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Abstract— While most physical systems or phenomena occur
in continuous–time, identification methods based on discrete-
time models are more widespread among practitioners and
academic community, possibly due to the discrete-time nature
of the data records. There has been a growing interest in
estimating continuous-time (CT) models in the last decade.
This work develops algorithms to estimate the parameters
of multivariable state–space CT models from input–output
samples using a method based on the recently developed MOLI–
ZOFT approach. The performance of the algorithm is evaluated
using real data from an industrial winding process.

I. INTRODUCTION

In a recent contribution [12], identification of linear time–
invariant multivariable input–output systems is approached
by solving three separate problems. First is selection of a
structure containing system models capable of approximating
the input–output behavior of the process to be identified.
Second is the design of filters that separate process signals
from disturbances and measurement noise, in a manner con-
ducive to parameter estimation. Third is parameter estimation
itself. The method was dubbed MOLI–ZOFT, for Matchable–
Observable Linear Identification with Zero–order Oracle Filter
Tuning.

The approach makes use of MIMO quasi–canonical forms,
which lead to regressor–form observers for the process models
presented in Section II. Originally described in continuous–
time in the context of adaptive control [9], they are applied
to discrete–time system identification in [12]. Their salient
property of being based on system representations with
fixed dynamics, where the unknown parameters appear in
the readout matrix only, makes them eminently suitable for
identification of continuous–time systems using sampled data
only.

Reasons to identify continuous–time models from sampled
data include: continuous–time models are more familiar
and convenient for feedback control design; achievable and
desirable sampling rates for data collection and for feedback
control may differ; and unless sampling is periodic, a time–
invariant system appears time–varying in discrete time. These
issues are elaborated in detail in a recent survey [4] and its
references. To the best of our knowledge, identification of
multivariable continuous–time system from sampled data lags
behind both its discrete–time and SISO counterparts. The
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methods presented here are applicable to MIMO and to SISO
systems, and offer advantages in both cases.

The parametrized models used are described in Section II.
The estimation algorithms, which furnish a continuous–time
model directly from the sampled data, rather than indirectly
by first estimating discrete–time dynamics parameters, are in
Section III. Experimental results are discussed in Section IV
and a conclusion in Section V.

II. MODEL PARAMETERIZATION

We tackle the multivariable linear system identification
problem using the following continuous–time model structure

ẋ(t) = Amx(t) +Bmu(t) (1)
y(t) = Cmx(t) +Dmu(t), (2)

with x ∈ Rnx , y ∈ Rny , u ∈ Rnu and

Am = A+ L(θ)
(
Iny −H(θ)

)−1
C

Bm = B(θ) + L(θ)
(
Iny −H(θ)

)−1
D(θ)

Cm =
(
Iny −H(θ)

)−1
C

Dm =
(
Iny −H(θ)

)−1
D(θ),

where θ denotes the model parameters, Iny ∈ Rny×ny is an
identity matrix, and (C,A) is a user–defined observable pair
such that A is stable (that is, all its eigenvalues have strictly
negative real parts). The parameter matrix H(θ) ∈ Rny×ny is
strictly lower triangular. The other parameter matrices L(θ),
B(θ) and D(θ) take values in Rnx×ny , Rnx×nu and Rny×nu ,
respectively. Therefore, the dimension of the parameter vector
is

dim θ =
ny
2

(ny − 1) + nx (ny + nu) + nynu.

which is not minimal, but considerably more parsimonious
than fully–parameterized structures, commonly used in sub-
space identification algorithms.

The pair (C,A) can be constructed as follows. Let lo =
{n1, . . . , nny} be a list of ny positive integers satisfying
n1 + · · ·+ nny = nx (the elements of the list lo are known
as the observability indices of the pair (C,A)). First, adopt
a stable monic polynomial α(s) of degree n = max(lo),
namely

α(s) = sn + α1s
n−1 + · · ·+ αn−1s+ αn,

such that, α(s) has a real monic factor γi(s) of degree ni,
for each i = {1, . . . , ny}. Then, matrices C and A are given
by

C = block diagonal
{
c1, . . . , cny

}
(3)

A = block diagonal
{
A1, . . . , Any

}
, (4)

2017 American Control Conference
Sheraton Seattle Hotel
May 24–26, 2017, Seattle, USA

978-1-5090-5992-8/$31.00 ©2017 AACC 140



where (ci, Ai) are ni–dimensional observable pairs, for which
γi(s) is the characteristic polynomial of each Ai.

The parameterization (1)–(2) is capable of matching any
ny×nu transfer matrices with a list of observability indices lo,
and it is observable for all θ [9]. As Section II-A will show,
this model structure is particularly suitable for parameter
estimation using linear least–squares.

A. Regression form
Consider the n–dimensional observable pair (c, A) such

that α(s) is the characteristic polynomial of A. As γi(s) is a
factor of α(s), there are left–invertible matrices Mi ∈ Rn×ni
that extract an observable ni–dimensional subspace from the
observability matrix constructed from the pair (c, A). This
leads to

ci (sIni −Ai)
−1

= c
(
sIn −A

)−1
Mi. (5)

As shown in [12, Lemma 1] for (ci, Ai) = (c∗i , A
∗
i ), where

c∗i = [0 · · · 0 1] and A∗i is in right companion form,
matrices Mi are equal to

M∗i =



κi,1 0 · · · 0
... κi,1

...

κi,n−ni
...

. . . 0
1 κi,n−ni κi,1

0 1
. . .

...
...

. . . . . . κi,n−ni
0 · · · 0 1


,

whose entries are given by the coefficients of the polynomial

κi(s) =
α(s)

γi(s)

= sn−ni + κi,n−nis
n−ni−1 + . . .+ κi,2s+ κi,1.

There is no loss of generality in making ci = c∗i Ti and Ai =
T−1i A∗i Ti, where Ti are suitable transformation matrices.
Then, using (5) one achieves

Mi = T−1M∗i Ti,

where T is such that A = T−1A∗T , for a right companion
matrix A∗.

Next, for each i ∈ {1, . . . , ny}, define the parameter vector

θi =
[
vec ([Li(θ) Bi(θ)])

>
hi1 · · · hi(i−1) %iD(θ)

]>
,

where the operator vec(·) stacks the columns of the argument
on top of each other. Letting σ0 = 0, σi = ni + σi−1, the
matrices Li and Bi are the respective partitions of L and B
formed of the block from row σi−1 + 1 to σi. The symbols
hij denote the nonzero elements of the matrix H(θ) and the
vector %i ∈ Rny is filled with zeros, except for the ith entry,
which is set to 1.

Proposition 1: Let

Mi = Inu+ny ⊗Mi (6)

A = Inu+ny ⊗A
>

C = Inu+ny ⊗ c>,

where the symbol ⊗ denotes the Kronecker product. The ith
output prediction based on model (1)–(2) can be expressed
in the regression form

ŷi(t) = ϕi(t)
>θi, (7)

where the corresponding regression1 vector is

ϕi(t) =
[
ξ(tk)>Mi y1(t) · · · yi−1(t) u(t)>

]>
(8)

and ξ(t) is the response of the n(nu + ny) × (nu + ny)–
dimensional transfer function matrix

Σ(s) =
(
sIn(nu+ny) −A

)−1 C (9)

to the input z(t) =
[
y(t)> u(t)>

]>
.

Proof: The block diagonal form of C and A enables (1)
to be decomposed into ny subsystems whose state equations
read

ẋi(t) = Aixi(t) + Li(θ)y(t) +Bi(θ)u(t),

where xi ∈ Rni is the ith partition of partition of

x =
[
x>1 · · · x>ny

]>
.

From (2) and (5), the ith model output prediction is given by

ŷi(t) = c
(
sIn −A

)−1
Mi (Li(θ)y(t) +Bi(θ)u(t))

+ %i (H(θ)y(t) +D(θ)u(t)) . (10)

Here s represents the derivative operator d/dt, borrowing
the same letter used to denote the Laplace transform variable.
Applying the vec(·) operator to the first term in the right
hand side of the previous equation yields

vec
(
c
(
sIn −A

)−1
Mi [Li(θ) Bi(θ)] z(t)

)
= vec

( ∞∑
l=0

s−(1+l)cAlMi [Li(θ) Bi(θ)] z(t)

)

=

∞∑
l=0

s−(1+l)
(
z(t)> ⊗ cAlMi

)
vec ([Li(θ) Bi(θ)]) .

The summation in the previous equation can be rewritten as
∞∑
l=0

s−(1+l)
(
z(t)> ⊗ c

) (
Inu+ny ⊗A

lMi

)
=M>i

(
sIn(nu+ny) −A

)−1 (
z(t)⊗ c>

)
=M>i

(
sIn(nu+ny) −A

)−1 Cz(t)
=M>i ξ(t).

Thus,

vec
(
c
(
sIn −A

)−1
Mi [Li(θ) Bi(θ)] z(t)

)
= vec ([Li(θ) Bi(θ)])

>M>i ξ(t). (11)

1For i = 1, the parameter and the regressor vector is

θ1 =
[
vec ([L1(θ) B1(θ)])

> %1D(θ)
]>

ϕ1(t) =
[
ξ(tk)

>M1 u(t)>
]>

.
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and substituting (11) into (10) results in

ŷi(t) = ξ(t)>Mi vec ([Li(θ) Bi(θ)])

+ %i (H(θ)y(t) +D(θ)u(t))

which is equivalent to (7).

Remark: The regressors in (7) incorporate input–output
data, and the n(nu + ny)–dimensional signal vector ξ(t),
computed using the transfer function matrix Σ(s), defined in
(9), whose poles are the eigenvalues of A. Derivatives of
the input and output signals are not computed explicitly in
our formulation, but there is a connection between the role
of the polynomial α(s) and the design parameter used to
adjust the bandwidth of the traditional state variable filters
(SVF) [6]. Hence, as in the SVF approach, the poles of
Σ(s) can be designed to remove undesirable high frequency
content (disturbances) from the estimation data. Naturally,
“optimal” filter tuning require the knowledge of the true
plant dynamics and of the noise/disturbance spectrum, which
is unavailable in practice. A data–driven, derivative–free
optimization procedure to tune the polynomial α(s) is
presented in Section III-B.

III. ESTIMATION ALGORITHMS

A. Parameter estimation

Firstly, suppose that the polynomial α(s) is chosen before-
hand. Given the list lo, it is straightforward to construct ϕi
as defined in (8) from y(t), u(t) and ξ(t) subject to

ξ̇(t) = Aξ(t) + Cz(t). (12)

Intersample behavior of the observed data will be assumed
or extrapolated, unless additional information is available.
Then, using the regression model (7) at time instants t =
tk (for k = 1, . . . , N ) the parameter estimation problem is
formulated as

θ̂i = arg min
θi

N∑
k=1

(
y(tk)− ϕi(tk)>θi

)2
, (13)

which can be efficiently solved for each i ∈ {1, . . . , ny} by
means of linear least–squares methods.

The step–by–step procedure to estimate the parameters
of the continuous–time model (1)–(2) is summarized in
Algorithm 1.

Remark: The procedure described in Algorithm 1 assumes
that the list of observability indices lo is known a priori. In a
“gray–box” setting (see e.g., [8]), this structural information
may be retrieved from first–principle models. In the case of
a “black–box” approach, it is still possible to pick lo using
some structure selection method, e.g. [7], [13].

Algorithm 1 (CT–MOLI) Parameter estimation of continuous–
time models from sampled data
input: A dataset Z = {y(t1), u(t1), . . . , y(tN ), u(tN )}, lo,

α(q) and its factors, namely γi.
Evaluate ξ(t) subject to (12) at t = tk, k = 1, . . . , N .
for i = 1 to ny do

Construct Mi according to (6).
Build ϕi(tk) as in (8).
Solve θ̂i in (13).

end for
Compute Am, Bm, Cm and Dm of model (1)–(2).

B. Filter tuning

Previously it was pointed out that the eigenvalues of
the user defined matrix A determine the poles of Σ(s),
which generate ξ(t) from the input–output data. Therefore,
the choice of the eigenvalues of A can be interpreted as
a filter design. Rather then treating all the coefficients of
the characteristic polynomial as free design parameters, we
parametrize α(s) using Butterworth polynomials:

α(s) =

n∏
m=1

(s− sm) , (14)

where
sm = ωc exp

(
j

(2m+ n− 1)

2n

)
.

The coefficients of α(s) are expressed as a function of the
cutoff frequency ωc, which has a clear physical interpretation.
Filter tuning becomes a less complex search in a subspace of
dimension 1, at the price of less flexibility in the frequency
response function shape of the filter.

According to the MOLI–ZOFT approach [12], in this work
ωc is tuned using a derivative–free optimization method. With
this aim, we consider a set Ω = {ω1, . . . , ωnω} of candidate
values of ωc called “curiosity points”, and let J(ωc,Z) be
a functional which quantifies the performance of the values
ωc ∈ Ω given a data set

Z = {y(t1), u(t1), . . . , y(tN ), u(tN )}.

Then, the filter cutoff frequency is calculated through

ω∗c =

∑nω
υ=1 ωυe

−µJ(ωυ,Z)∑nω
υ=1 e

−µJ(ωυ,Z)
. (15)

Therefore, ω∗c is the barycenter of the curiosity points ωυ
weighted by the term e−µJ(ωυ,Z). The positive constant µ
is used to adjust weighting terms — the higher µ, the more
ω∗c tends to the element in Ω that provides the lowest J
(best performance). The rationale behind (15) is that curiosity
points which achieve better performance are given more
weight than those that lead to worse results.

The barycenter can be seen as a direct optimization method
because only the numerical values of J(ωυ,Z) have to be
computed for each υ ∈ {1, . . . , nω}, and its derivatives are
not required. Considerable freedom is retained in the choice
of the functional J . This flexibility can be used to reflect the
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model application; in Section IV we used one based on the
normalized root mean square error (NRMSE). Alternatives to
the barycenter method, which was selected for its simplicity,
effectiveness and robustness [11], [10], are described in the
derivative-free optimization literature [3].

The combined algorithm is summarized below.

Algorithm 2 (CT–MOLI–ZOFT) Parameter estimation cou-
pled with data–driven filter tuning
input: A dataset Z , lo, Ω and γi.

for υ = 1 to nω do
Build the polynomial α(s) using (14) with ωc = ωυ .
Estimate the parameters of model (1)–(2) using Z ,

lo, α(s) and its factors γi as inputs of Algorithm 1.
Evaluate the functional J(ωυ,Z).

end for
Compute the barycenter (15).
Build the polynomial α(s) using (14) with ωc = ωυ .
Estimate the parameters of modelo (1)–(2) using Z , lo,
α(s) and its factors γi as inputs of Algorithm 1.

Remark: If there is prior knowledge about the frequency
range of the plant dynamics, such information can be easily
incorporated through the determination of the elements that
form Ω. On the other hand, in case of the unavailability
of any information, it is possible to adopt a lower and an
upper bound for the bandwidth, and then test different cutoff
frequencies spread in this range. This strategy is used in the
next section.

IV. EXPERIMENTAL RESULTS

The proposed estimation method is assessed using real data
from an industrial winding process. This multivariable plant
is composed of a plastic web that is unwound from a first
reel, goes over the traction reel and is finally rewinded on the
the last reel. Reels 1 and 3 are driven by DC motors, which
are controlled with set–point currents I∗1 and I∗3 , respectively.
Another control loop regulates the angular speed of the reel 2
(S2), whose set–point is denoted by S∗2 (see Figure 1, which
appears in [2]). Essentially, the role of a winding process
is to control the web linear velocity and the web tensions
around a given operating point.

The experimental dataset is available from the CONTSID
(CONtinuous–Time System IDentification) toolbox2 [5], in
which the winding process identification is presented as
a MIMO case–study in example file idcdemo7.m. The
manipulated input vector is composed of

u(t) =
[
I∗1 (t) S∗2 (t) I∗3 (t)

]>
and the process output signal vector is

y(t) =
[
T1(t) T3(t) S2(t)

]>
,

2The CONTSID toolbox can be freely downloaded from: www.contsid.
cran.univ-lorraine.fr

Fig. 1. Winding process schematic [2].

where T1 and T3 are the tensions between reels 1–2 and
between reels 2–3, respectively.

The plant was excited in open–loop using binary signals
during 60s and the data was recorded using a sampling period
of T = 0.01s. The experimental data was split in two halves.
The first is used for parameter estimation and the second one
is employed in the model validation.

In order to focus on the assessment of parameter estimation
and filter tuning algorithms, the model order is assumed to be
nx = 3, the same as the one encountered in a previous study
about winding process identification using continuous–time
models [1]. For the sake of comparison, we also considered
the results provided by the PMF–based subspace algorithm
(4SID–PMF) described in the same work, and implemented in
the CONTSID toolbox. The acronym PMF stands for Poisson
Moment Function, which is the method used to reconstruct
the time derivatives of the input–output data.

The best fit rate (BFRi) was used to evaluate the models
accuracy. This index is defined as

BFRi(%) = 100 ·max

(
1− ‖yi − ysi ‖2

‖yi − ȳ‖2
, 0

)
,

where ‖ · ‖2 is the `2 norm of the argument, ysi is the ith
output simulated by the estimated model and ȳi is the mean
of the ith observed output sequence yi.

We have adopted lo = {1, 1, 1} in Algorithms 1 and 2 —
the only possible values of the observability indices for a
third order model with ny = 3 without any output with index
0. In the first, the cutoff frequency is set to ωc = 4.25rad/s,
which corresponds to the bandwidth that provided the best
performance for 4SID–PMF in [1]. For Algorithm 2 the set
of curiosities comprised seven values logarithmically spaced
between 0.2 and 6rad/s. The barycenter (15) is calculated
using the index of merit

J(ωυ,Z) =
1

ny

ny∑
i=1

(
‖yi − ysi ‖2
‖yi − ȳ‖2

)
.

The barycenter ω∗c as well as the index of merit achieved by
each candidate value in Ω are shown in Figure 2. The behavior
of the functional J(ωυ,Z) reveals that our estimation method
performs better for cutoff frequencies around 1.6rad/s; the
barycenter is in 1.572rad/s. Although the parameter used
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Fig. 2. Data–driven filter tuning using direct optimization.

to adjust the filter bandwidth in the PMF approach plays
a similar role to the cutoff frequency used to parameterize
α(s), our formulation has significant structural differences3.
Hence, these values are by no means the same, as evidenced
by the previous result.

The simulated outputs reproduced by the estimated models
and the actual process outputs are depicted in Figure 3, which
shows a good match between the estimates and the validation
data. The BFR computed for each output using the validation
datset is presented in Table I. Notice that even if ωc is set
to 4.25rad/s, Algorithm 1 (CT–MOLI) fits better than 4SID–
PMF in all outputs. Moreover, if the filter is tuned using
the barycenter, as in Algorithm 2 (CT–MOLI–ZOFT) the
estimated model achieves an improved fit in every output.

The computational load of each estimation method was
also measured. The last column in Table I reports that CT–
MOLI is quite fast, while CT–MOLI–ZOFT obtains more
precise results in approximately the same time as a single
run of 4SID–PMF algorithm. The computations were done
using an iMac with 2.7GHz Intel Core i5 processor and 8GB
memory.

V. CONCLUSION

We have established that the techniques recently developed
for discrete–time system identification by the authors can
be usefully applied to the estimation of continuous–time
multivariable models, with good results from both the point of
view of precision and computational complexity. The method
is particularly well-suited for grey–box system identification;
work is underway and will be reported shortly. The methods
described here will also be used for the identification of
switched systems.

3For this case–study the choice lo = {1, 1, 1} leads to a set of six first–
order filters to generate ξ(t), while optimal results for the 4SID–PMF are
attained when each time derivative of the input–output data are computed
using the filters

fι,j =
βj+1sι

(s+ λPMF)j+1
,

with ι = {0, 1, 2}, j = 2 and λPMF = 4.25rad/s [1].
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Fig. 3. Cross validation.

TABLE I
BFR COMPUTED FROM THE VALIDATION DATA AND COMPUTATION TIME

OF THE ESTIMATION METHODS.

BFR runtime
y1 y2 y3

4SID–PMF 72.2% 59.3% 84.3% 167ms
CT–MOLI 73.8% 63.1% 88.8% 27.2ms

CT–MOLI–ZOFT 75.7% 63.5% 89.3% 170ms

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of this
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