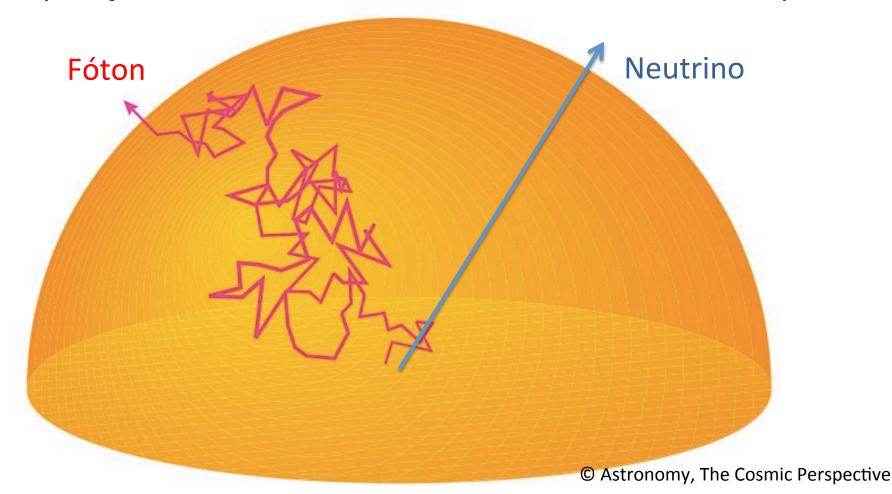
Cap. 9: Atmosferas Estelares

- Campo de radiação
- Opacidade estelar
- Transferência radiativa
- Equação de transferência
- O perfil das linhas espectrais

9.1 Campo de radiação

O interior estelar é opaco. A luz que recebemos é da atmosfera da estrela. A temperatura, densidade (pressão) e composição da atmosfera determinam a forma do espectro



Para interpretar as linhas espectrais, precisamos descrever como a luz viaja através do gás da atmosfera

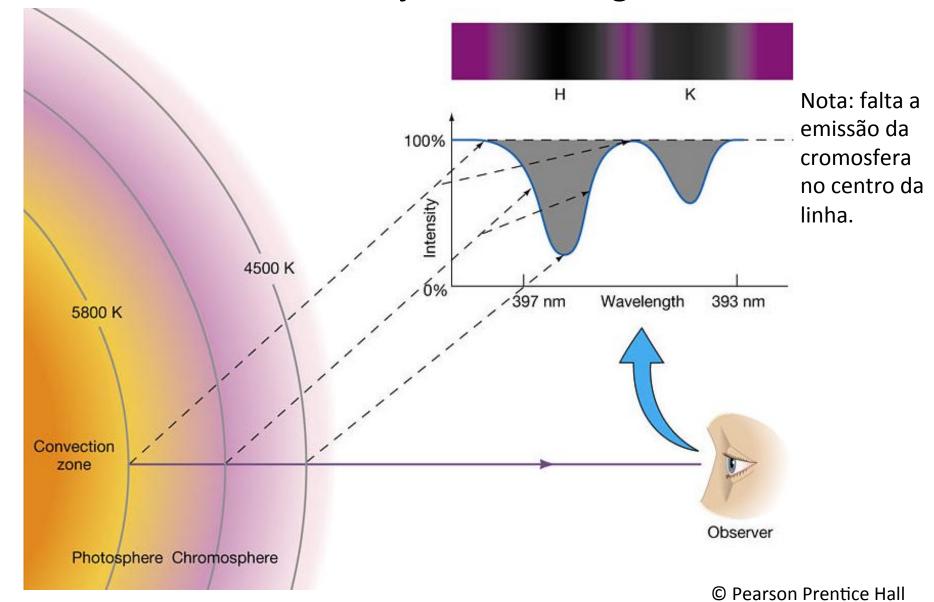
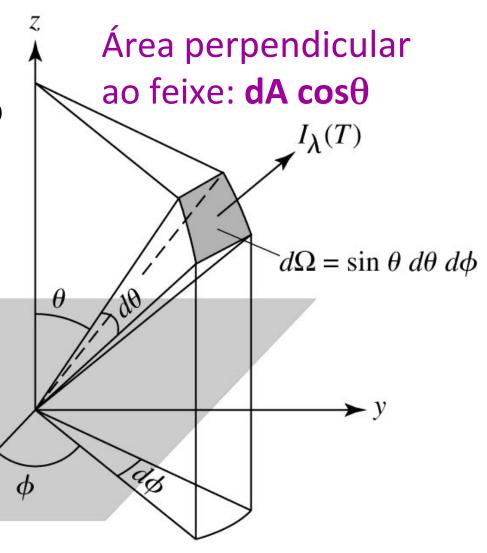


Figura mostra um feixe de luz com comprimento de onda entre λ e λ + d λ que atravessa um elemento de área dA a um ângulo θ , em um ângulo sólido d Ω



Definindo:

$$E_{\lambda} \equiv \frac{\partial \mathcal{L}}{\partial \lambda}$$
 \rightarrow Quantidade de energia do feixe:

dA

$$\delta E = E_{\lambda} d\lambda$$

Quantidade de energia do feixe $\delta E = E_{\lambda} d\lambda$

Intensidade específica (ou Intensidade):

$$I_{\lambda} \equiv \frac{E_{\lambda} d\lambda}{d\lambda \, dt \, dA \, \cos \theta \, d\Omega}$$

Energia δE (= $E_{\lambda}d\lambda$) que atravessa um elemento de área perpendicular (dA $\cos\theta$), por unidade de comprimento de onda, por unidade de tempo, por unidade de ângulo sólido

dA

Unidades da intensidade:



Quantidade de energia do feixe $\delta E = E_{\lambda} d\lambda$

Intensidade específica (ou Intensidade):

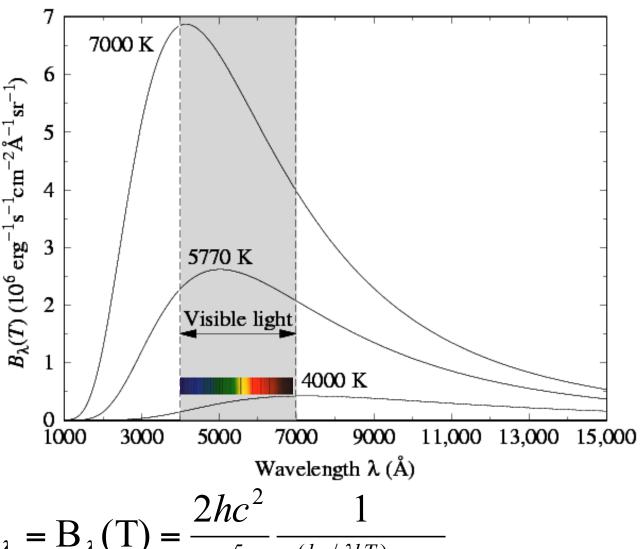
$$I_{\lambda} \equiv \frac{E_{\lambda} d\lambda}{d\lambda \, dt \, dA \, \cos \theta \, d\Omega}$$

Energia δE (= $E_{\lambda}d\lambda$) que atravessa um elemento de área perpendicular (dA $\cos\theta$), por unidade de tempo, por unidade de comprimento de onda, por unidade de ângulo sólido

Energia
$$\delta E = E_{\lambda} d\lambda = I_{\lambda} d\lambda dt dA \cos \theta d\Omega$$

= $I_{\lambda} d\lambda dt dA \cos \theta \sin \theta d\theta d\phi$

adiação de corpo negro exemplo de exemplo de corpo de cor específica



$$I_{\lambda} = B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{(hc/\lambda kT)} - 1}$$

Intensidade media $\langle I_{\lambda} \rangle$ (ou J_{λ})

$$\langle I_{\lambda} \rangle \equiv \frac{1}{4\pi} \int I_{\lambda} d\Omega$$

$$= \frac{1}{4\pi} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \sin \theta \, d\theta \, d\phi$$

Em um caso isotrópico: $\langle I_{\lambda} \rangle = I_{\lambda}$

A radiação de corpo negro é isotrópica: $\langle I_{\lambda} \rangle = B_{\lambda}$

Fluxo específico
$$F_{\lambda} = \frac{\delta E}{\Lambda A \Lambda t \Lambda \lambda} = \frac{E_{\lambda} d\lambda}{\Lambda A \Lambda t \Lambda \lambda}$$

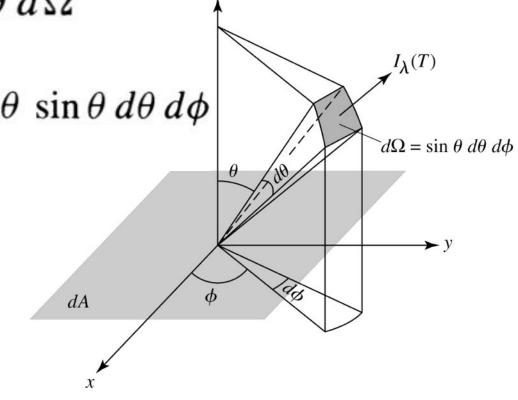
$$I_{\lambda} \equiv \frac{E_{\lambda} \, d\lambda}{d\lambda \, dt \, dA \, \cos \theta \, d\Omega}$$

$$F_{\lambda} d\lambda = \int I_{\lambda} d\lambda \cos \theta d\Omega$$

$$= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} d\lambda \cos \theta \sin \theta d\theta d\phi$$

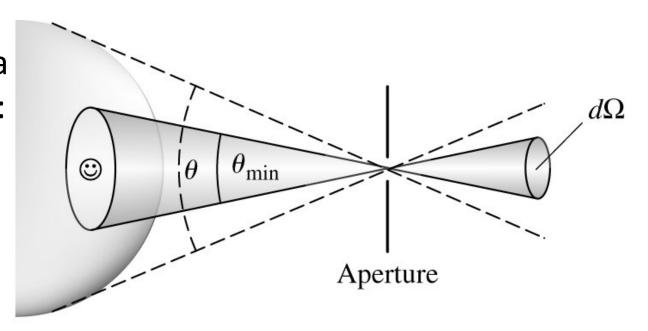
$$I_{\lambda} \sim B_{\lambda} \rightarrow$$

Fluxo na superfície de estrelas, $F_{\lambda} \sim \pi B_{\lambda}$



Fonte resolvida espacialmente: medida de intensidade

específica

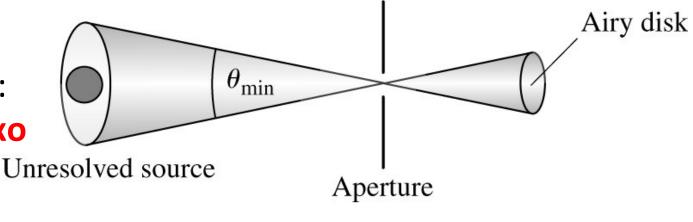


(a)

Resolved source

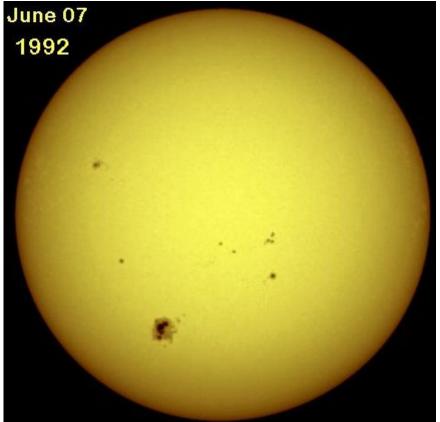
Fonte não resolvida espacialmente:

medida de fluxo



(b)

Intensidade específica vs. Fluxo



http://solarscience.msfc.nasa.gov/surface.shtml

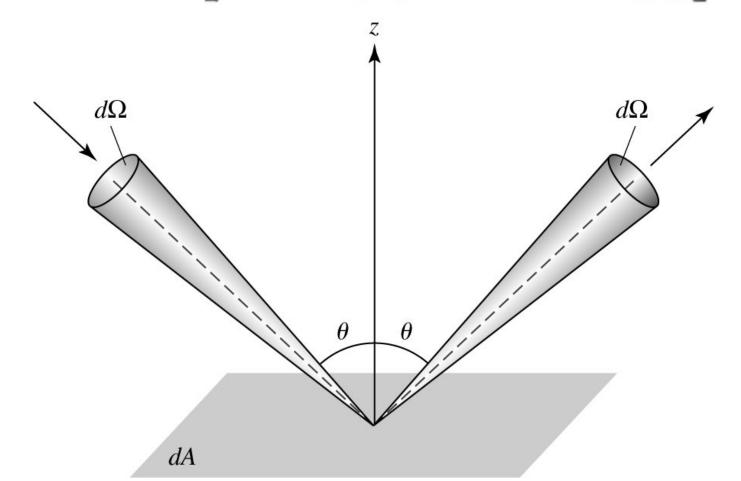
- Sol: é possível medir intensidade específica
- Estrelas: medida de fluxo

Pressão de radiação

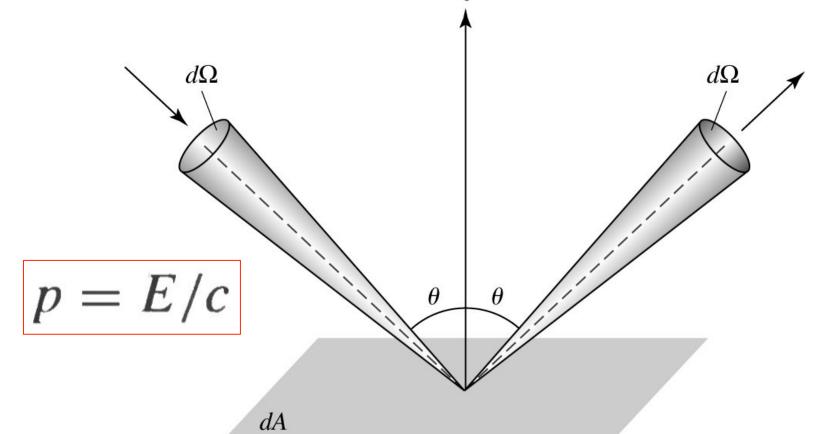
Fóton carrega momento

$$p = E/c$$

$$dp_{\lambda} d\lambda = [(p_{\lambda})_{\text{final},z} - (p_{\lambda})_{\text{initial},z}] d\lambda$$



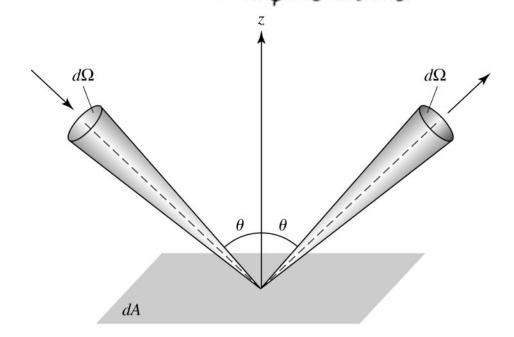
$$dp_{\lambda} d\lambda = \left[\frac{E_{\lambda} \cos \theta}{c} - \left(-\frac{E_{\lambda} \cos \theta}{c} \right) \right] d\lambda$$
$$= \frac{2 E_{\lambda} \cos \theta}{c} d\lambda = \frac{2}{c} I_{\lambda} d\lambda dt dA \cos^{2} \theta d\Omega$$



Integrando no hemisfério dos fótons incidentes na superfície A

$$P_{\text{rad},\lambda} d\lambda = \frac{2}{c} \int_{\text{hemisphere}} I_{\lambda} d\lambda \cos^2 \theta d\Omega \quad \text{(reflection)}$$

$$= \frac{2}{c} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} I_{\lambda} d\lambda \cos^{2}\theta \sin\theta d\theta d\phi.$$



Para um campo de radiação isotrópico não existe o fator 2

Pressão total integrando em todo o Ω

$$P_{\text{rad},\lambda} d\lambda = \frac{1}{c} \int_{\text{sphere}} I_{\lambda} d\lambda \cos^2 \theta d\Omega \quad \text{(transmission)}$$

$$= \frac{1}{c} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} d\lambda \cos^{2}\theta \sin\theta d\theta d\phi$$

$$= \frac{4\pi}{3c} I_{\lambda} d\lambda$$
 (isotropic radiation field).

Pressão total por fótons de todos os λ :

$$P_{\rm rad} = \int_0^\infty P_{\rm rad,\lambda} \, d\lambda$$

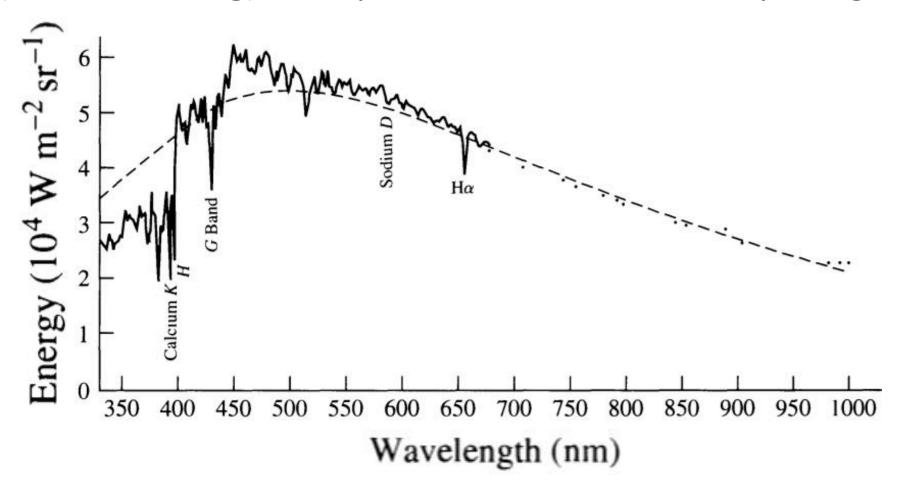
Para radiação de corpo negro:

$$P_{\text{rad}} = \frac{4\pi}{3c} \int_0^\infty B_{\lambda}(T) \, d\lambda = \frac{4\sigma T^4}{3c}$$

Pressão de radiação é muito importante para estrelas quentes

9.2 Opacidade estelar

Atmosfera do Sol remove energia nas linhas de absorção (line blanketing) → espectro solar não é um corpo negro



Temperatura e equilíbrio termodinâmico local

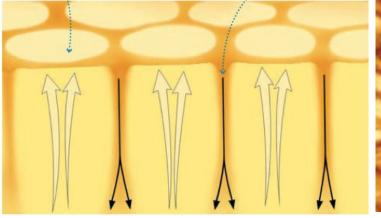
- Temperatura efetiva: lei de Stefan- $F_{\rm surf}=\sigma\,T_e^4$ Boltzmann (fluxo na "superfície" da estrela)
- Temperatura de excitação $\frac{N_b}{N_a} = \frac{g_b}{g_a} \, e^{-(E_b E_a)/kT}$ (equação de Boltzmann)
- Temperatura de ionização (eq. Saha) $\frac{N_{i+1}}{N_i} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_i/kT}$
- Temperatura cinética (Maxwell-Boltzmann) $n_v dv = n \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} 4\pi v^2 dv$
- Temperatura de cor: pela cor da estrela devido à sua distribuição de energia

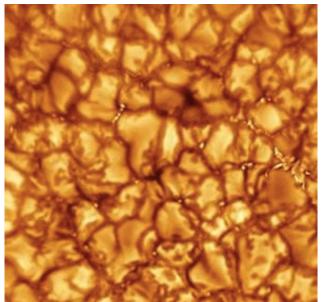
Equilíbrio termodinâmico

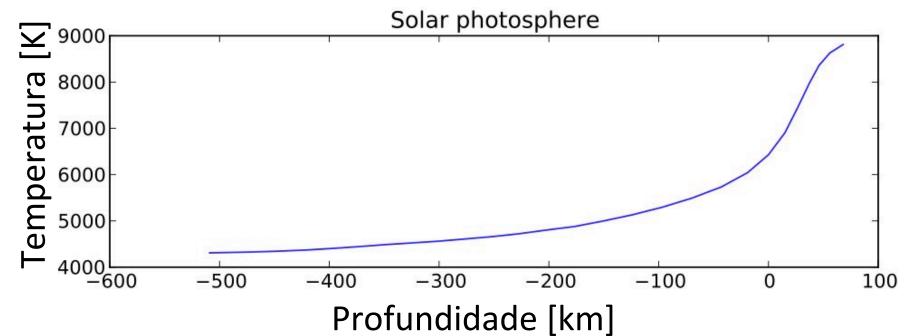
Considerando um gás confinado em uma "caixa ideal" → partículas do gás e a radiação de corpo negro em equilíbrio podem ser descritas por uma temperatura

- Não existe fluxo neto de energia
- Cada processo ocorre na mesma razão que seu processo inverso (absorção e emissão de fótons)
- No entanto, existe um fluxo de energia e a temperatura na atmosfera estelar varia não existe equilíbrio termodinâmico perfeito

Equilíbrio Termodinâmico Local (ETL)







Exemplo 9.2.1 A temperatura da fotosfera solar muda em escalas $H_T \sim 100 \text{km}$. Como essa distância se compara com o percurso livre médio de um átomo?

Example 9.2.1. The photosphere is the surface layer of the Sun's atmosphere where the photons can escape into space (see page 253 and Section 11.2). According to a model solar atmosphere (see Cox, page 348), the temperature in one region of the photosphere varies from 5580 K to 5790 K over a distance of 25.0 km. The characteristic distance over which the temperature varies, called the *temperature scale height*, H_T , is given by

$$H_T \equiv \frac{T}{|dT/dr|} = \frac{5685 \text{ K}}{(5790 \text{ K} - 5580 \text{ K})/(25.0 \text{ km})} = 677 \text{ km}$$

where the average temperature has been used for the value of T

Percurso livre médio de um átomo

Densidade da fotosfera: $\rho = 2.1 \times 10^{-4} \text{ kg m}^{-3}$ Supondo apenas H, o numero de átomos de H/m³:

$$n = \frac{\rho}{m_H} = 1.25 \times 10^{23} \text{ m}^{-3}$$
 m_H : massa do átomo de hidrogênio

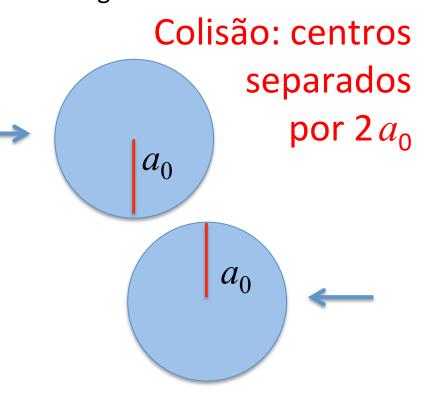
Átomo de Bohr (Cap. 5):

$$r_n = \frac{4\pi\epsilon_0\hbar^2}{\mu e^2}n^2 = a_0n^2$$

Onde a_0 é o raio de Bohr:

$$a_0 = 5,291772083 \times 10^{-11} \text{ m}$$

= 0,0529 nm



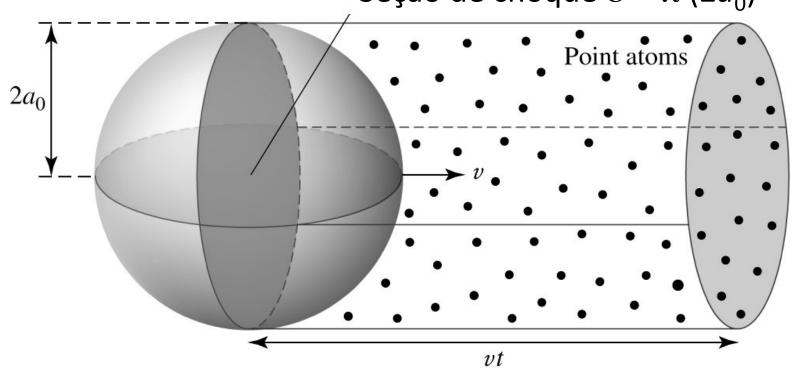
Equivalente: átomo de H com raio $2a_0$ (e veloc. v)

(supondo os outros átomos de H como fontes pontuais estacionárias)

Em tempo t, terá percorrido distância d = vt

Volume coberto: $V = d \times \sigma = vt \times \pi (2a_0)^2$

Seção de choque $\sigma = \pi (2a_0)^2$



Átomos de hidrogênio/volume:
$$n = \frac{\rho}{m_H} = 1.25 \times 10^{23} \text{ m}^{-3}$$

Numero de átomos de H no volume V = nV

Lembrando:
$$V = d x \sigma = vt x \sigma \rightarrow nV = n v t \sigma$$

A distância média entre colisões: ℓ = d/#átomos

$$\ell = \frac{\partial t}{n\sigma vt} = \frac{1}{n\sigma}$$

$$\sigma = \pi (2a_0)^2 = 3.52 \times 10^{-20} \text{ m}^2$$

$$\ell = \frac{1}{n\sigma} = 2.27 \times 10^{-4} \text{ m}.$$

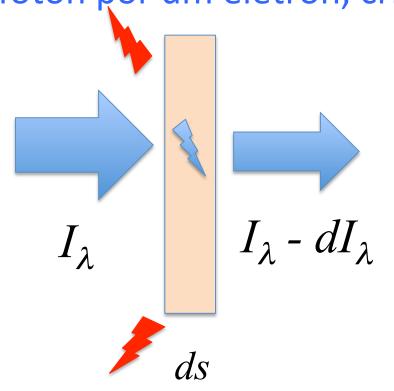
 $\ell <<< H_T$ (escala de Temperatura na atmosfera)

→ Temperatura ~ constante entre colisões de átomos.

E os fótons?

Absorção

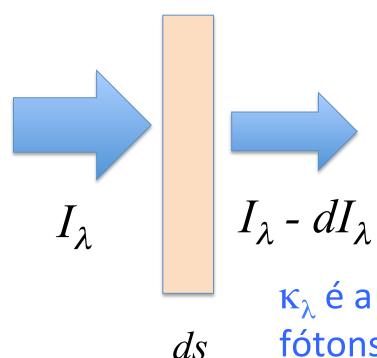
Qualquer processo que remove fótons do feixe de luz é chamado de absorção. Por exemplo, a absorção do fóton por um elétron, criando uma linha de absorção.



O espalhamento também pode ser considerado como fonte de absorção, pois tira fótons do feixe de luz

Opacidade

Mudança de intensidade da luz dI_{λ} ao atravessar um gás é proporcional à intensidade I_{λ} , a distância percorrida ds, a densidade do gás ρ , e o coeficiente de absorção κ_{λ} :



$$dI_{\lambda} = -\kappa_{\lambda}\rho I_{\lambda} ds$$

 κ_{λ} também é chamado de **opacidade.**

 κ_{λ} é a seção de choque para absorber fótons por unidade de massa. [m² kg-1]

Exemplo 9.2.2: qual a intensidade final de um feixe de intensidade inicial $I_{\lambda,0}$ (em s=0) após atravessar uma distância s?

Podemos integrar: $dI_{\lambda} = -\kappa_{\lambda} \rho I_{\lambda} ds$

$$dI_{\lambda} = -\kappa_{\lambda} \rho I_{\lambda} ds$$

$$\int_{I_{\lambda,0}}^{I_{\lambda,f}} \frac{dI_{\lambda}}{I_{\lambda}} = -\int_{0}^{s} \kappa_{\lambda} \rho \, ds$$
$$I_{\lambda} = I_{\lambda,0} e^{-\int_{0}^{s} \kappa_{\lambda} \rho \, ds}$$

Para um gás com densidade uniforme e κ_{λ} constante: $I_{\lambda} = I_{\lambda,0} e^{-\kappa_{\lambda} \rho s}$

$$I_{\lambda} = I_{\lambda,0} e^{-\kappa_{\lambda} \rho s}$$

Para um gás com densidade uniforme e κ_{λ} constante:

$$I_{\lambda} = I_{\lambda,0} e^{-\kappa_{\lambda} \rho s}$$

Intensidade vai diminuir em fator e⁻¹, se $\kappa_{\lambda} \rho s = 1$

Ou seja, I_{λ} vai diminuir em e^{-1} para uma distância caraterística:

$$\ell = 1/\kappa_{\lambda}\rho$$

Na fotosfera solar:
$$\rho = 2.1 \times 10^{-4} \text{ kg m}^{-3}$$

 $\kappa_{500} = 0.03 \text{ m}^2 \text{ kg}^{-1}$

Distância caraterística antes do fóton ser removido do feixe:

$$\ell = \frac{1}{\kappa_{500}\rho} = 160 \text{ km}$$

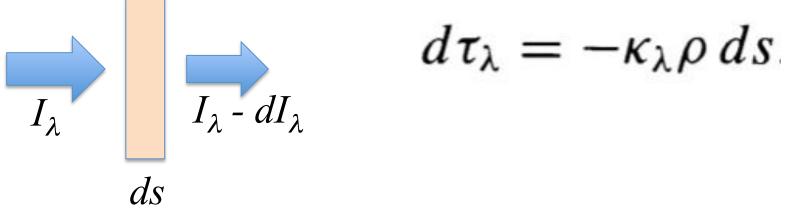
Similar à escala de temperatura!
Be careful with LTE approximation!

Profundidade óptica

Caminho livre médio dos fótons: $\ell = \frac{1}{\kappa_{\lambda} \rho} = \frac{1}{n\sigma_{\lambda}}$

 $\kappa_{\lambda}\rho$ e $n\sigma_{\lambda}$ podem ser considerados como a fração de fótons espalhados fora do feixe em 1 m de distância

É conveniente definir a profundidade óptica τ_{λ} :



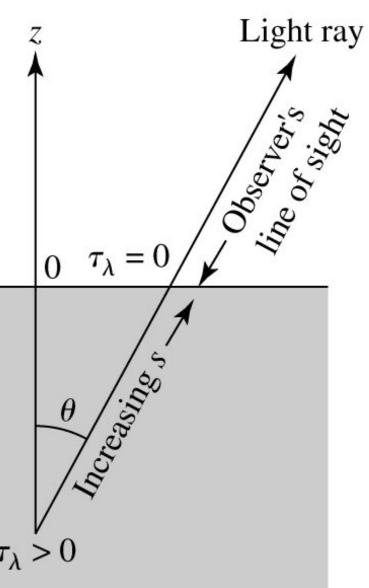
$$d\tau_{\lambda} = -\kappa_{\lambda}\rho \, ds$$

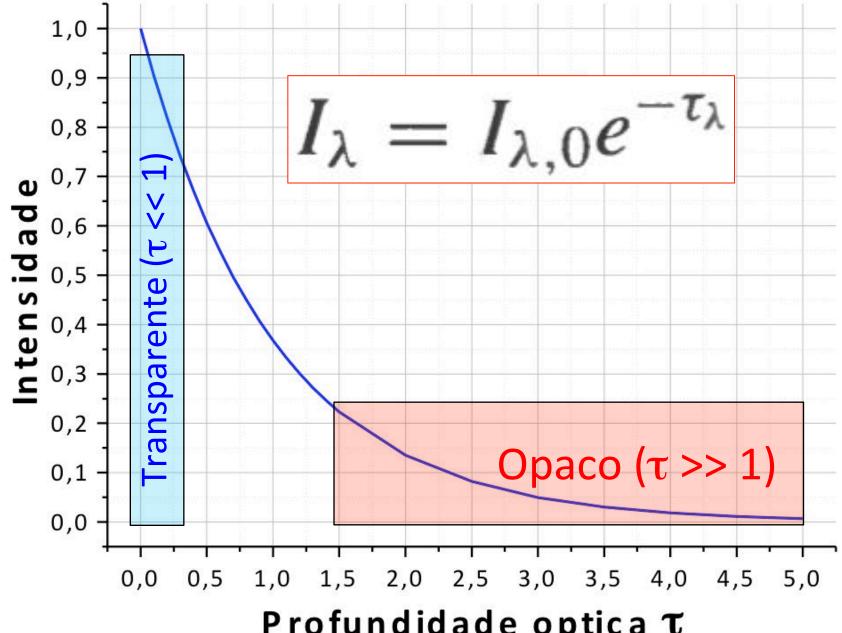
Considerando $\tau_{\lambda,0} = 0$ para s=0, a profundidade ótica na posição s:

$$\tau_{\lambda} = \int_{0}^{s} \kappa_{\lambda} \rho \, ds$$

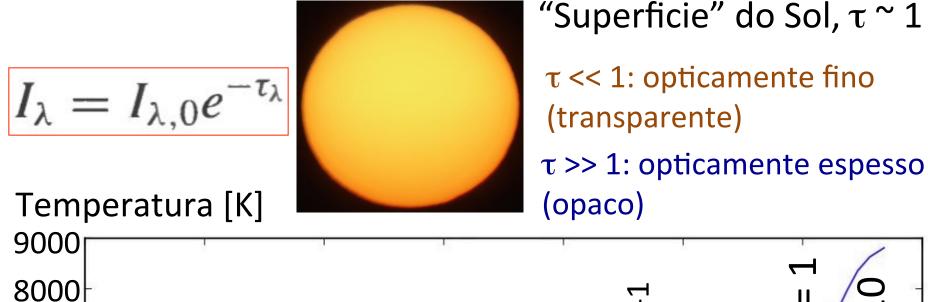
$$I_{\lambda} = I_{\lambda,0} e^{-\int_0^s \kappa_{\lambda} \rho \, ds}$$

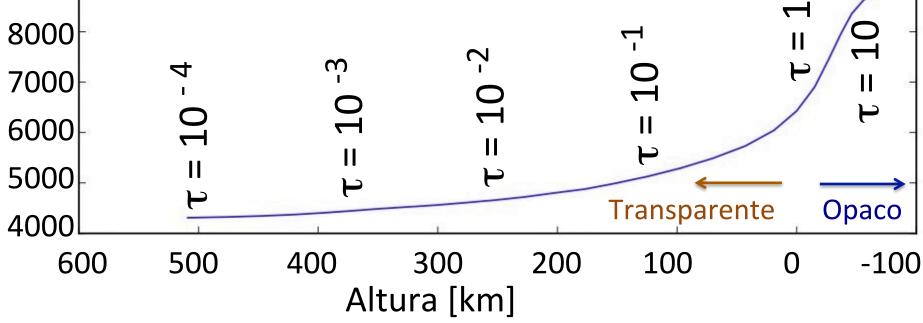
$$I_{\lambda} = I_{\lambda.0}e^{-\tau_{\lambda}}$$





Profundidade optica τ





Sol sem manchas, visto de Butantã #Sampa, 15/4/2017 © JM

Profundidade óptica τ_{λ} varia com λ . Exemplo, a atmosfera terrestre

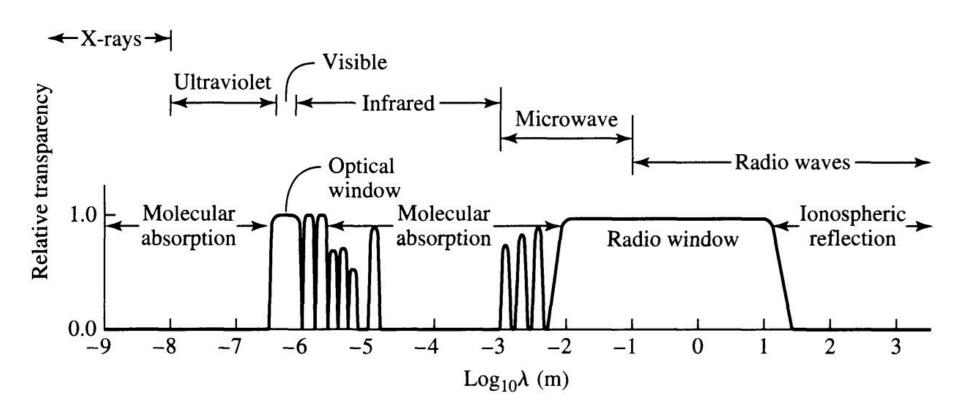
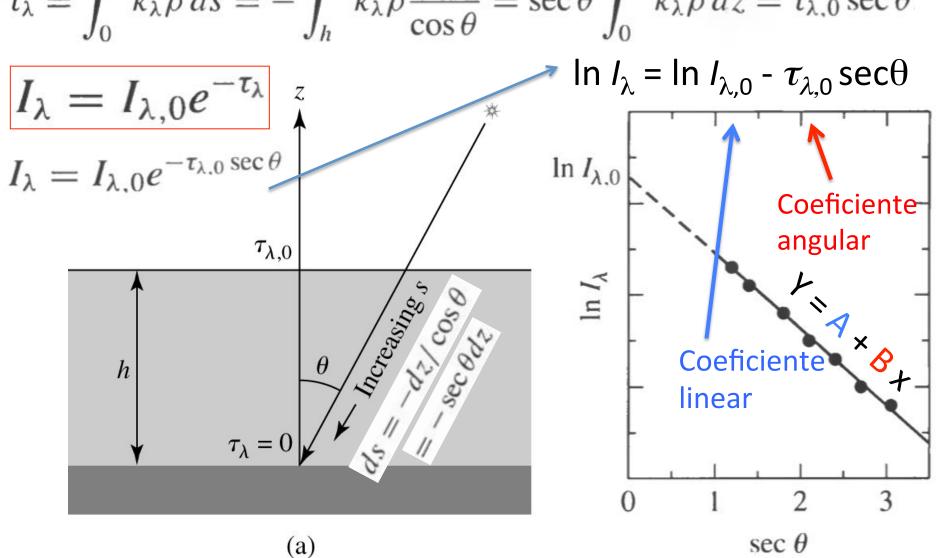


FIGURE 6.25 The transparency of Earth's atmosphere as a function of wavelength.

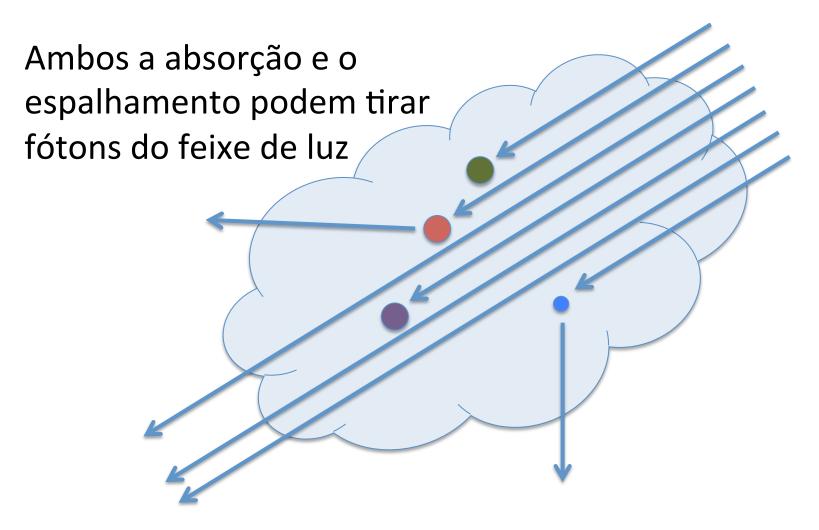
Exemplo 9.2.3. Absorção pela atmosfera terrestre

$$\tau_{\lambda} = \int_{0}^{s} \kappa_{\lambda} \rho \, ds = -\int_{h}^{0} \kappa_{\lambda} \rho \frac{dz}{\cos \theta} = \sec \theta \int_{0}^{h} \kappa_{\lambda} \rho \, dz = \tau_{\lambda,0} \sec \theta$$



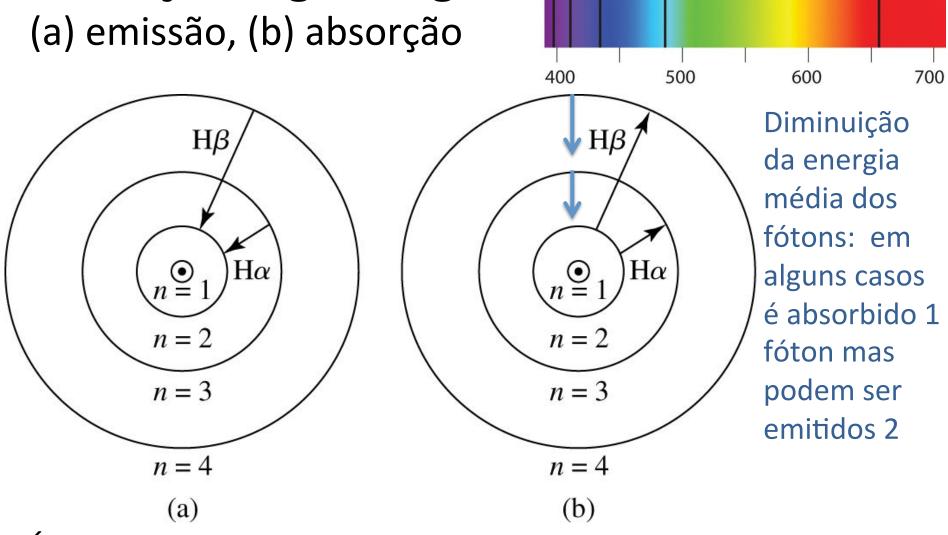
Fontes de opacidade

Devido à interação de fótons com átomos, íons, e-



Fontes de opacidade:

Transições ligado-ligado



Átomo de hidrogênio

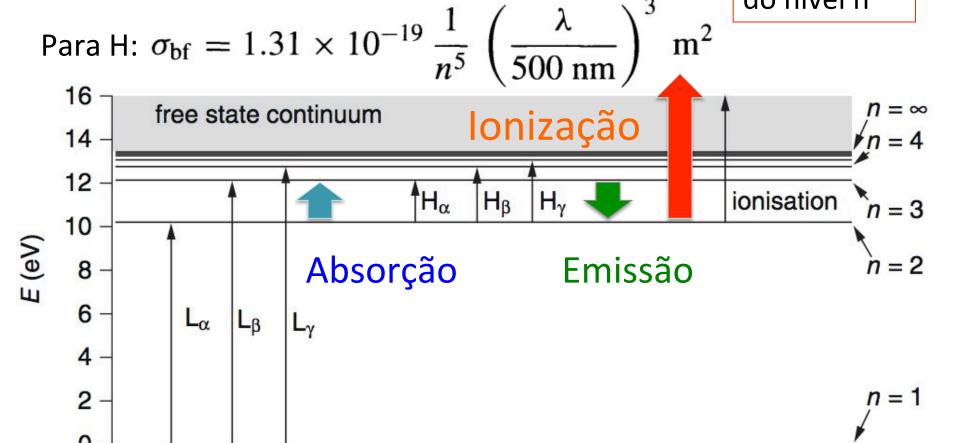
Fonte de opacidade: absorção ligado-livre

Também conhecida como ionização

Elétrons podem ser removidos por fótons com comprimento:

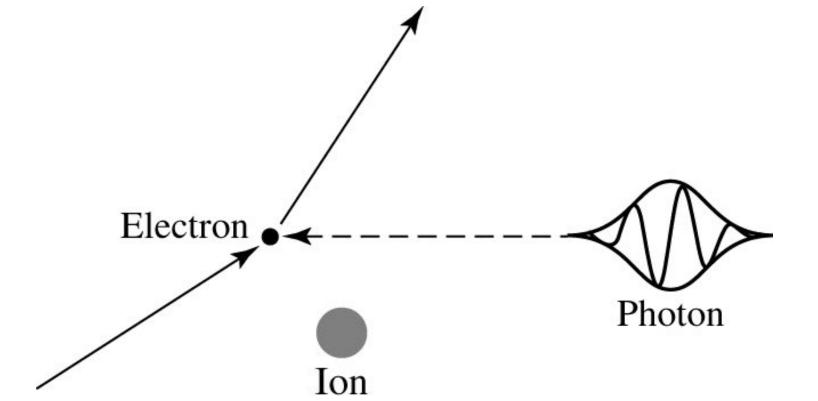
$$\lambda \leq hc/\chi_n$$

 χ_n : energia de ionização do nível n



Fonte de opacidade: absorção livre-livre

e- livre na vizinhança de 1 íon pode absorver um fóton



Processo inverso: e- passando perto de um íon pode emitir um fóton (*Bremsstrahlung*)

Fonte de opacidade: espalhamento de e-

Fóton é espalhado por um e- livre. Também é conhecido como espalhamento Thomson, com seção de choque:

$$\sigma_T = \frac{1}{6\pi\epsilon_0^2} \left(\frac{e^2}{m_e c^2}\right)^2 = 6.65 \times 10^{-29} \,\mathrm{m}^2$$

É aproximadamente 2 bilhões de vezes menor à seção de choque para fotoionização (σ_{bf}) \rightarrow apenas importante quando existem muitos e- (estrelas quentes)

A photon may also be scattered by an electron that is loosely bound to an atomic nucleus. This result is called *Compton scattering* if the photon's wavelength is much smaller than the atom or *Rayleigh scattering* if the photon's wavelength is much larger. Compton scattering is usually lumped together with Thomson scattering.

Seção de choque do espalhamento Rayleigh é propocional a $1/\lambda^4$

Descontinuidade de Balmer

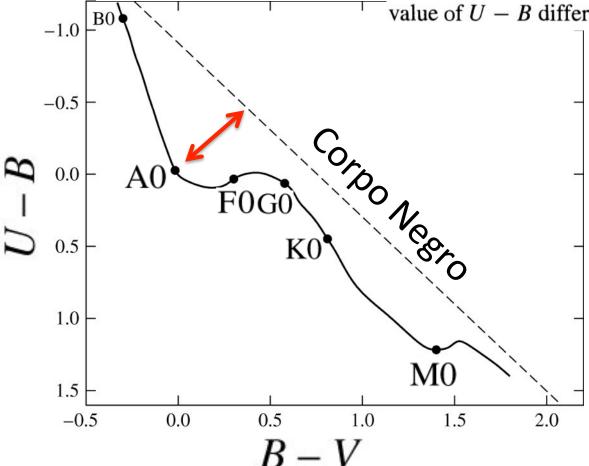
Example 9.2.4. The energy of an electron in the n=2 orbit of a hydrogen atom is given by Eq. (5.14):

by Eq. (5.14): Fóton deve ter no mínimo 13.6 -3.40 eV χ_2 = 3,40 eV para ejetar edo nível n=2 do átomo 7x10¹⁵ $\frac{hc}{}$ = 364.7 nm Balmer jump Fótons com λ < 364,7nm podem 8000 K $F_{\lambda}(\text{erg/s/cm/cm}^{2})$ ejetar e- do nível n=2 3000 5000 7000 6000

 $\lambda(A)$

F. LeBlanc, Stellar Astrophysics

The wavelength 364.7 nm is right in the middle of the bandwidth of the ultraviolet (U) filter in the UBV system, described on page 75. As a result, the Balmer jump will tend to decrease the amount of light received in the bandwidth of the U filter and so *increase* both the ultraviolet magnitude U and the color index (U - B) observed for a star. This effect will be strongest when N_2/N_{total} , the fraction of all hydrogen atoms that are in the first excited state, is a maximum. From Example 8.1.4, this occurs at a temperature of 9600 K, about the temperature of an A0 star on the main sequence. A careful examination of the color-color diagram in Fig. 3.11 reveals that this is indeed the spectral type at which the value of U - B differs most from its blackbody value.



Opacidade do continuo e o íon H⁻

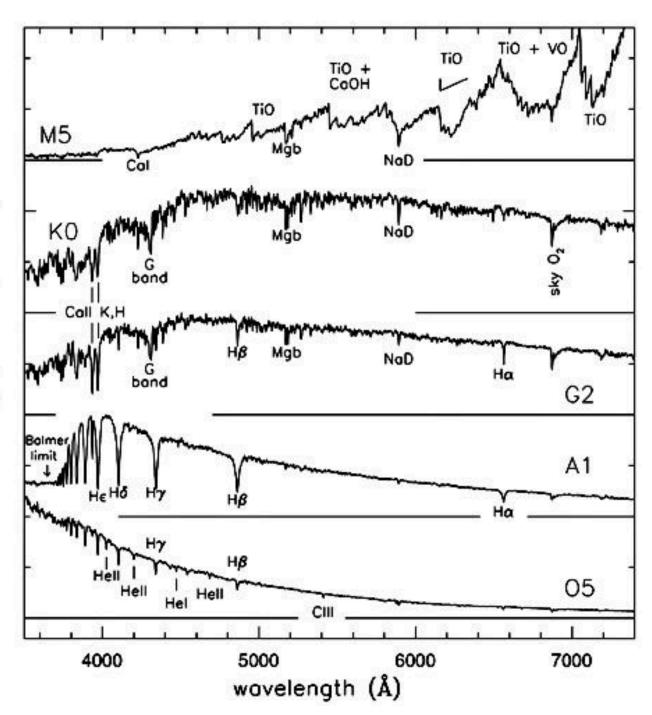
- Energia de ligação do segundo e-: 0,754 eV
- Corresponde a λ = 1640 nm, ou seja, fótons com λ < 1640 nm podem remover o e- do H- (ligado-livre)

$$H + e^- \rightleftharpoons H^- + \gamma$$

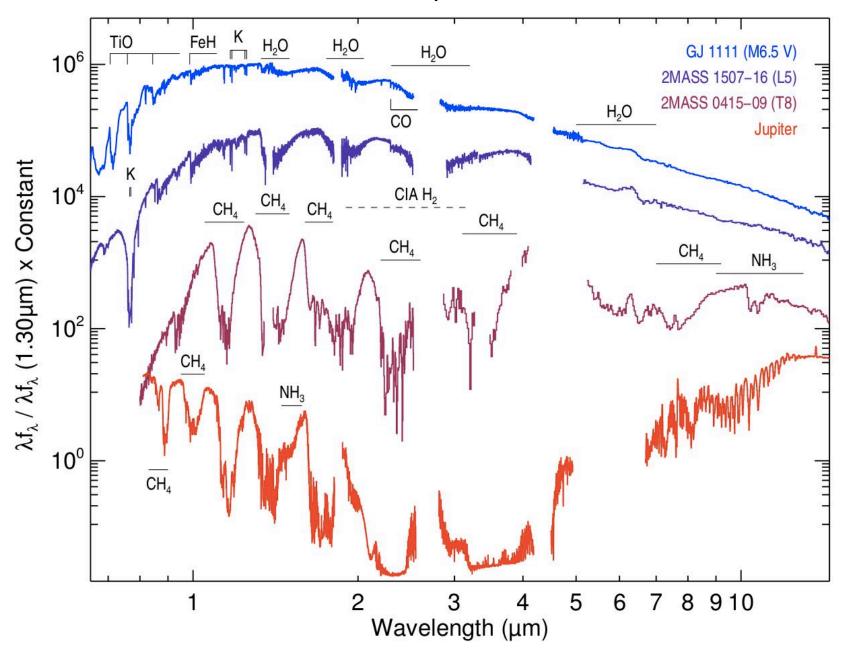
- Para $\lambda > 1640$ nm podemos ter absorção livrelivre do H-
- H- é importante para estrelas mais frias que FO

A baixas
temperaturas
(estrelas M)
também temos
moléculas:

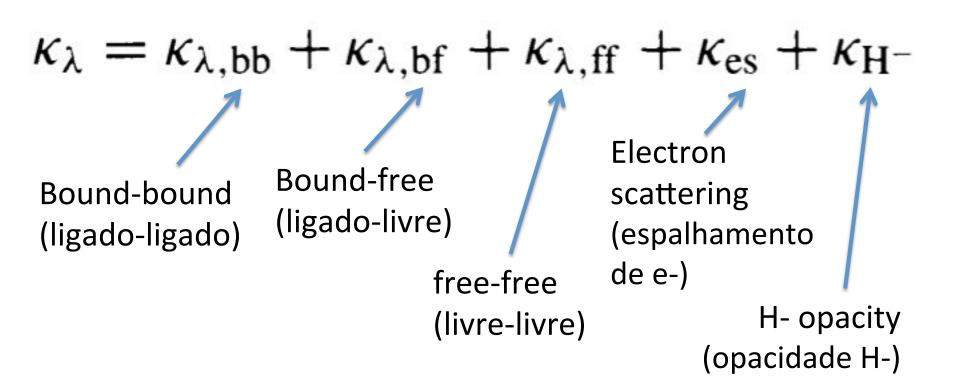
- moléculas:
 Absorção
 ligado-ligado
- fotodissociação das moléculas



Moléculas dominam Anãs M, Anãs Marrons e Planetas



Opacidade total



Opacidade média de Rosseland

Ás vezes é interessante ter um valor médio da opacidade
$$\frac{1}{\overline{\kappa}} \equiv \frac{\displaystyle\int_0^\infty \frac{1}{\kappa_\nu} \frac{\partial B_\nu(T)}{\partial T} \, d\nu}{\displaystyle\int_0^\infty \frac{\partial B_\nu(T)}{\partial T} \, d\nu}$$

$$\overline{\kappa}_{\rm bf} = 4.34 \times 10^{21} \, \frac{g_{\rm bf}}{t} Z(1+X) \, \frac{\rho}{T^{3.5}} \, \rm m^2 \, kg^{-1}$$

$$\overline{\kappa}_{\text{ff}} = 3.68 \times 10^{18} \, g_{\text{ff}} \, (1 - Z)(1 + X) \, \frac{\rho}{T^{3.5}} \, \text{m}^2 \, \text{kg}^{-1}$$

where ρ is the density (in kg m⁻³) and T is the temperature (in kelvins). X and Z are the mass fractions, or fractional abundances (by mass), of hydrogen and metals, respectively.¹⁷ The Gaunt factors, g_{bf} and g_{ff} , are quantum-mechanical correction terms

t = guillotine factor

Abundâncias em fração de massa

$$X \equiv \frac{\text{total mass of hydrogen}}{\text{total mass of gas}}$$

$$Y \equiv \frac{\text{total mass of helium}}{\text{total mass of gas}}$$

$$Z \equiv \frac{\text{total mass of metals}}{\text{total mass of gas}}.$$

$$X + Y + Z = 1$$

$$\overline{\kappa}_{\rm es} = 0.02(1 + X) \,\mathrm{m}^2 \,\mathrm{kg}^{-1}$$

An estimate of the contribution to the mean opacity provided by the H⁻ ion may also be included over the temperature range 3000 K $\leq T \leq$ 6000 K and for densities between 10^{-7} kg m⁻³ $\leq \rho \leq 10^{-2}$ kg m⁻³ when $X \sim 0.7$ and 0.001 < Z < 0.03 (the values of X and Z are typical of main-sequence stars). Specifically,

$$\overline{\kappa}_{\rm H^-} \approx 7.9 \times 10^{-34} (Z/0.02) \rho^{1/2} T^9 \,\mathrm{m}^2 \,\mathrm{kg}^{-1}$$

A opacidade média de Rosseland é a média das opacidades:

$$\overline{\kappa} = \overline{\kappa_{\rm bb} + \kappa_{\rm bf} + \kappa_{\rm ff} + \kappa_{\rm es} + \kappa_{\rm H^-}}$$

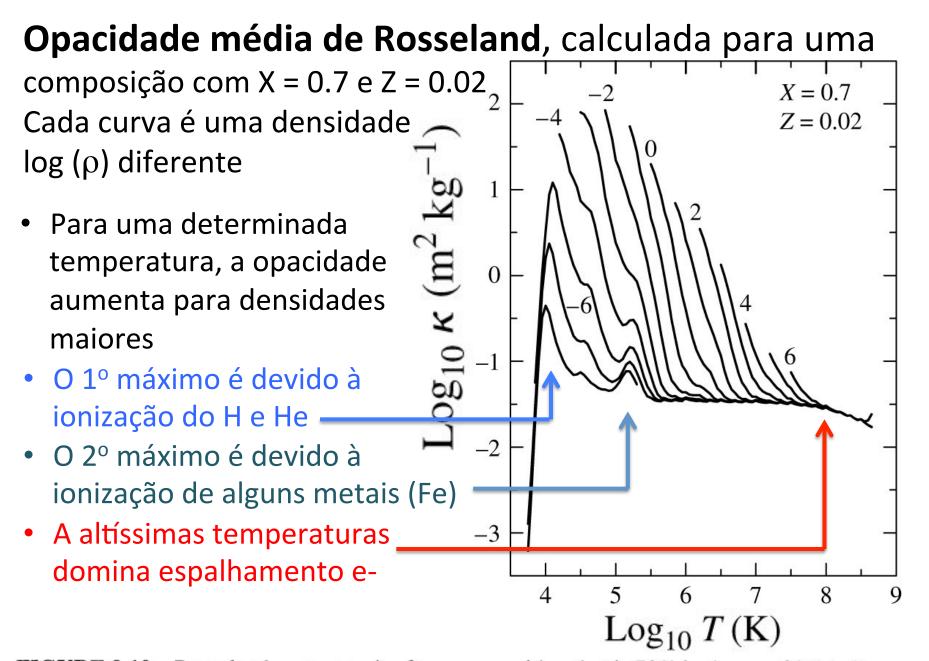


FIGURE 9.10 Rosseland mean opacity for a composition that is 70% hydrogen, 28% helium, and 2% metals by mass. The curves are labeled by the logarithmic value of the density ($\log_{10} \rho$ in kg m⁻³).