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One- and two-sample tests

Most of the rest of this book describes applications of R for actual sta-
tistical analysis. The focus to some extent shifts from explanation of the
syntax to description of the output and specific arguments to the relevant
functions.

Some of the most basic statistical tests deal with comparing continuous
data either between two groups or against an a priori stipulated value.
This is the topic for this chapter.

Two functions are introduced here, namely t.test and wilcox.test
for t tests and Wilcoxon tests, respectively. Both can be applied to one-
and two-sample problems as well as paired data. Notice that the “two-
sample Wilcoxon test” is the same as the one called the “Mann-Whitney
test” in many textbooks.

5.1 One-sample ¢ test

The t tests are based on an assumption that data come from the nor-
mal distribution. In the one-sample case we thus have data xi,...,x,
assumed to be independent realizations of random variables with distri-
bution N(y, (72), which denotes the normal distribution with mean » and
variance 02, and we wish to test the null hypothesis that u = uy. We can
estimate the parameters y and ¢ by the empirical mean ¥ and standard
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96 5. One- and two-sample tests

deviation s, although we must realize that we could never pinpoint their
values exactly.

The key concept is that of the standard error of the mean, or SEM. This de-
scribes the variation of the average of n random values with mean p and
variance . This value is

SEM = o /+/n

and means that if you were to repeat the entire experiment several times
and calculate an average for each experiment, then these averages would
follow a distribution that is narrower than that of the original distribu-
tion. The crucial point is that even based on a single sample, it is possible
to calculate an empirical SEM as s/+/n using the empirical standard de-
viation of the sample. This value will tell us how far the observed mean
may reasonably have strayed from its true value. For normally distributed
data, the rule of thumb is that there is a 95% probability of staying within
u £+ 20, so we would expect that if o were the true mean, then ¥ should
be within 2 SEMs of it. Formally, you calculate

X — Mo
SEM
and see whether this falls within an acceptance region outside which ¢t
should fall with probability equal to a specified significance level. This is

often chosen as 5%, in which case the acceptance region is almost, but not
exactly, the interval from —2 to 2.

P =

In small samples, it is necessary to correct for the fact that an empirical
SEM is used and that the distribution of ¢ therefore has somewhat “heavier
tails” than the N(0,1): Large deviations happen more frequently than in
the normal distribution since they can result from normalizing with an
SEM that is too small. The correct values for the acceptance region can
be looked up as quantiles in the t distribution with f = n — 1 degrees of
freedom.

If t falls outside the acceptance region, then we reject the null hypothesis
at the chosen significance level. Alternatively (and equivalently), you can
calculate the p-value, which is the probability of obtaining a value as nu-
merically large as or larger than the observed t and reject the hypothesis
if the p-value is less than the significance level.

Sometimes you have prior information on the direction of an effect; for
instance, that all plausible mechanisms that would cause u not to equal pg
would tend to make it bigger. In those cases, you may choose to reject the
hypothesis only if ¢ falls in the upper tail of the distribution. This is known
as testing against a one-sided alternative. Since removing the lower tail from
the rejection region effectively halves the significance level, a one-sided
test at a given level will have a smaller cutoff point. Similarly, p-values
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are calculated as the probability of a larger value than observed rather
than a numerically larger one, effectively halving the p-value as long as
the observed effect is in the stipulated direction. One-sided tests should
be used with some care, preferably only when there is a clear statement
of the intent to use them in the study protocol. Switching to a one-sided
test to make an otherwise nonsignificant result significant could easily be
regarded as dishonest.

Here is an example concerning daily energy intake in kJ for 11 women
(Altman, 1991, p. 183). First, the values are placed in a data vector:

> daily.intake <- c(5260,5470,5640,6180,6390,6515,
+ 6805,7515,7515,8230,8770)

Let us first look at some simple summary statistics, even though these are
hardly necessary for such a small data set:

> mean (daily.intake)

[1] 6753.636

> sd(daily.intake)

[1] 1142.123

> quantile(daily.intake)
0% 25% 50% 75% 100%

5260 5910 6515 7515 8770

You might wish to investigate whether the women’s energy intake devi-
ates systematically from a recommended value of 7725 kJ. Assuming that
data come from a normal distribution, the object is to test whether this
distribution might have mean y = 7725. This is done with t.test as
follows:

> t.test (daily.intake, mu=7725)
One Sample t-test

data: daily.intake
t = -2.8208, df = 10, p-value = 0.01814
alternative hypothesis: true mean is not equal to 7725
95 percent confidence interval:
5986.348 7520.925
sample estimates:
mean of x
6753.636

This is an example of the exact same type as used in the introductory Sec-
tion 1.1.4. The description of the output is quite superficial there. Here it
is explained more thoroughly.

The layout is common to many of the standard statistical tests, and a
“dissection” is given in the following:
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One Sample t-test

This should be self-explanatory. It is simply a description of the test that
we have asked for. Notice that, by looking at the format of the function
call, t . test has automatically found out that a one-sample test is desired.

data: daily.intake

This tells us which data are being tested. Of course, this will be obvious
unless output has been separated from the command that generated it.
This can happen, for example, when using the source function to read
commands from an external file.

t = -2.8208, df = 10, p-value = 0.01814

This is where it begins to get interesting. We get the ¢ statistic, the asso-
ciated degrees of freedom, and the exact p-value. We do not need to use
a table of the t distribution to look up which quantiles the t-value can be
found between. You can immediately see that p < 0.05 and thus that (us-
ing the customary 5% level of significance) data deviate significantly from
the hypothesis that the mean is 7725.

alternative hypothesis: true mean is not equal to 7725

This contains two important pieces of information: (a) the value we
wanted to test whether the mean could be equal to (7725 k]) and (b) that
the test is two-sided (“not equal to”).

95 percent confidence interval:
5986.348 7520.925

This is a 95% confidence interval for the true mean; that is, the set of (hy-
pothetical) mean values from which the data do not deviate significantly.
It is based on inverting the t test by solving for the values of j that cause
t to lie within its acceptance region. For a 95% confidence interval, the
solution is

X —toors (f) x SEM < u<x+ t0‘975(f) x SEM

sample estimates:
mean of x
6753.636

This final item is the observed mean; that is, the (point) estimate of the
true mean.

The function t . test has a number of optional arguments, three of which
are relevant in one-sample problems. We have already seen the use of mu
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to specify the mean value p under the null hypothesis (default is mu=0). In
addition, you can specify that a one-sided test is desired against alterna-
tives greater than y by using alternative="greater" or alternatives
less than y using alternative="1ess". The third item that can be spec-
itied is the confidence level used for the confidence intervals; you would
write conf.level=0.99 to get a 99% interval.

Actually, it is often allowable to abbreviate a longish argument specifica-
tion; for instance, it is sufficient to write alt="g" to get the test against
greater alternatives.

5.2 Wilcoxon signed-rank test

The t tests are fairly robust against departures from the normal distribu-
tion especially in larger samples, but sometimes you wish to avoid making
that assumption. To this end, the distribution-free methods are convenient.
These are generally obtained by replacing data with corresponding order
statistics.

For the one-sample Wilcoxon test, the procedure is to subtract the the-
oretical yp and rank the differences according to their numerical value,
ignoring the sign, and then calculate the sum of the positive or negative
ranks. The point is that, assuming only that the distribution is symmetric
around p, the test statistic corresponds to selecting each number from 1
to n with probability 1/2 and calculating the sum. The distribution of the
test statistic can be calculated exactly, at least in principle. It becomes com-
putationally excessive in large samples, but the distribution is then very
well approximated by a normal distribution.

Practical application of the Wilcoxon signed-rank test is done almost
exactly like the t test:

> wilcox.test (daily.intake, mu=7725)
Wilcoxon signed rank test with continuity correction

data: daily.intake
vV = 8, p-value = 0.0293
alternative hypothesis: true location is not equal to 7725

Warning message:
In wilcox.test.default (daily.intake, mu = 7725)
cannot compute exact p-value with ties

There is not quite as much output as from t.test due to the fact that
there is no such thing as a parameter estimate in a nonparametric test and
therefore no confidence limits, etc., either. It is, however, possible under
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some assumptions to define a location measure and calculate confidence
intervals for it. See the help files for wilcox.test for details.

The relative merits of distribution-free (or nonparametric) versus para-
metric methods such as the t test are a contentious issue. If the model
assumptions of the parametric test are fulfilled, then it will be somewhat
more efficient, on the order of 5% in large samples, although the difference
can be larger in small samples. Notice, for instance, that unless the sample
size is 6 or above, the signed-rank test simply cannot become significant at
the 5% level. This is probably not too important, though; what is more im-
portant is that the apparent lack of assumptions for these tests sometimes
misleads people into using them for data where the observations are not
independent or where a comparison is biased by an important covariate.

The Wilcoxon tests are susceptible to the problem of ties, where several ob-
servations share the same value. In such cases, you simply use the average
of the tied ranks; for example, if there are four identical values corre-
sponding to places 6 to 9, they will all be assigned the value 7.5. This is
not a problem for the large-sample normal approximations, but the exact
small-sample distributions become much more difficult to calculate and
wilcox.test cannot do so.

The test statistic V' is the sum of the positive ranks. In the example, the
p-value is computed from the normal approximation because of the tie at
7515.

The function wilcox.test takes arguments mu and alternative,
just like t.test. In addition, it has correct, which turns a continu-
ity correction on or off (the default is “on”, as seen from the output
title; correct=F turns it off), and exact, which specifies whether exact
tests should be calculated. Recall that “on/off” options such as these are
specified using logical values that can be either TRUE or FALSE.

5.3 Two-sample f test

The two-sample ¢ test is used to test the hypothesis that two samples may
be assumed to come from distributions with the same mean.

The theory for the two-sample ¢ test is not very different in principle from
that of the one-sample test. Data are now from two groups, x11,..., X1y,
and x31, . .., X2,,, which we assume are sampled from the normal distribu-
tions N(p1,07) and N(p,03), and it is desired to test the null hypothesis
#1 = pa. You then calculate

X2 —X

~ SEDM



5.3 Two-sample ¢t test 101

where the standard error of difference of means is

SEDM = | /SEM? + SEM3

There are two ways of calculating the SEDM depending on whether or not
you assume that the two groups have the same variance. The “classical”
approach is to assume that the variances are identical. With this approach,
you first calculate a pooled s based on the standard deviations from the
two groups and plug that value into the SEM. Under the null hypothesis,
the t value will follow a t distribution with n; 4 1, — 2 degrees of freedom.

An alternative procedure due to Welch is to calculate the SEMs from the
separate group standard deviations s; and s;. With this procedure, ¢ is
actually not t-distributed, but its distribution may be approximated by a
t distribution with a number of degrees of freedom that can be calculated
from sy, s, and the group sizes. This is generally not an integer.

The Welch procedure is generally considered the safer one. Usually, the
two procedures give very similar results unless both the group sizes and
the standard deviations are very different.

We return to the daily energy expenditure data (see Section 1.2.14) and
consider the problem of comparing energy expenditures between lean and
obese women.

> attach (enerqgy)

> energy
expend stature
1 9.21 obese
7.53 lean
3 7.48 lean
20 7.58 lean
21 9.19 obese
22 8.11 lean

Notice that the necessary information is contained in two parallel columns
of a data frame. The factor stature contains the group and the numeric
variable expend the energy expenditure in mega-Joules. R allows data in
this format to be analyzed by t .test and wilcox.test using a model
formula specification. An older format (still available) requires you to
specify data from each group in a separate variable, but the newer for-
mat is much more convenient for data that are kept in data frames and
is also more flexible if you later want to group the same response data
according to other criteria.

The object is to see whether there is a shift in level between the two groups,
so we apply a f test as follows:
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> t.test (expend~stature)
Welch Two Sample t-test

data: expend by stature
t = -3.8555, df = 15.919, p-value = 0.001411
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-3.459167 -1.004081
sample estimates:
mean in group lean mean in group obese
8.066154 10.297778

Notice the use of the tilde (~) operator to specify that expend is described
by stature.

The output is not much different from that of the one-sample test. The
confidence interval is for the difference in means and does not contain 0,
which is in accordance with the p-value indicating a significant difference
at the 5% level.

It is Welch'’s variant of the t test that is calculated by default. This is the test
where you do not assume that the variance is the same in the two groups,
which (among other things) results in the fractional degrees of freedom.

To get the usual (textbook) t test, you must specify that you are willing
to assume that the variances are the same. This is done via the optional
argument var.equal=T; that is:

> t.test (expend~stature, var.equal=T)
Two Sample t-test

data: expend by stature
t = -3.9456, df = 20, p-value = 0.000799

alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

-3.411451 -1.051796

sample estimates:

mean in group lean mean in group obese

8.066154 10.297778

Notice that the degrees of freedom now has become a whole number,
namely 13 +9 — 2 = 20. The p-value has dropped slightly (from 0.14%
to 0.08%) and the confidence interval is a little narrower, but overall the
changes are slight.
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5.4 Comparison of variances

Even though it is possible in R to perform the two-sample t test without
the assumption that the variances are the same, you may still be interested
in testing that assumption, and R provides the var . test function for that
purpose, implementing an F test on the ratio of the group variances. It is
called the same way as t . test:

> var.test (expend~stature)
F test to compare two variances

data: expend by stature
FF=0.7844, num df = 12, denom df = 8, p-value = 0.6797
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1867876 2.7547991
sample estimates:
ratio of variances
0.784446

The test is not significant, so there is no evidence against the assumption
that the variances are identical. However, the confidence interval is very
wide. For small data sets such as this one, the assumption of constant vari-
ance is largely a matter of belief. It may also be noted that this test is not
robust against departures from a normal distribution. The st at s package
contains several alternative tests for variance homogeneity, each with its
own assumptions, benefits, and drawbacks, but we shall not discuss them
at length.

Notice that the test is based on the assumption that the groups are
independent. You should not apply this test to paired data.

5.5 Two-sample Wilcoxon test

You might prefer a nonparametric test if you doubt the normal distribu-
tion assumptions of the t test. The two-sample Wilcoxon test is based on
replacing the data by their rank (without regard to grouping) and calcu-
lating the sum of the ranks in one group, thus reducing the problem to one
of sampling n; values without replacement from the numbers 1 to 17 + n5.

This is done using wilcox.test, which behaves similarly to t . test:
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> wilcox.test (expend~stature)
Wilcoxon rank sum test with continuity correction

data: expend by stature
W =12, p-value = 0.002122
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(x = c(7.53, 7.48, 8.08, 8.09, 10.15, 8.4,
cannot compute exact p-value with ties

The test statistic W is the sum of ranks in the first group minus its theoreti-
cal minimum (i.e., it is zero if all the smallest values fall in the first group).
Some textbooks use a statistic that is the sum of ranks in the smallest group
with no minimum correction, which is of course equivalent. Notice that,
as in the one-sample example, we are having problems with ties and rely
on the approximate normal distribution of W.

5.6 The paired ¢ test

Paired tests are used when there are two measurements on the same ex-
perimental unit. The theory is essentially based on taking differences and
thus reducing the problem to that of a one-sample test. Notice, though,
that it is implicitly assumed that such differences have a distribution that
is independent of the level. A useful graphical check is to make a scatter-
plot of the pairs with the line of identity added or to plot the difference
against the average of the pair (sometimes called a Bland—Altman plot).
If there seems to be a tendency for the dispersion to change with the
level, then it may be useful to transform the data; frequently the stan-
dard deviation is proportional to the level, in which case a logarithmic
transformation is useful.

The data on pre- and postmenstrual energy intake in a group of women
are considered several times in Chapter 1 (and you may notice that the first
column is identical to daily.intake, which was used in Section 5.1).
There data are entered from the command line, but they are also available
as a data set in the ISwR package:

\%

attach (intake)
intake
pre post
5260 3910
5470 4220
5640 3885
6180 5160

\4

=W N
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5 6390 5645
6 6515 4680
7 6805 5265
8 7515 5975

9 7515 6790
10 8230 6900
11 8770 7335

The point is that the same 11 women are measured twice, so it makes sense
to look at individual differences:

> post - pre
[1] -1350 -1250 -1755 -1020 -745 -1835 -1540 -1540 -725 -1330
[11] -1435

It is immediately seen that they are all negative. All the women have a
lower energy intake postmenstrually than premenstrually. The paired ¢
test is obtained as follows:

> t.test (pre, post, paired=T)
Paired t-test

data: pre and post
t = 11.9414, df = 10, p-value = 3.059e-07
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

1074.072 1566.838
sample estimates:
mean of the differences

1320.455

There is not much new to say about the output; it is virtually identical to
that of a one-sample ¢ test on the elementwise differences.

Notice that you have to specify paired=T explicitly in the call, indicat-
ing that you want a paired test. In the old-style interface for the unpaired
t test, the two groups are specified as separate vectors and you would
request that analysis by omitting paired=T. If data are actually paired,
then it would be seriously inappropriate to analyze them without taking
the pairing into account.

Even though it might be considered pedagogically dubious to show what
you should not do, the following shows the results of an unpaired ¢ test
on the same data for comparison:
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> t.test (pre, post) #WRONG!
Welch Two Sample t-test

data: pre and post
t = 2.6242, df = 19.92, p-value = 0.01629
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
270.5633 2370.3458
sample estimates:
mean of x mean of y
6753.636 5433.182

The number symbol (or “hash”) # introduces a comment in R. The rest of
the line is skipped.

It is seen that t has become considerably smaller, although: still significant
at the 5% level. The confidence interval has become almost four times
wider than in the correct paired analysis. Both illustrate the loss of ef-
ficiency caused by not using the information that the “pre” and “post”
measurements are from the same person. Alternatively, you could say that
it demonstrates the gain in efficiency obtained by planning the experi-
ment with two measurements on the same person, rather than having two
independent groups of pre- and postmenstrual women.

5.7 The matched-pairs Wilcoxon test

The paired Wilcoxon test is the same as a one-sample Wilcoxon signed-
rank test on the differences. The call is completely analogous to t . test:

> wilcox.test (pre, post, paired=T)
Wilcoxon signed rank test with continuity correction

data: pre and post
V = 66, p-value = 0.00384
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default (pre, post, paired = T)
cannot compute exact p-value with ties

The result does not show any material difference from that of the t test.
The p-value is not quite so extreme, which is not too surprising since the
Wilcoxon rank sum cannot get any larger than it does when all differences
have the same sign, whereas the f statistic can become arbitrarily extreme.
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Again, we have trouble with tied data invalidating the exact p calcula-
tions. This time it is the two identical differences of —1540.

In the present case it is actually very easy to calculate the exact p-value
for the Wilcoxon test. It is the probability of 11 positive differences + the
probability of 11 negative ones, 2 x (1/2)!! = 1/1024 = 0.00098, so the
approximate p-value is almost four times too large.

5.8 Exercises

5.1 Do the values of the react data set (notice that this is a single vector,
not a data frame) look reasonably normally distributed? Does the mean
differ significantly from zero according to a t test?

5.2 In the data set vitcap, use a t test to compare the vital capacity for
the two groups. Calculate a 99% confidence interval for the difference. The
result of this comparison may be misleading. Why?

5.3 Perform the analyses of the react and vitcap data using nonpara-
metric techniques.

5.4 Perform graphical checks of the assumptions for a paired t test in the
intake data set.

5.5 The function shapiro.test computes a test of normality based on
the degree of linearity of the Q-Q plot. Apply it to the react data. Does
it help to remove the outliers?

5.6 The crossover trial in ashina can be analyzed for a drug effect in
a simple way (how?) if you ignore a potential period effect. However,
you can do better. Hint: Consider the intra-individual differences; if there
were only a period effect present, how should the differences behave in the
two groups? Compare the results of the simple method and the improved
method.

5.7 Perform 10 one-sample t tests on simulated normally distributed
data sets of 25 observations each. Repeat the experiment, but instead sim-
ulate samples from a different distribution; try the t distribution with 2
degrees of freedom and the exponential distribution (in the latter case,
test for the mean being equal to 1). Can you find a way to automate this
so that you can have a larger number of replications?



