenesis of 

Table II. List of syndromic obesity in humans: Autosomal or X-linked
S. No. Syndrome Symtoms Locus Gene References
Autosomal dominant
1. Prader-Willi syndrome 

(PWS)
Short physique with psychological defects 
hypotonia and hypogonadism.

15q11.2-q12 Unknown 38-43

2. Albright’s hereditary 
osteodystrophy (AHo)

Short physique with skeletal defects and 
defective olfaction

20q13.2 GNAS1 43, 44

3. Fragile X syndrome Psychological and speech defects with  
macro-orchidism

Xq27.3 FMR1 45

4. Ulnar-mammary syndrome Postponed puberty with imperfect ulnar and 
hypoplastic nipples

12q24.1 TBX3 46

Autosomal reccessive
5. Bardet-Biedl syndrome Psychological and renal defects with retinal 

dystrophy and hypogonadism
11q13
(BBS1)

BBS1 47

16q21
(BBS2)

BBS2 48

15q22
(BBS4)

BBS4 49

20p12
(BBS6)

BBS6 
(MKKS)

50-52

6. Alström syndrome Retinal dystrophy with neurosensory deafness 
and diabetes

2p13 ALMS1 53, 54

7. Cohen syndrome Prominent central incisors with opthalmopathy, 
and microcephaly

8q22 - 55

X-linked
8. Börjeson-Forssman-Lehmann

syndrome
Psychological defects with large pinna and 
hypogonadism

Xq26 PHF6 56

9. MEHMo syndrome Psychological defects with epilepsy, 
hypogonadism, microcephaly

Xp22.13 - 57, 58

10. Simpson-Golabi-Behmel, 
Type 2

Skeletal and visceral abnormalities Xp22 - 59

11. Wilson-Turner syndrome Psychological defects with tapering fingers, 
and gynaecomastia

Xp21.2 - 60
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the disease. obviously, this is highly dependent on the 
current state of knowledge about a disease, and in the 
case of obesity, the discovery of signaling molecules 
such as leptin and pro-opiomelanocortin (PoMC) 
has provided a great stimulus to the field. Positional 
candidates are the genes that lie within genomic regions 
that have been shown to be genetically important in 
linkage or association studies, or by the detection of 
chromosomal translocations that disrupt the gene71.

 Candidate gene analysis is an indirect test 
of association to examine the relation between a 
dense map of SNPs and disease, while candidate 
SNP analysis is a direct test of association between 
putative functional variants and disease risk. The 
advantage of indirect association is that it does not 
require prior determination of which SNP might be 
functionally important; however, the disadvantage is 
that larger numbers of SNPs need to be genotyped72. 
A combination of functionally important SNPs with a 
collection of tag SNPs covering the entire candidate 
gene has been used in many candidate gene association 
studies73. Genetic variants in multiple candidate genes 
within the same biologic pathway can be examined, 
and their interaction can be tested in pathway analysis. 
But those genetic variants in multiple candidate genes 
of different biologic pathways and their interactions 
are very difficult to study through only candidate gene/
SNP analysis as in the case of human obesity. Several 
genes have been analyzed in humans because these 
were found to be involved in central or peripheral 
pathways controlling energy intake and expenditure 
in animal models. Enormous association studies for 
obesity involving cases and controls or, less regularly, 
families comprising one or more affected children and 
both parents have been performed. But only for a small 
number of genes meta-analyses have been carried 
out and a list of latest positive results is available at 
http://obesitygene.pbrc.edu/ which showed positive 
associations of obesity phenotypes with a total of 
113 candidate genes, of which only for 18 genes a 
minimum of five positive studies had been reported 
as often the study groups were small74. The first truly 
validated polygenic effect on body weight detected via 
a candidate gene analysis was val103Ile polymorphism 
in melanocortin-4 receptor (MC4R) gene75.

 Generally, these association studies have not given 
consistent results. Therefore, it is very difficult to get 
any convincing meta-analysis of variants in candidate 
genes that are explicitly linked to the genetic risk for 
obesity76. There is a wide difference in the obesogenic 

environments from where the subjects are recruited for 
the study. In many cases, data could not be replicated 
because of the various limitations in studies with 
the cohort size in which the association of variant(s) 
with the disease(s) was first detected. Because the 
contribution of any given gene to the phenotype of a 
complex trait is often minimal, a large cohort size is 
required if statistical significance is to be achieved. 
Another disadvantage of candidate gene analysis is 
that it depends on a prior hypothesis about disease 
mechanisms, therefore, the discovery of new genetic 
variants or novel genes would be excluded. Thus, the 
candidate gene approach is more appropriate for single 
gene disorder and not for the obesity like complex 
diseases. This type of approach may not give full 
resolution to the problem, but may help in establishing 
relationship between disease susceptibility and genetic 
variation. Hence, the only way forward seems to be 
investigation of the functional roles of the current 
candidate genes in model organisms and in vitro cell 
systems using Genome-Wide Approaches (GWA) 
which lead to the development of functional assays to 
test putative activator/inhibitor molecules as potential 
therapeutics. 

Genome-wide approaches

 Through genome wide association studies (GWAS) 
up to 2,000,000 genetic variants can now be analyzed 
for association with a given phenotype and have been 
proven extremely successful for various phenotypes77. 
This approach can be pursued through two ways, viz., 
Genome-wide linkage scans (GWLS) and Genome-
wide association studies (GWAS). The GWLS identify 
chromosomal regions having gene(s) pertinent for a 
particular phenotype via linkage data. The regions 
underlying linkage peaks are narrowed down by fine 
mapping, so that the candidate gene analyses can 
be pursued. The first candidate gene for early onset 
of obesity detected via GWLS was ectonucleotide 
pyrophosphatase/phophodiesterase 1 (ENPP1) and 
attempts are ongoing to validate the association78. 
More than 40 microsatellite-based GWLS have been 
performed and none of the single candidate genes 
detected have been validated explicitly which further 
shows that either the effect sizes of genes influencing 
adiposity are small or the substantial heterogeneity 
exists or both. Therefore, to avoid such types of 
uncertainty GWLS analysis requires large samples 
size. 

 The GWAS provide a better devise to identify 
common variants with low to rational penetrance 
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and are significant as risk factors for the trait of 
interest. Within a short duration, GWAS have proven 
to be very successful for the detection of polygenic 
variants. The advent of high density SNP-chips 
has made GWAS practicable and has given a new 
dimension to the study of complex diseases through 
the increased identification of confirmed genes and 
thereby revolutionized the molecular genetic analyses 
of complex disorders. GWAS performed for obesity 
or BMI (Table III) have established it as an extremely 
powerful tool to detect genetic variants for the complex 
phenotype(s). For example, presently known polygenic 
variants have a mean effect on BMI of approximately 
0.03-0.5 kg/m2which appears reasonable as these 
effect sizes represent the upper limit of such common 
variants64,79,80. So far, independent gene variants with 
small but replicable effects on body weight have been 
identified unambiguously in 17 gene regions79. FTO 
gene is the first example of a non-syndromic obesity 
gene studied thoroughly via GWAS of T2D81. Despite 
the initial success of the GWAS strategy, the established 
loci together explain less than 2 per cent of the inter-
individual BMI variation and less than 1 per cent of the 
inter-individual WHR variation12,82. With heritability 
estimates of 40-70 per cent for BMI and 30-60 per cent 
for WHR, there must be many more susceptible loci to 
be discovered32. These types of susceptible loci can only 
be unraveled if GWAS are expanded to different ethnic 
groups through large-scale international collaboration 
and meta-analysis of existing data (Table Iv), selection 
of defined scientific procedures like CT scan, dual-
energy X-ray absorptiometry (DEXA) or magnetic 
resonance imaging (MRI) and consideration of rare 
and low frequency variants and non-coding RNAs. 
Though GWAS approach seems to be a strong way of 
analysis for complex disorders, it has to be extended 
for different environmental conditions as it is very 
evident that gene-environment (GXE) interactions also 
regulate the mechanisms of gene expression90.

Epigenetic modifications

 Modifications that affect gene expression but do 
not alter the DNA sequence are termed epigenetic 
modifications. These include DNA methylation and 
histone modifications, which are expected to have 
regulatory roles in the inheritance and vulnerability 
to obesity, by affecting the expression(s) of associated 
gene(s). Also, intrauterine atmosphere during specific 
developmental phases can vary the epigenetics of 
an individual and may work as a foundation for the 
obesity and other phenotypes during later stage of 

life91,92. For example, variations in birth weight are 
affected by several factors such as maternal genes, 
maternal in utero and placental factors, maternal BMI, 
maternal smoking, maternal alcohol consumption, 
maternal drug use, exercise during pregnancy, paternal 
genes, birth weight, etc. In the similar manner as 
during the early post-natal period poor nutrition also 
affects the mother metabolism to acclimatize to favour 
the storage of nutrients93. Another study on Pima 
Indians showed paternally imprinted gene located on 
chromosome 11 position 80 cm was influencing birth 
weight94. Similarly, in a study on Mexican Americans 
quantitative trait loci (qTL) on chromosome 6q was 
found to be associated with birth weight regulation95. 
Hence, gene-environment (GXE) interactions play a 
significant role in the aetiology of obesity may be via 
modifications in DNA methylation patterns. Thus, apart 
from variations at DNA sequence level, epigenetic 
incidents also seem to contribute to the epidemiocity of 
obesity which are evident from modern day sedentary 
living style. It has been observed that during the early 
years of life monozygotic (MZ) twins are epigenetically 
indistinguishable from each other. But, with increasing 
age remarkable differences in their overall content 
and genomic distributions of 5-methylcytosine DNA 
and histone acetylations become noticeable and 
similarly environment could have an influence on 
individual’s BMI91. A comparative study of epigenetic 
metastability of 6,000 unique genomic regions between 
matched monozygotic (MZ) and dizygotic (DZ) twins 
demarcated epigenetic differences in both the MZ and 
DZ twins96. Molecular mechanisms of heritability may 
not be limited to differences in DNA sequence only, 
rather epigenetic modifications are also acting as one 
of the very important governing factors in unraveling 
the secrets behind the blue prints of DNA sequence.

Mitochondrial contribution to obesity

 Being the centre of all the metabolic processes and 
very susceptible to change, mitochondria play a crucial 
role in the development of any disorders. Since only 
mother contributes mitochondria to the next generation, 
there is a chance of maternal inheritance of diseases 
affecting physiology of mitochondria in mother. For 
example, maternal obesity (in utero environment) 
plays a detrimental role in the development of early 
embryo(s) during embryogenesis97. It was further 
elaborated in a study including maternal-diet induced 
obesity in a murine model through the association of 
altered mitochondrial activities and redox status of 
oocytes and zygotes98. These altered mitochondrial 
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Table IV. Summary of Genome-wide association studies (GWAS) or meta-analysis for obesity in humans
S. 
No.

Different 
GWAS study 

Sample size in detected 
cohort

Predecessors of detected 
cohort

Parameter(s) References

1. WTCCC 1924 Europeans BMI for quantitative analysis 64
2. Sardinia 4741 Europeans BMI for WC and quantitative 

analysis
75

3. LoLIPoP 2684 Indian Asians Analysis of IR and related 
quantitative phenotypes

79

4. - 16 876 Northern European BMI for quantitative analysis 64
5. The CHARGE 

consortium
31 373 Europeans WC for quantitative analysis 83

6. The GIANT 
consortium

38 580 Europeans WC and WHR for 
quantitative analysis

12

7. - 775 cases and 3197 
unascertained controls

Europeans Extreme obesity or BMI 84

8. - 1380 and 1416 age-matched 
normal-weight control

Europeans Early onset and morbid adult 
obesity

63

9. DeCoDE 37 347 Europeans & African 
Americans

BMI for quantitative analysis 62

10. The GIANT 
consortium

32 387 Europeans BMI for quantitative analysis 61

11. - 487 extremely obese young 
cases and 442 healthy lean 
controls

Europeans Extreme obesity or BMI 85

12. - 453 extremely obese young 
cases and 435 healthy lean 
controls

Europeans Extreme obesity or BMI 86

13. KARE 8842 Asian BMI, WHR for quantitative 
analysis

87

14. MAGIC 77 167 Europeans WHR for quantitative 
analysis

88

15. - 123 865 Europeans BMI for quantitative analysis 89
BMI, Basal metabolic index; WC, waist circumference; WHR, waist to hip ratio; IR, insulin resistance

properties involved an increase in mitochondrial 
membrane potential, mitochondrial DNA (mtDNA) 
content and biogenesis, generation of reactive oxygen 
species (RoS) and depletion in glutathione level 
leading to more oxidized - redox state. These effects 
resulted in oxidative stress which led to the significant 
developmental impairment at early embryogenesis and 
might be the explanation for the reduced reproductive 
status observed in obese women99. Thus, mitochondria 
were found to be the liable candidates for compromised 
metabolism in the embryo, and are maternal in origin. 
Mitochondria also execute various regulatory roles 
during oocyte maturation, fertilization, initiation and 
progression of pre-implantation of embryos100,101. As 

power house of the cell, the central and most vital 
role of mitochondria is the synthesis of adenosine 
triphosphate (ATP) by oxidative phosphorylation, a 
mechanism coupling the oxidation of nutrients and 
reducing equivalents [NAD(P)H, FADH2] with the 
phosphorylation of adenosine diphosphate (ADP). 
Consumption of the energy rich diets results in the excess 
production of these reducing equivalents [NAD(P)H, 
FADH2] which ultimately leads to the increased pumping 
of protons (H+) out of the mitochondrial matrix through 
mitochondrial electron transport chain (ETC) and 
results in hyperpolarization of the inner mitochondrial 
membrane thereby generating excess of proton motive 
force (PMF) and excess of ATP. Besides being used for 
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energy production, these reducing equivalents [NAD(P)
H and FADH2] are known to regulate the intracellular 
redox status. NADH oxidation in the mitochondria will 
produce RoS whereas NADPH oxidation (in cytosol 
and mitochondria) serves to restore the antioxidant 
protection by reducing per-oxiredoxins, thioredoxin 
and oxidised glutathione. Thus, mitochondria have 
dual regulation on the intracellular redox state via 
regeneration of antioxidants and via RoS production102. 
Apart from centre of ATP production, mitochondria 
are also a source of cellular guanosine-5’-triphosphate 
(GTP) production as well as the site of amino acid 
synthesis and the reservoir of cellular calcium (Ca2+). 
Therefore, any change(s) in mitochondrial activity can 
alter cellular functions. Importance of mitochondria 
in oocyte quality and embryo development has been 
highlighted in many studies showing the various 
impacts of mitochondrial biogenesis defect(s) on 
mitochondrial mass, failure of oocyte maturation, 
abnormal embryo development103,104, etc. Both the 
quality and the quantity of mitochondria are an 
important prerequisite for successful fertilization and 
embryo development105. In vitro studies including have 
emphasized the vulnerability of mitochondria towards 
various environmental stress either within the oocyte 
or in the developing embryo and it has been shown 
that even low-level of acquired mitochondrial injuries 
may persist into embryonic life106,107. Latent influences 
of maternal nutritional status during obesity had been 
indicated in studies showing that periconceptual 
exposure to high energy substrates such as fatty acids 
and proteins resulted in perturbed mitochondrial 
metabolism in oocyte as well as in embryo108,109. Hence, 
mitochondrial abnormalities in oocytes and in early 
embryos have been found as a direct environmental 
consequence of maternal obesity. It is, therefore, 
noteworthy that alterations in mitochondrial activities 
(i.e., dysfunctional mitochondria) are not only restricted 
to the maternal obesity but rather obesity itself results in 
the development of dysfunctional mitochondria or vice 
versa. This ultimately leads to various types of obesity 
associated complications such as development and 
progression of T2D complications, early mitochondrial 
adaptations in skeletal muscles to diet-induced obesity, 
mitochondrial remodelling in adipose tissue associated 
with obesity, inflammation and mitochondrial fatty 
acid β-oxidation linking obesity to early tumour 
promotion in pancreas, etc110- 114. It has been observed 
that mitochondrial genome polymorphisms are also 
involved in the development of obesity syndrome such 
as a mtSNP, 8684C>T (T53I) in the mitochondrial 

ATP synthase subunit 6 gene (ATP6) was detected in 
five patients of type-2 diabetes and was not detected 
in any of the young obese adults. Similarly, two 
mtSNPs, 3497C>T (A64v) in NADH dehydrogenase 
subunit 1 gene (ND1) and 1119T>C (472U>C) in the 
12S rRNA gene, were detected in five young obese 
adults and were not found in any of the diabetic 
patients115. Further, several studies have also shown the 
associations of different mtSNPs with the incidence 
of obesity in various human ethnic groups during 
the course of evolution. These include three human 
mtSNPs viz., ND2, CoX2 and ATP8 within genes 
encoding proteins of electron transport and oxidative 
phosphorylation in sub-haplogroups of the Pima 
Indians. These were adaptations toward an energy-
efficient metabolism when this population migrated to 
the desert and adopted a restricted caloric intake. Today 
these may contribute to obesity116. Polymorphisms of 
the UCP2 gene (rs660339 and rs659366) were found 
to be associated with body fat distribution and risk of 
abdominal obesity in Spanish population117. The UCP2 
A55v variant was found to be associated with obesity 
and related phenotypes in an aboriginal community in 
Taiwan118. UCP1 variants, g.IvS4-208T>G SNP was 
associated with obesity in Southern Italy severe obese 
population119. Two mtSNPs (mt4823 and mt8873) and 
mtDNA haplogroup X were observed to be significant 
markers associated with reduced body fat mass120. 
Linkage and association analyses of the UCP3 gene 
showed an association with obesity phenotypes in 
Caucasian families121. A common polymorphism in the 
promoter of UCP2 gene was found to be associated 
with obesity and A allele associated with obesity 
and hyperinsulinaemia in north Indians122. In another 
study, obesity and hepatosteatosis were observed in 
human 8-oxoguanine-DNA glycosylase 1 (hoGG1) 
transgenic (TG) mice with enhanced oxidative damage 
of mitochondrial DNA due to overexpression of 
the transgene hoGG1123. Thus, mitochondria might 
be either a culprit or a victim in obesity and the 
studies focussing on this organelle may help in better 
understanding of the cause of diet-induced obesity.

The obesity cauldron – the current focus

 obesity, especially central obesity being heritable 
arises from the interactions of multiple genes and 
environmental factors (GXE). Since the sequencing 
of the human genome, researchers and geneticists are 
busy in documenting the various interactions among 
genetic and environmental risks of precursors to 
chronic illness, including the influence of gene-diet 
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interactions in disorders such as obesity and diabetes. 
This includes systematic genomic variation(s) in 
identifying various risks for common diseases along 
with the knowledge of body compositions in different 
populations with a consideration of individual’s 
ethnic and racial variations. This might lead to the 
development of more individualized, more predictive, 
and more preventive therapeutics against obesity. Thus, 
if a strategy of GWAS along with epigenetic study of a 
particular disease like obesity is followed, it will help 
in finding a solution (Figure). For example, a novel 
genome wide scan employing a high density SNP array 
led to the identification of a SNP in the vicinity of the 
insulin induced gene 2 (INSIG2) and was found to be 
associated with obesity in both children and adults124,125. 
In another report, MC4R coding sequence variants 
were found to be associated with fat mass, body weight 
and obesity80. The MC4R mutations were also found 
to be linked with dominantly inherited genetic cause 
of childhood obesity in Americans of European and 
African ancestry126. 

 To detect small gene effects and to narrow down the 
genomic target region more precisely, the GWAS are 
expected to be more powerful so that these can analyse 
a fixed set of genome and try to fix biomarkers. An 
example is peroxisome proliferater-activated receptor 
gamma (PPARγ) which is essential for adipocyte 
differentiation127. Here a zinc finger-containing 
transcription factor abundantly expressed in adipose 
tissue Krox 20 is expressed early in adipogenesis 
and is found to trans-activate the CCAAT/enhancer 
binding proteins β (C/EBP) β promoter128. others like 
Kruphel-like factor (KLF) 6 and KLF 15 have been 

shown to promote adipogenesis and KLF15 is noticed 
to upregulate GLUT 4 expression129,130. Recent reports 
demonstrated that KLF4 functions as an immediate 
early regulator of adipocyte differentiation. Another 
one is adiponectin which is an oxidative regulator 
from adipocytes that modulates insulin sensitivity 
and thus regulates glucose and lipid metabolism 
and leads to a reduction in energy homeostasis in 
obesity131. Hydroxysteroid (11-β) dehydroxgeinase-1 
overexpression leads to visceral obesity by regulating 
glucocorticoid action132. others in the list are mutation of 
MC4R, leptin/leptin receptor, prohormone convertase1 
and pro-opimelanocartin (PoMC)20-26,30,31. 

 Genes associated with β-cell dysfunction have also 
been identified which include hepatocyte nuclear factor 
4 and α1 polymorphism in potassium channel Kir6-2 
(KCNJ11) and transcription factor 7 like 2 (TCF 7 L 
2). Many candidate genes have also been identified 
such as calpain 10, adiponectin, PPAR γ co-activator 
1 (PGC1) and glucose transporter GLUT 2133. Genetic 
polymorphisms at the perilipin (PLIN) locus that is 
minor allele at PLIN4 (11482G>A) was associated with 
higher risk of metabolic syndrome (MS) at baseline, 
whereas the PLIN6 SNP (14995A>T) was found to 
be associated with weight loss in obese children and 
adolescents134. A positive functional relevance of 
nicotinamide nucleotide transhydrogenase (NNT) 
in the development of human obesity and visceral 
fat distribution has been observed in obese patients 
and correlated with body weight, BMI, percentage 
body fat, visceral and subcutaneous fat area, waist 
and hip circumference, and fasting plasma insulin 
(FPI)135. Association of decreased levels of plasma 

Approaches in the study of obesity

Fig.1. Strategic approach towards analysis of obesity in humans. SNP, single nucleotide polymorphisms; GWLS, genome-wide linkage scans; 
GWAS, genome-wide association studies.
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ghrelin has been observed with obesity in obese 
Caucasian and Pima Indians136. Interleukin-1 (IL-1) 
gene polymorphisms may be involved in increased 
central obesity and the genetic influences are more 
evident among patients who have a higher level of 
obesity or inflammatory markers77. Genetic variation 
in the McKusick-Kaufman gene (MKKS) gene may 
play a role in the development of obesity and the 
metabolic syndrome in Greek population138. A study on 
postmenopausal women suggested that FTO gene was a 
susceptibility locus for both obesity and type-2-diabetes 
(T2D). Common genetic variants in the intron 1 of FTO 
gene may present a natural predisposition to obesity 
in an ethnicity-specific manner also139. The insulin 
responsive adiponectin genetic variants of potatin-like 
phospholipase domain-containing genes 1 (PLPLA1) 
have moderate effect on obesity and potatin-like 
phospholipase domain-containing gene 3 (PNPLA3) 
or adeponectin effects (ADPN) gene shows on insulin 
sensitivity140. Procolipase (CLPS) is secreted from the 
exocrine pancreas into the gastrointestinal tract and 
its genetic variability is associated with the secretary 
function of insulin in non-diabetic humans141. SNPs in 
α-2 subunit of neuronal nicotinic acetylcholine receptor 
gene CHRNA2 rs2043063 SNP might be a risk factor 
for overweight/obesity in Koreans142. Folate/vitamin 
B12 plays vital role in the critical stages of foetus 
development and involves one carbon pool metabolism 
which may lead to greater insulin resistance, and further 
to the development of obesity143. 

 According to twelfth update of Human obesity 
Gene Map, 52 genomic regions harbour qTLs 
supported by two or more studies74. The number of 
qTLs reported from animal models has reached to 
408. The number of human obesity qTLs derived 
from genome scans continues to grow, and so far 253 
qTLs for obesity-related phenotypes from 61 genome-
wide scans have been reported. Association studies 
between the variation(s) of DNA sequence in specific 
genes and obesity phenotypes have also been increased 
considerably (426 findings of positive associations 
with 127 candidate genes). At our institute, two mutant 
obese rat strains viz., WNIN/Ob (with euglycaemia) 
and WNIN/GR-Ob (with impaired glucose tolerance) 
had been developed naturally from a Wistar inbred rat 
colony144,145. These mutants show hyperinsulinaemia, 
hypertriglyceridaemia and hypercholesterolaemia, and 
they also have several obese features such as polydipsia, 
polyuria and proteinuria. From the preliminary studies 
it has been found that mutant WNIN/Ob does not 
exhibit any of the conventional defects either in leptin 

or leptin receptor locus (unpublished data) but showed 
the defect on chromosome no. 5, in the upstream region 
of leptin receptor and the studies are still ongoing to 
identify and sequence the locus. 

Conclusions and the way forward 

 Numerous analyses have been published discussing 
about the genetic complications and various types of 
challenges concerned with the biological pathway 
of common obesity74,146-149. However, the major 
obstruction is the replication of data. The complexity 
of a trait/disease in an individual’s life is a result of 
accumulation of various interactions of the linked genes 
to different genetic settings and exposure to diverse 
environmental factors. Due to scarce knowledge on 
the extent to which genes finally contribute to complex 
trait, the significance of subtle environmental factors 
may not be valued. Thus, at such an early stage of 
our knowledge to unravel the genetics of obesity both 
replicated and un-replicated data should be considered 
equally important. So far, most of the studies on 
polygenic obesity are SNP based which are located 
either within or near a candidate gene. Considering 
the entire candidate gene studies on animal models 
and in vitro as an initial level studies, their association 
with the common obese phenotype should be verified 
through various types of case control and family 
studies. But, in contrast to monogenic obesity, many 
genes and chromosomal area contribute to characterize 
common obese phenotype (polygenic) and have been 
found linked to an extensive range of biological 
functions, such as regulation of food intake, energy 
expenditure, lipid and glucose metabolism, adipose 
tissue development, etc. Even with this ever increasing 
gene catalogue at our disposal, unraveling the molecular 
mechanisms of obesity is still challenging. As not only 
the number of genes associated with obesity is high, 
but, the modifications in these gene(s) also show 
the significant polymorphisms in the elucidation of 
environmental stimuli. Further, in utero environment 
and expression of several genes during embryonic 
development and specifications play an important role 
in governing the intensity of obesity. For instance, 
genetically programmed developmental variations in 
adipocytes and their precursors in different sections of 
the body play a significant role in the progression of 
obesity via a complex network of transcription factors 
like activators, co-activators and repressors150.

 With the advancement in the knowledge of the 
human genome, the development of comprehensive 
technologies, and new analytical approach it will be 
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feasible to address both the genetic and environmental 
features of complex traits simultaneously. But 
the success will eventually lie with international 
consortiums that pool together expertise and resources 
to describe and interpret the functional role of the 
various genetic factors underlying the diverse types 
of obesity. Undoubtedly, family, twin and adoption 
studies primarily provide sufficient data for moderate 
to high heritability of BMI and are a focus of molecular 
research in finding an explanation at DNA level. 
Epigenetic research will add a new dimension to this 
by explaining intra-individual variation in body weight. 
Thus, with the use of advanced technologies epigenetic 
profile of the associated obesity genes can be discerned 
and could also be applied in a genome-wide approach. 
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