Engenharia de Sistemas Eletrônicos

2º Semestre de 2018

Prof. Dr. Lucas Barboza Sarno da Silva

Introdução à Eletrônica Digital

- Sistemas numéricos
- Funções lógicas
- Portas lógicas
- Álgebra booleana
- Circuito lógico

Sistemas numéricos

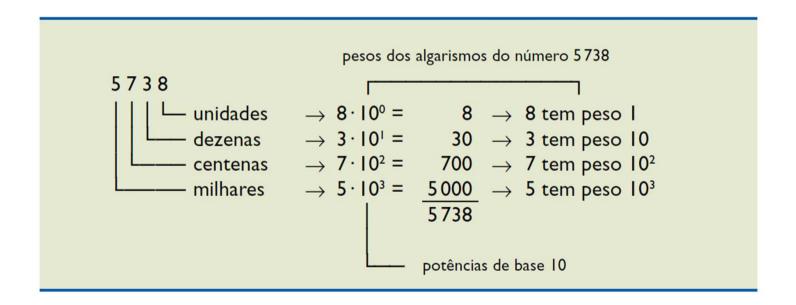
São usados para representar a quantidade de determinados elementos.

- Decimal (10 algarismos)
- Hexadecimal (16 algarismos)
- Octal (8 algarismos)
- Binário (2 algarismos)

Em eletrônica digital utilizamos o sistema binário.

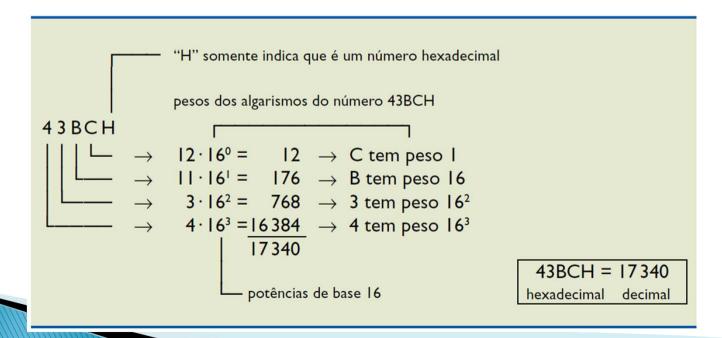
Sistema numérico decimal

Sistema numérico indo-arábico.



Sistema numérico hexadecimal

É representado por 16 algarismos:



Sistema numérico octal

É representado por 8 algarismos:

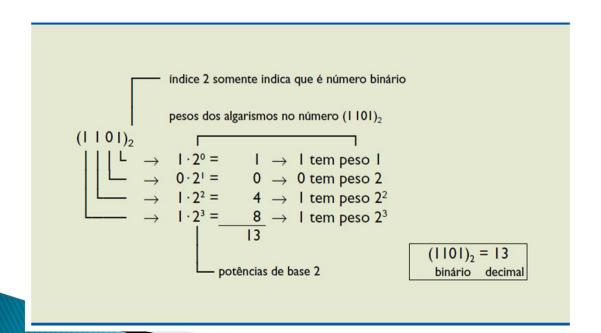
Sistema numérico binário

É representado por 2 algarismos: 0 e 1

Algarismos hexadecimais 0

 \downarrow \downarrow

Algarismos decimais 0 1



• 10110110?

R: 182

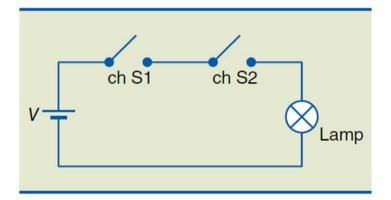
E a conversão reversa?

Funções lógicas

George Boole (1815-1864), matemático e filósofo britânico, criou um sistema matemático de análise lógica chamado álgebra de Boole ou álgebra booleana. Esse sistema permitiu elaborar expressões conhecidas como funções lógicas, que possibilitaram o desenvolvimento da eletrônica digital.

$$S1 = S2 = 0 \rightarrow \text{chaves abertas}$$

 $S1 = S2 = 1 \rightarrow \text{chaves fechadas}$
 $L = 0 \rightarrow \text{lâmpada apagada}$
 $L = 1 \rightarrow \text{lâmpada acesa}$



S 1	S2	L
0	0	0
1	0	0
0	1	0
1	1	1

- Variáveis booleanas (S1 e S2)
- Estados lógicos (0 e 1)

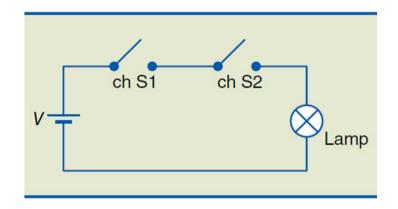
Quando estão atuando nessas condições, as variáveis booleanas são conhecidas como **funções booleanas**. As funções booleanas são obtidas por meio de um conjunto de circuitos eletrônicos denominados **portas lógicas**.

As variáveis utilizadas nos circuitos são representadas pelas letras A, B, C, ..., N.

• Uma barra sobre uma variável booleana significa que seu valor sofrerá inversão.

$$A=0 \to \bar{A}=1$$
 lê-se: não A, A barra, A barrado ou complemento de A

Chamamos **tabela verdade** de uma função booleana a tabela que apresenta os valores da função y = f(A, B) para todas as combinações possíveis dos valores das variáveis.



S 1	S 2	L
0	0	0
1	0	0
0	1	0
1	1	1

Função booleana:

$$y = A \cdot B$$

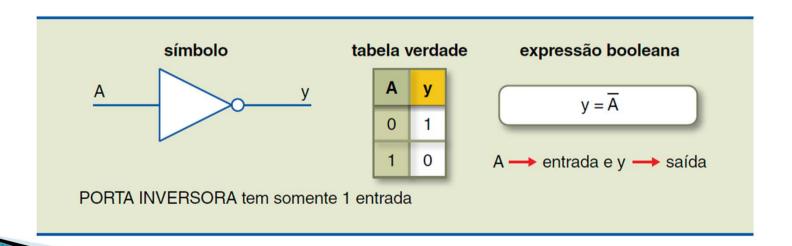
A	В	y
0	0	0
1	0	0
0	1	0
1	1	1

Tabela da verdade

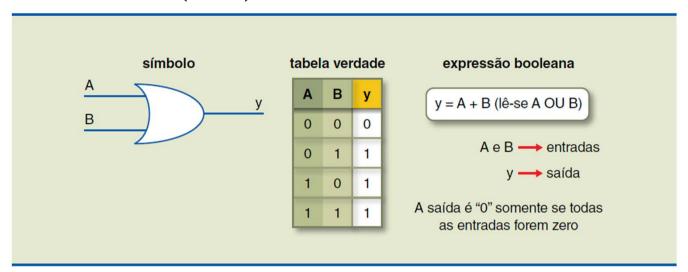
Portas lógicas

Portas lógicas são circuitos eletrônicos básicos que possuem uma ou mais entradas e uma única saída. Nas entradas e na saída, podemos associar estados "0" ou "1", ou seja, variáveis booleanas. Em eletrônica digital, quando utilizamos portas lógicas, atribuímos às entradas e às saídas valores de tensão. Em geral, associa-se ao 5 V o estado "1" e ao 0 V, o estado "0".

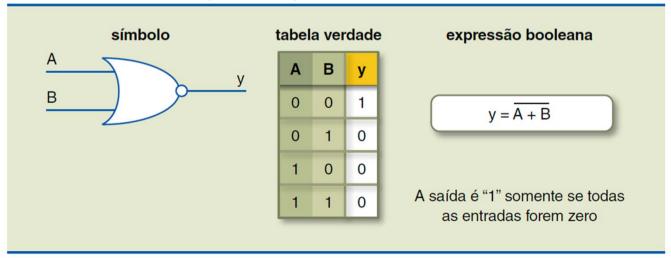
Porta inversora



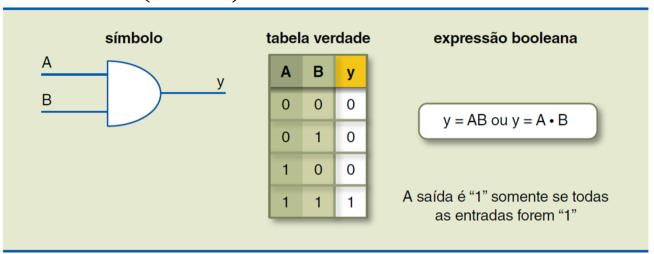
Porta OU (OR)



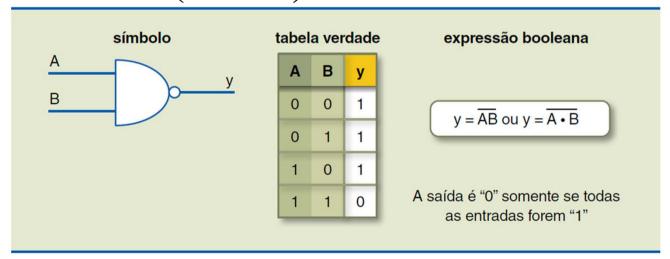
Porta NOU (NOR)



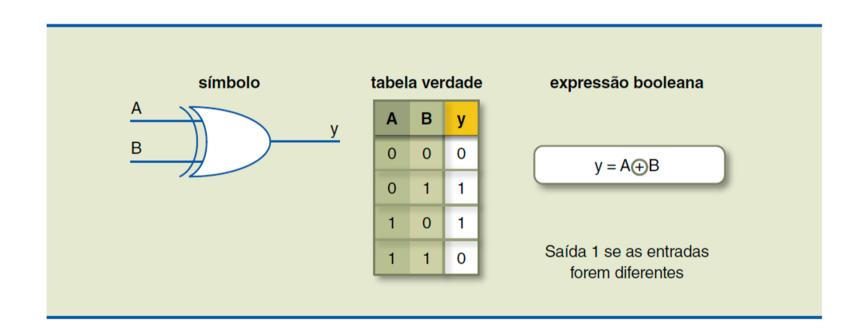
Porta E (AND)



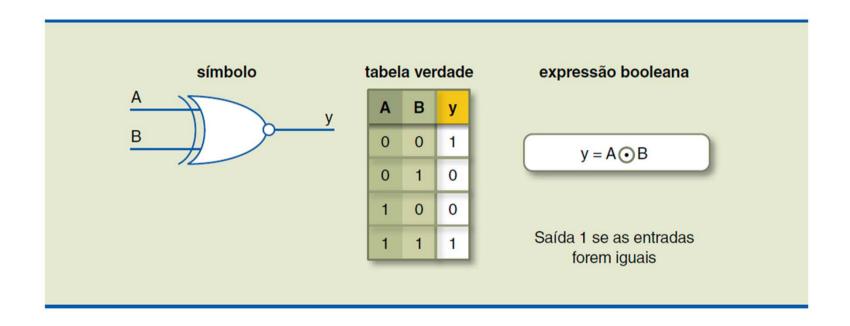
Porta NE (NAND)



A **porta OU EXCLUSIVO (XOR)** possui uma ou mais entradas e fornecerá uma saída igual a "1" somente quando as entradas forem diferentes



A porta NOU EXCLUSIVO (XNOR), também chamada de COINCIDÊNCIA, é equivalente a uma porta XOR com a saída invertida. A saída será "1" se as entradas forem iguais.



Álgebra booleana

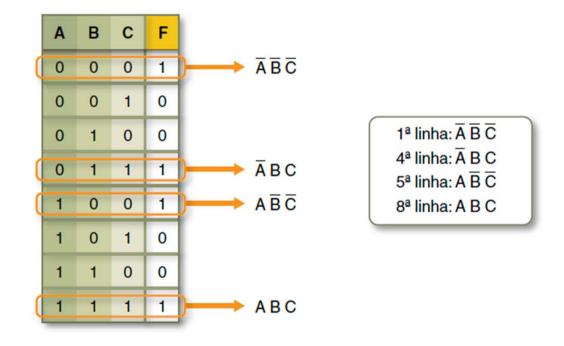
Exemplo:

Um sistema de alarme deverá soar quando os sensores A e C estiverem ativados ao mesmo tempo ou quando a chave B estiver ligada e pelo menos um dos sensores estiver ativado.

A	В	C	S
0	0	0	0
0	0	1	0
0	1	0	0
1	0	0	0
0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	1

Forma canônica disjuntiva:

- 1° escreva um termo aplicando a operação lógica "E", para cada linha em que a função é "1".
- 2º Junte os termos aplicando a operação lógica "OU".



$$F = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + ABC$$

Forma canônica conjuntiva:

- 1° escreva um termo aplicando a operação lógica "OU", para cada linha em que a função é "0".
- 2º Junte os termos aplicando a operação lógica "E".

Α	в с		F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$2^{a}$$
 linha: $A + B + \overline{C}$
 3^{a} linha: $A + \overline{B} + C$
 6^{a} linha: $\overline{A} + B + \overline{C}$
 7^{a} linha: $\overline{A} + B + C$

$$F = (A + B + \overline{C}) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C)$$

Propriedades e teoremas da álgebra booleana

• Propriedade da interseção

Está relacionada com as portas E.

$$A \cdot 1 = A$$

$$A \cdot 0 = 0$$

• Propriedade da união

Está relacionada com as portas OU.

$$B + 1 = 1$$

$$B + 0 = B$$

• Propriedade da tautologia

Está relacionada com as portas E e OU.

$$A \cdot A = A$$

$$A + A = A$$

• Propriedade dos complementos

Se aplicarmos um sinal lógico e seu complemento a uma porta lógica, simultaneamente a saída será "0" ou "1", dependendo do tipo de porta.

$$A \cdot \bar{A} = 0$$
$$A + \bar{A} = 1$$

Propriedade da dupla negação

Essa propriedade afirma que o complemento do complemento de uma variável é igual a ela própria.

$$\bar{\bar{A}} = A$$

Propriedade comutativa

Essa propriedade é semelhante à da álgebra convencional e pode ocorrer nos seguintes casos:

$$A \cdot B = B \cdot A$$
$$A + B = B + A$$

• Propriedade associativa

É outra propriedade semelhante à da álgebra convencional. Os casos possíveis são:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C) = A \cdot B \cdot C$$
$$(A + B) + C = A + (B + C) = A + B + C$$

• Propriedade distributiva

Também é semelhante à da álgebra convencional.

$$A \cdot (B + C) = A \cdot B + A \cdot C$$
$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

Propriedade da absorção

Os casos mais elementares são:

$$A + A \cdot B = A$$
$$A + \overline{A} \cdot B = A + B$$

Em decorrência dessas identidades, podemos encontrar outras um pouco mais complexas:

$$A \cdot B + A \cdot B = A \cdot B$$
$$(A + B) \cdot (A + B) = A + B$$
$$A \cdot (A + B) = A$$

Dualidade

Seja F uma função booleana. Define-se a **função dual** de F como aquela obtida quando mudamos os operadores + por · e · por + e os valores "0" por "1" e "1" por "0".

1º teorema de De Morgan

"O complemento do produto é igual à soma dos complementos"

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

A	В	Ā	B	A•B	Ā·B	Ā+B
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

2º teorema de De Morgan

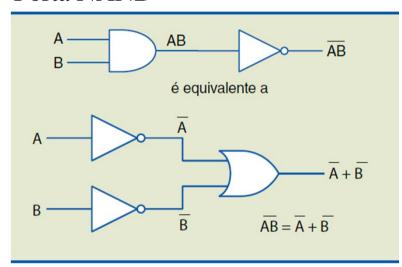
"O complemento da soma é igual ao produto dos complementos"

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

A	В	$ar{A}$	$ar{B}$	A+B	$\overline{A+B}$	$oxed{ar{A}\cdotar{B}}$
0	0	1	1	0	1	1
1	0	0	1	1	0	0
0	1	1	0	1	0	0
1	1	0	0	1	0	0

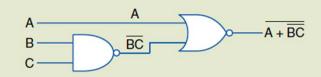
Como consequência dos teoremas de De Morgan as funções lógicas já conhecidas podem ser reescritas por um bloco equivalente, permitindo, assim, redesenhar os circuitos lógicos caso seja conveniente.

Porta NAND



Porta NOR

$$\overline{\left(A+(\overline{B\cdot C})\right)}$$



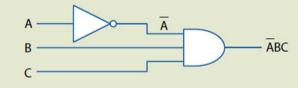
A + BC

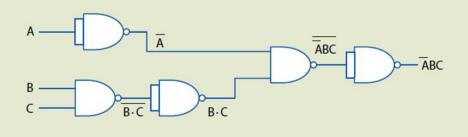
↓ Quebrando a barra superior (adição se transforma em multiplicação)

A·BC

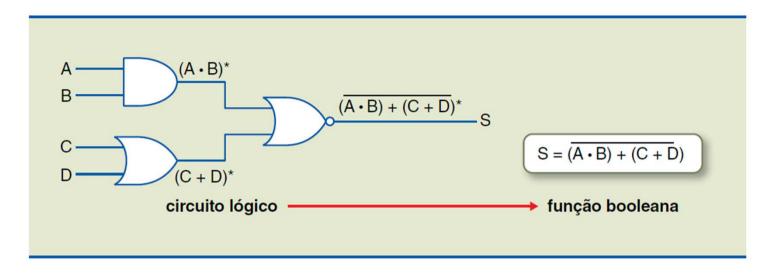
= -Aplicando a identidade X = X \rightarrow A·BC

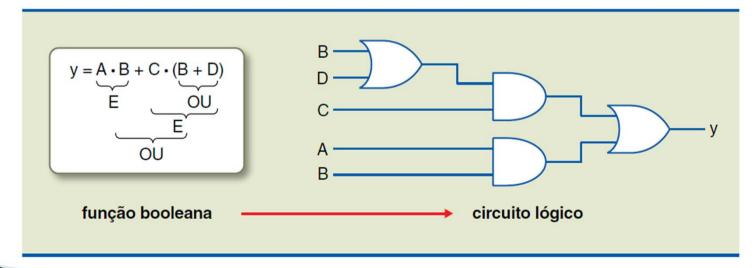
ABC





Circuito lógico





REFERÊNCIA

Ronaldo Diago, Valder Moreira Amaral. Eletrônica: eletrônica digital, Centro Paula Souza, Governo do Estado de São Paulo. São Paulo: Fundação Padre Anchieta, 2011.