S

Exploratory Data Analysis and
Graphics

This chapter presents some rudimentary ways to look at data using basic
statistical summaries and graphs. This is an overview chapter that presents
basics for topics that will be built on throughout this book.

Exploratory Data Analysis

This section covers ways to quickly look at and summarize a data set using R.
Much of this material should be familiar to anyone who studied introductory
statistics.

Data Summary Functions in R

Table 5-1 lists many of the basic functions in R that are used to summarize data.
Notice that usually, the function name is what you would expect to be in most
cases, as R is designed to be rather intuitive. For example, the function to find
the mean (or average value) of a data vector x is simply mean(x).

For functions not listed in table 5-1, try help and the expected name or using the
apropos() function with part of the expected name to find the exact function call.
It will probably be what you expect it to be. Most of the functions in table 5-1 do
not have additional parameters, and will work for a data vector, matrix or data
frame.

Copyright May 2007, K Seefeld 45

Permission granted to reproduce for nonprofit, educational use.

Table 5-1: Some Data Summary Functions

Function name Task performed

sum(x) Sums the elements in x

prod(x) Product of the elements in x

max(x) Maximum element in X

min(x) Minimum element in x

range(x) Range (min to max) of elements in x

length(x) Number of elements in X

mean(X) Mean (average value) of elements in X.

median(x) Median (middle value) of elements in
X

var(x) Variance of elements in x

sd(x) Standard deviation of element in x

cor(x,y) Correlation between x and y

quantile(x,p) The prh quantile of x

cov(x,y) Covariance between x and y

Let’s apply some of these functions using an example.

> x<-c(0.5,0.2,0.24,0.12,0.3,0.12,0.2,0.13,0.12,0.12,0.32,0.19)
> sum(x)

[1] 2.56

> prod(x)

1] 2.360122e-09

ean (x)
1] 0.2133333
median (x)
1] 0.195
var (x)

Copyright May 2007, K Seefeld 46

Permission granted to reproduce for nonprofit, educational use.

[1] 0.01313333

> sd(x)

[1] 0.1146008

Often, you will use these basic descriptive functions as part formulas for other

calculations. For example, the standard deviation (supposing we didn’t know it

had its own function) is the square root of the variance and can be calculated as:
> sd<-var (x)"0.5

> sd
[1] 0.1146008

The summary() Function

Suppose we have an enzyme that breaks up protein chains, which we’ll call
ChopAse. Suppose we have three varieties of this enzyme, made by three
companies (producing the same enzyme chemically but prepared differently).
We do some assays on the same 200 amino acid protein chain and get the
following results for digestion time based on variety:

> ChopAse

varietyA timeA varietyB timeB varietyC timeC
1 a 0.12 b 0.12 c 0.13
2 a 0.13 b 0.14 c 0.12
3 a 0.13 b 0.13 c 0.11
4 a 0.12 b 0.15 c 0.13
5 a 0.13 b 0.13 c 0.12
6 a 0.12 b 0.13 c 0.13

Based on this data and the way it is presented it is difficult to determine any
useful information about the three varieties of Chopase and how they differ in
activity. Here is a case where using the summary function can be very useful as
a screening tool to look for interesting trends in the data.

The summary function simultaneously calls many of the descriptive functions
listed in Table 5-1, and can be very useful when working with large datasets in
data frames to present quickly some basic descriptive statistics, as in the
ChopAse example:

This gives some quick quantitative information about the dataset without having
to break up the data frame or do multiple function calls. For example the mean
for variety B appears higher then the mean time for varieties A or C. This may
be statistically significant, and this observation can be utilized for statistical
testing of differences (such as those covered in Chapter 13).

Copyright May 2007, K Seefeld 47

Permission granted to reproduce for nonprofit, educational use.

> summary (ChopAse)

varietyA timeA varietyB timeB varietyC timeC

a:6 Min. :0.120 b:6 Min. :0.1200 c:6 Min. :0
1st Qu.:0.120 1st Qu.:0.1300 1st Qu.:0
Median :0.125 Median :0.1300 Median :0.
Mean :0.125 Mean :0.1333 Mean :0
3rd Qu.:0.130 3rd Qu.:0.1375 3rd Qu.:0
Max. :0.130 Max. :0.1500 Max. 0

.1100
.1200
1250
.1233
.1300
.1300

Working with Graphics

Of course, it is often most interesting to present data being explored in a
graphical format. R supports a variety of graphical formats in the base package,
and numerous other packages provide additional graphics functionality. This
section focuses on understanding the graphics environment in R and how to
control features of the graphics environment. Some basic graph types are
introduced, however many more examples of graphs are introduced in various
chapters in a more specialized context.

Graphics Technology in R

At startup, R initiates a graphics device drive. This driver controls a special
graphics window for the display of graphics. To open this window without
calling graphics, use the function call windows() (for Windows operating
systems, it is x11() on Unix, and macintosh() on Mac O/S).

Commands for using graphics in R can be categorized into three types: high-
level plotting functions, low-level plotting functions, and graphical parameter
functions. Let’s look at each of these types of plotting commands.

High-Level Plotting Functions

High-level plotting functions create a new plot on the graphics device. The
simplest high level plotting function is plot(), as illustrated below

> x<-c(1,2,3,4,5,6,7,8)

> y<-c(1,2,3,4,5,6,7,8)

> plot(x,y)

This produces the simple graph in Figure 5-1. Plot also works with only one
argument, ex: plot(x), except in this case the plot would be of the values of
vector x on the y-axis and the indices of value x on the x- axis (which would
appear identical to Figure 5-1 in this case, try it!). Plot is a generic function and
has a diverse set of optional arguments. For example, if you type in help (plot)
you get the help screen shown in Figure 5-2. Under the usage section is the list
of the function and most of the parameters, which are described in more detail in
the arguments section of help below. Note there are parameters for labeling the
x and y axises, main for a main title, and parameters for controlling the axis
lengths (for example, we could have included a y range from 0 to 20 if we
wanted). These parameter arguments are pretty standard for most of the high
level plotting functions in R. Unless specified all the arguments are set to
defaults, such as those utilized in Figure 5-1.

Copyright May 2007, K Seefeld 48

Permission granted to reproduce for nonprofit, educational use.

Figure 5-1

R Help for package graphics

Hide Pint O

=i

ions

[‘Contents | Index [1 € »

Type in the keyword to
find:

1-D Scatter Plots
Add = Rugto a Plot
Add a Straight Line tc
Add an Ads o a Flot
Add Arrows to a Plot
Add Cornected Line
Add Grd to a Plet
Add Legends to Plots
Add Line Segmentst
Add Pointsto a Plot
Add Textto a Plot
Association Plots

Bar Plots

Basic Intemal Plot Fu
Bax Plots

Cleveland Dot Plots
Compute Aics Tickme
Conditional Densty P
Conditoning Plots
Creatz / Start 2 New
Creating and Controli
Date and Datctime F
Defunct Functions in
Display a Color Image
Display Contours

Drew 2 Box around a
Draw Box Plots from
Draw Function Plots
Drew One or More R
Drew Symbols {Circle
Formuia Notation for
Fourold Plts

Generic function to &
Generc X-Y Plating
Graphical Input
Graphical Units
Histogram of a Date ¢
Histograms

Idertfy Poits ina S¢¥

Display

plot(graphics) R Documentation

Generic X-Y Plotting
Description
Generic fimetion for plotting of R objects. For more details about the graphical parameter arguments, see pax
Usage
ploc(x, ¥, -..)
Arguments

% the coordinates of points in the plot. Alternatively, a single plotting structure, function or any R objact with @ p1ot method can be

provided
the y coordinates of points in the plot, apfional i x is an appropriate structure.
- - Arguments to be passed to methods, such as graphical parameters (see par) Many methods will accept the following arguments:
type
what type of plot should be drawn. Possible types are

o " for points,

o 1o for lies,

o mbn for both,

o " for the lines part alone of "b7,
o mon for both “overplotted”,
o whn for “histogram” lkce (or “high- density”) vertical lines,
o " for stair steps,

o ws for other steps, see Dezails below.

o v for no plotting.

All other types give a warning or an error; using, e.g., type = "punkce being equivalent to cype = "p" for S compatibility.
main

Figure 5-2

For example, suppose we want to make a little fancier plot than the one in
Figure 5-1 and use some of the parameters available:

| > plot (x,y,xlim=range(0:10),ylim=range (0:10),type="'b',main="X vs Y")

This changes the x and y ranges on the graph from 1 to &, to 0 to 10. It also
changes the type of plot from the default of points, to both points and lines. In
addition it adds the main title to the graph “X vs Y”.

Copyright May 2007, K Seefeld 49

Permission granted to reproduce for nonprofit, educational use.

XvsY

Figure 5-3

Table 5-2 lists other selected high-level plotting functions:

Table 5-2: Selected High-Level Plotting Functions

Function name

Plot produced

boxplot(x) “Box and whiskers” plot

pie(x) Circular pie chart

hist(x) Histogram of the frequencies of x

barplot(x) Histogram of the values of x

stripchart(x) Plots values of x along a line

dotchart(x) Cleveland dot plot

pairs(x) For a matrix X, plots all bivariate pairs

plot.ts(x) Plot of x with respect to time (index values of the

vector unless specified)

contour(x,y,z)

Contour plot of vectors x and y, z must be a matrix of
dimension rows=x and columns=y

image(x,y,z)

Same as contour plot but uses colors instead of lines

persp(x,y,z)

3-d contour plot

Copyright May 2007, K Seefeld 50

Permission granted to reproduce for nonprofit, educational use.

Rather than illustrate further examples here, virtually all of the high-level
plotting functions in Table 5-2 are utilized in coming chapters of this book.

Low-Level Plotting Functions

Low-level plotting functions add additional information to an existing plot, such
as adding lines to an existing graph. Note that there is some redundancy of low-
level plotting functions with arguments of high-level plotting functions. For
example, adding titles can be done as arguments of a high-level function
(main="", etc) or as a low-level plotting function (title(main="""), etc).

For example, let’s return to Figure 5-1. We could add to this plot in several
ways using low-level plotting functions. Let’s add a title, some text indicating
the slope of the line and a line connecting the points.

> text (4,6, label="Slope=1")
> title("X vs Y")
> lines(x,Vy)

This embellishes the plot in Figure 5-1 to become the plot in Figure 5-4.

XvsY

© o Slope=1

Figure 5-4

Table 5-3 lists additional low-level plotting functions. Note that most of these
work not just with plot () but with the other high-level plotting functions as well.
If you are working with multiple plots (as we shall soon see how to do) on one
graphics window, the low-level plotting function used will apply to the most
recently added plot only so you should write your code in the appropriate order.

Copyright May 2007, K Seefeld 51

Permission granted to reproduce for nonprofit, educational use.

Table 5-3: Selected Low-Level Plotting Functions

Function name Effect on plot
points(x,y) Adds points
lines(x,y) Adds lines

text(x, y, label=""")

Adds text (label="text”) at coordinates
(x,y)

segments(x0,y0,x1,y1)

Draws a line from point (x0,y0) to point
(x1,y1)

abline(a,b) Draws a line of slope a and intercept b;
also abline(y=) and abline(x=) will draw
horizontal and vertical lines respectively.

title(*”) Adds a main title to the plot; also can add
additional arguments to add subtitles

rug(x) Draws the data on the x-axis with small

vertical lines

rect(x0,y0,x1,y1)

Draws a rectangle with specified limits
(note —good for pointing out a certain
region of the plot)

legend(x,y,legend=,...)

Adds a legend at coordinate x,y; see
help(legend) for further details

axis()

Adds additional axis to the current plot

Graphical Parameter Functions

Graphical parameter functions can be categorized into two types: those that
control the graphics window and those that fine-tune the appearance of graphics
with colors, text, fonts, etc. Most of these can be controlled with a function in
the base package called par(), which can be used to access and modify settings

of the graphics device.

par() is a very important graphics function, and it is well worth the time to read
the help document for par, pictured in Figure 5-5. The settings changed by par
remain in effect in the current workspace until they are explicitly changed.

Copyright May 2007, K Seefeld 52

Permission granted to reproduce for nonprofit, educational use.

E? R Help for package graphics. EIIEJE’I
iE & o

Hide Prnt Options

Contents [Indexc [{4 »

Type in the keyword to
finc:

par(graphics) R Documentation

] Set or Query Graphical Parameters

~ PR
1D Seatter Plts Description
Add a Fugto a Plet
Add a Straight Line ¢ A _ ;
Add an fuds to & Plet par can be used to set or query graphical parameters. Parameters can be set by specifying them as arguments to par in tag = value
Acd Amows o 2 Plot form, or by passing them as a list of tagged values.
Add Cornected Line N
Add Gnd to a Plot
Add Legends to Plots Usage
Add Line Segmentsti
Add Fortsto a Plot

id Text to a Plot par(..., no.readonly = FALSE)
Association Plots
Bar Plots
Basic Intemal Plot Fu

o Plots

Cleveland Dot Plots
Compute fis Tickme
Conditional Densty P
Conioring Plots ; . ’
Create / Start 3 New ces arguments in tag = value form, or a list of tagged vahes. The tags must come from the graphical parameters described
Creating and Cortroll below.
Date and Dateime F

<highlevel plot> (..., <tag> = <value>)

Arguments

Defunct Functions in no.readonly Jogical: f TRUE and there are no other arguments. only parameters are returned which can be set by a subsequent par ()
Display a Color Image cal

Display Cortours &
Draw a Bax around a
Draw Box Plots from &
Draw Function Plets Details
Draw One or More Ri
e Parameters are queried by giving one or more character vectors to paz.
Fourfold Plots
e | pax () (no arguments) of pas (no. readonly=TRUE) s used to get all the graphical parameters (as a named list). Their names are
Graphical Input currently taken from the unexported variable . Pazs.

Graphical Units

Histogram of a Date ¢ gt . y
Histograms R.O. indicates read-only arguments: These may only be used in queries and cannot be set. ("cin”, "cra®, "csi", "cxy" and "din"

Identfy Poitsina S | ||| are always read-only, and "gamma™ is on most devices.)

There are several parameters can only be set by a call to pax ():

Figure 5-5: Par() function help

One of the most common tasks you will want to do with par is to split the
graphics screen to display more than one plot on the graphic device at one time.
You can do this with either the mfrow or mfcol parameters of the par function.
Both mfrow and mfcol takes arguments (rows, columns) for the number of rows
and columns respectively. Mfrow draws the plots in row order (row 1 column 1,
row 1 column 2, etc) whereas mfcol draws plots in column order (row 1 column
1, row 2 column 1).

Graphics parameters also control the fine-tuning of how graphics appear in the
graphics window. Table 5-4 lists some of the basic graphical parameters. Most
of these parameters can be implemented as parameters of par, in which case they
are implemented in all graphs in a graphics window, or as parameters of high or
low level plotting functions, in which case they only affect the function
specified.

Let’s look at an example that utilizes some of par’s functionality using data from
NCBI on numbers of base pairs and sequences by year.

> NCBIdata

Year BasePairs Sequences
1 1982 680338 606
2 1983 2274029 2427
3 1984 3368765 4175
4 1985 5204420 5700
5 1986 9615371 9978
20 2001 15849921438 14976310
21 2002 28507990166 22318883

Copyright May 2007, K Seefeld 53

Permission granted to reproduce for nonprofit, educational use.

Table 5-4: Selected Graphical Parameters

Parameter Specification
bg Specifies (graphics window) background color
col Controls the color of symbols, axis, title, etc

(col.axis, col.lab, col.title, etc)

font Controls text style (O=normal, 1-=italics, 2=bold,
3=bold italics)

Ity Specifies line type (1:solid, 2:dashed, 3: dotted,
etc)

lwd Controls the width of lines

cex Controls the sizing of text and symbols

(cex.axis,cex.lab,etc)

pch Controls the type of symbols, etiher a number
from 1 to 25, or any character within *”

Using the NCBI data, let’s plot base pairs by year plot and sequences by year
plot on the same graphics window:

> #Convert Base Pair Data to Millions
> MBP<-NCBIdata$BasePairs/1000000

> #Convert Sequence Data to Thousands
> ThousSeg<-NCBIdata$Sequences/1000

> #Set par to have a 2-column (2 graph) setup
> #Use cex to set label sizes
> par (mfcol=c(1l,2),cex.axis=0.7,cex.lab=1)

> #Plot base pair data by year
> plot (NCBIdata$Year,MBP, xlab="Year", ylab="BP in Millions",
+ main="Base Pairs by Year")

> #Add line to plot, color blue
lines (NCBIdataS$Year,MBP, col="Blue")

\2

#Similarily, plot sequence data and line

plot (NCBIdataS$Year, ThousSeq, xlab="Year", ylab="Seq. in Thousands",
main="Sequences by Year")

lines (NCBIdata$Year, ThousSeq, col="red")

vV + V V

The resulting plot is shown in Figure 5-6.

Copyright May 2007, K Seefeld 54

Permission granted to reproduce for nonprofit, educational use.

Base Pairs by Year Sequences by Year

25000
1
10000 20000

10000
1

0
]

BP in Millions
u]
| |
Seq. in Thousands

1985 1990 1995 2000 1985 1930 1995 2000

Year Year

Figure 5-6

Another way to represent this data might be to use barplots, as illustrated in
Figure 5-7.

#Code for Figure 5-7

par (mfcol=c(2,1),cex.axis=0.6,cex.lab=0.8)

barplot (NCBIdata$BasePairs, names.arg=NCBIdata$Year,
col=grey,xlab="Years",ylab="Base Pairs",main="Base Pairs by Year")
barplot (NCBIdata$Sequences, names.arg=NCBIdataS$Year,

col=grey, xlab="Years", ylab="Sequences",main="Sequences by Year")

+ VvV + V V V

Base Pairs by Year

-
= b
o =
o (a1}
5 3 il
m ¥ =il

5

I=;

1982 1984 1986 1988 1990 1992 1984 1006 1998 2000 ZOO2
Years
Sequences by Year

u [y
i)
S 3
i L)
g =
g g II
w3 -

5

=

1982 1984 1986 1985 1990 1992 1994 1996 1998 2000 2002

Years

Figure 5-7

Copyright May 2007, K Seefeld 55

Permission granted to reproduce for nonprofit, educational use.

As illustrated with the plots in Figures 5-6 and 5-7, even relatively simple plots
in R can require quite a few lines of code and use various parameters. Most of
the graphical examples in this book — and there are many of them - will use the
simplest plotting code possible to illustrate examples, since our focus is on
understanding techniques of data analysis. However, the graphic code in R can
be as complicated as you wish, and only a snapshot of R’s full graphic
capabilities have been presented here. R allows for the user to code virtually
every detail of a graph. This may seem complicated, but it is a useful capability.
With a little practice, you can code R to produce custom, publication quality
graphics to effectively illustrate almost any data analysis result.

Saving Graphics

Notice that when the graphics window is active the main menu is different, as
illustrated in Figure 5-8. On the File menu there are many options for saving a
graphic, including different graphical formats (png, bmp, jpg) and other formats
(metafile, postscript,pdf). You could also use command line functionality to
save, but using the options under the File menu is easier and pops up a save as
dialog box allowing you to choose the directory you are saving the graphic file
to.

IR RGui =l
File Histary Resize ‘Windows
Metaie... |
LCopy to the clipboard 2 Postzcript...
Brint.. CTRL+P PDEF.. i Graphics: Device 2 [ACTIVE] =
Png...
cloze Device Bmp...
e 0% sty
Version 1.6.2 [Zo03-0F—FFr—m—re

TR quality. ..
100 quality...

R iz free software and comes wit

You are welcome to redistribute e
Type “license()' or “licence()'

B i= a collskborative project wit
Type ‘contributors()' for more i L

S

Type "demof()' for some demos, "L

“help.start()' for a HTHML browse
Type "gi)' to gquit R.

]

[Previously saved workspace rest bt o o o
4| | _’I_I
I 4

Figure 5-8

Another option to save a graphic is to simply right mouse click on the graphic,
which will produce a pop up menu with options to copy or save the graphic in
various formats as well as to directly print the graphic. In a Windows

Copyright May 2007, K Seefeld 56

Permission granted to reproduce for nonprofit, educational use.

environment the copy options are as a bitmap or metafile, and the save options
are as metafile or postscript.

Additional Graphics Packages

R has available many packages that add graphical capabilities, enhancing
graphic capabilities available in the base package. This section presents some
selected graphics packages that may be of interest, all of which should be
available from the CRAN site.

mimR

mimR is a package that provides an R interface to a program called MIM. MIM
is a software package, which is useful for creating graphical models, including
directed and chain graphs. Although MIM is a commercial package, there is a
free student edition available with limited functionality. We will see in coming
chapters that these types of models, which are popular among computer
scientists, are useful in advanced statistical modeling, such as Bayesian statistics
and Markov Chain Monte Carlo modeling.

scatterplot3d

scatterplot3d is a valuable package that adds functionality that the base package
lacks, that of producing effective 3d plots. It is also relatively simple for the
beginner to use and contains one function scatterplot3d() with many flexible
parameter options which create many different 3d plots, such as the demo plot in
Figure 5-9.

Copyright May 2007, K Seefeld 57

Permission granted to reproduce for nonprofit, educational use.

scatterplot3d - 5

60

60 70

Height

Yalume
EUi]
o
—t———— 88

30
—a g
——
——=
—]
— 4

m 20

Girth
Figure 5-9

grid

Grid is a sophisticated and very useful R package, which provides a “rewrite of
the graphics layout capabilities” (from package description on CRAN site). It
works with base package functionality and adds some better capabilities for
graphics in R. Some added functionality available with this package includes:
allowing interactive editing of graphs, improving axis labeling capabilities, and
primitive drawing capabilities.

lattice

The package lattice is quite sophisticated and contains extensive functionality
for advanced graphics based on what are referred to often as Trellis graphics
(the specific type used in other versions of S). This type of graphics is very
useful for applications in multivariate statistics as they allow for presenting
many graphs together using common x- and y-axis scales which is a visually
effective way for doing comparisons between groups or subgroups. Cleveland
(1993) presents the original foundation for this type of graphic. Figure 5-10
presents one of the demonstrations of a type of plot available in the lattice
package.

Copyright May 2007, K Seefeld 58

Permission granted to reproduce for nonprofit, educational use.

Estimated Density

copooo

copooo

55 BO B5 Y0 YA 80
Soprano 2 Soprano 1
: — mm;\u‘x gﬂnm&u
Alto 2 Alta 1

.25 1

029
gz o A\ A
2T o5 X
3% e ' emme m;\ e e
= Tenar 2 Tenar 1
ool
2% i

4 - N —— EPOSODIBDED & —
Bass 2 Bass 1

0.254

0.2

015+ Va ’\

0.14 {

0.05 N\ o S

0 = sotcoeat — 0 cormmee -
55 BD BS5 YO 75 D

Height (inches)

Figure 5-10

Copyright May 2007, K Seefeld

Q==
[53] (i) m

O= =Mk
m o m

Permission granted to reproduce for nonprofit, educational use.

59

