
Chapter	2

Regression

KWAI	CHANG	CAINE:	A	worker	is	known	by	his	tools.	A	shovel	for	a	man
who	digs.	An	ax	for	a	woodsman.	The	econometrician	runs
regressions.
Kung	Fu,	Season	1,	Episode	8

Our	Path

When	the	path	to	random	assignment	is	blocked,	we	look	for	alternate
routes	to	causal	knowledge.	Wielded	skillfully,	’metrics	tools	other	than
random	assignment	can	have	much	of	the	causality-revealing	power	of	a
real	 experiment.	 The	 most	 basic	 of	 these	 tools	 is	 regression,	 which
compares	 treatment	 and	 control	 subjects	who	 have	 the	 same	 observed
characteristics.	Regression	concepts	are	foundational,	paving	the	way	for
the	more	 elaborate	 tools	 used	 in	 the	 chapters	 that	 follow.	 Regression-
based	 causal	 inference	 is	 predicated	 on	 the	 assumption	 that	when	 key
observed	variables	have	been	made	equal	across	 treatment	and	control
groups,	 selection	 bias	 from	 the	 things	 we	 can’t	 see	 is	 also	 mostly
eliminated.	We	illustrate	this	idea	with	an	empirical	investigation	of	the
economic	returns	to	attendance	at	elite	private	colleges.

2.1	A	Tale	of	Two	Colleges



Students	who	 attended	 a	 private	 four-year	 college	 in	 America	 paid	 an
average	of	 about	$29,000	 in	 tuition	 and	 fees	 in	 the	2012–2013	 school
year.	Those	who	went	to	a	public	university	in	their	home	state	paid	less
than	$9,000.	An	elite	private	education	might	be	better	 in	many	ways:
the	 classes	 smaller,	 the	 athletic	 facilities	 newer,	 the	 faculty	 more
distinguished,	and	the	students	smarter.	But	$20,000	per	year	of	study	is
a	big	difference.	It	makes	you	wonder	whether	the	difference	is	worth	it.
The	apples-to-apples	question	 in	 this	 case	asks	how	much	a	40-year-
old	Massachusetts-born	graduate	of,	say,	Harvard,	would	have	earned	if
he	or	she	had	gone	to	the	University	of	Massachusetts	(U-Mass)	instead.
Money	 isn’t	 everything,	 but,	 as	 Groucho	Marx	 observed:	 “Money	 frees
you	 from	 doing	 things	 you	 dislike.	 Since	 I	 dislike	 doing	 nearly
everything,	 money	 is	 handy.”	 So	 when	 we	 ask	 whether	 the	 private
school	 tuition	 premium	 is	 worth	 paying,	 we	 focus	 on	 the	 possible
earnings	 gain	 enjoyed	 by	 those	 who	 attend	 elite	 private	 universities.
Higher	earnings	aren’t	the	only	reason	you	might	prefer	an	elite	private
institution	 over	 your	 local	 state	 school.	Many	 college	 students	meet	 a
future	spouse	and	make	lasting	friendships	while	in	college.	Still,	when
families	 invest	 an	 additional	 $100,000	 or	 more	 in	 human	 capital,	 a
higher	anticipated	earnings	payoff	seems	likely	to	be	part	of	the	story.
Comparisons	of	earnings	between	 those	who	attend	different	 sorts	of
schools	 invariably	 reveal	 large	 gaps	 in	 favor	 of	 elite-college	 alumni.
Thinking	this	through,	however,	it’s	easy	to	see	why	comparisons	of	the
earnings	of	 students	who	attended	Harvard	and	U-Mass	are	unlikely	 to
reveal	the	payoff	to	a	Harvard	degree.	This	comparison	reflects	the	fact
that	Harvard	grads	typically	have	better	high	school	grades	and	higher
SAT	 scores,	 are	 more	 motivated,	 and	 perhaps	 have	 other	 skills	 and
talents.	No	disrespect	intended	for	the	many	good	students	who	go	to	U-
Mass,	but	 it’s	damn	hard	 to	get	 into	Harvard,	 and	 those	who	do	are	 a
special	 and	 select	 group.	 In	 contrast,	U-Mass	 accepts	 and	 even	 awards
scholarship	money	to	almost	every	Massachusetts	applicant	with	decent
tenth-grade	 test	 scores.	 We	 should	 therefore	 expect	 earnings
comparisons	 across	 alma	maters	 to	 be	 contaminated	 by	 selection	 bias,
just	 like	the	comparisons	of	health	by	insurance	status	discussed	in	the



previous	 chapter.	 We’ve	 also	 seen	 that	 this	 sort	 of	 selection	 bias	 is
eliminated	by	random	assignment.	Regrettably,	the	Harvard	admissions
office	 is	 not	 yet	 prepared	 to	 turn	 their	 admissions	 decisions	 over	 to	 a
random	number	generator.
The	question	of	whether	college	selectivity	matters	must	be	answered
using	 the	 data	 generated	 by	 the	 routine	 application,	 admission,	 and
matriculation	 decisions	 made	 by	 students	 and	 universities	 of	 various
types.	Can	we	use	these	data	to	mimic	the	randomized	trial	we’d	like	to
run	 in	 this	 context?	 Not	 to	 perfection,	 surely,	 but	 we	may	 be	 able	 to
come	close.	The	key	to	this	undertaking	is	the	fact	that	many	decisions
and	 choices,	 including	 those	 related	 to	 college	 attendance,	 involve	 a
certain	 amount	 of	 serendipitous	 variation	 generated	 by	 financial
considerations,	personal	circumstances,	and	timing.
Serendipity	 can	 be	 exploited	 in	 a	 sample	 of	 applicants	 on	 the	 cusp,
who	 could	 easily	 go	 one	 way	 or	 the	 other.	 Does	 anyone	 admitted	 to
Harvard	 really	 go	 to	 their	 local	 state	 school	 instead?	 Our	 friend	 and
former	MIT	PhD	student,	Nancy,	did	just	that.	Nancy	grew	up	in	Texas,
so	the	University	of	Texas	(UT)	was	her	state	school.	UT’s	flagship	Austin
campus	 is	 rated	“Highly	Competitive”	 in	Barron’s	 rankings,	but	 it’s	not
Harvard.	 UT	 is,	 however,	 much	 less	 expensive	 than	 Harvard	 (The
Princeton	 Review	 recently	 named	 UT	 Austin	 a	 “Best	 Value	 College”).
Admitted	 to	 both	 Harvard	 and	 UT,	 Nancy	 chose	 UT	 over	 Harvard
because	 the	UT	admissions	office,	anxious	 to	boost	average	SAT	scores
on	 campus,	 offered	 Nancy	 and	 a	 few	 other	 outstanding	 applicants	 an
especially	generous	financial	aid	package,	which	Nancy	gladly	accepted.
What	 are	 the	 consequences	 of	 Nancy’s	 decision	 to	 accept	 UT’s	 offer
and	decline	Harvard’s?	Things	worked	out	pretty	well	for	Nancy	in	spite
of	her	choice	of	UT	over	Harvard:	today	she’s	an	economics	professor	at
another	Ivy	League	school	in	New	England.	But	that’s	only	one	example.
Well,	 actually,	 it’s	 two:	Our	 friend	Mandy	 got	 her	 bachelor’s	 from	 the
University	 of	 Virginia,	 her	 home	 state	 school,	 declining	 offers	 from
Duke,	 Harvard,	 Princeton,	 and	 Stanford.	 Today,	 Mandy	 teaches	 at
Harvard.
A	 sample	of	 two	 is	 still	 too	 small	 for	 reliable	 causal	 inference.	We’d



like	 to	 compare	 many	 people	 like	 Mandy	 and	 Nancy	 to	 many	 other
similar	people	who	chose	private	colleges	and	universities.	From	larger
group	 comparisons,	 we	 can	 hope	 to	 draw	 general	 lessons.	 Access	 to	 a
large	sample	is	not	enough,	however.	The	first	and	most	important	step
in	our	effort	to	isolate	the	serendipitous	component	of	school	choice	is	to
hold	 constant	 the	 most	 obvious	 and	 important	 differences	 between
students	who	go	 to	private	and	 state	 schools.	 In	 this	manner,	we	hope
(though	cannot	promise)	to	make	other	things	equal.
Here’s	 a	 small-sample	 numerical	 example	 to	 illustrate	 the	 ceteris

paribus	 idea	 (we’ll	 have	 more	 data	 when	 the	 time	 comes	 for	 real
empirical	work).	Suppose	the	only	things	that	matter	in	life,	at	 least	as
far	as	your	earnings	go,	are	your	SAT	scores	and	where	you	go	to	school.
Consider	Uma	and	Harvey,	both	of	whom	have	a	combined	reading	and
math	 score	 of	 1,400	on	 the	 SAT.1	Uma	went	 to	U-Mass,	while	Harvey
went	 to	Harvard.	We	start	by	comparing	Uma’s	and	Harvey’s	earnings.
Because	we’ve	assumed	that	all	that	matters	for	earnings	besides	college
choice	 is	 the	 combined	 SAT	 score,	 Uma	 vs.	 Harvey	 is	 a	 ceteris	 paribus
comparison.
In	practice,	of	 course,	 life	 is	more	 complicated.	This	 simple	 example

suggests	 one	 significant	 complication:	 Uma	 is	 a	 young	 woman,	 and
Harvey	is	a	young	man.	Women	with	similar	educational	qualifications
often	 earn	 less	 than	men,	 perhaps	 due	 to	 discrimination	 or	 time	 spent
out	of	the	labor	market	to	have	children.	The	fact	that	Harvey	earns	20%
more	than	Uma	may	be	the	effect	of	a	superior	Harvard	education,	but	it
might	 just	 as	 well	 reflect	 a	male-female	wage	 gap	 generated	 by	 other
things.
We’d	 like	 to	 disentangle	 the	 pure	 Harvard	 effect	 from	 these	 other

things.	This	is	easy	if	the	only	other	thing	that	matters	is	gender:	replace
Harvey	 with	 a	 female	 Harvard	 student,	 Hannah,	 who	 also	 has	 a
combined	SAT	of	1,400,	comparing	Uma	and	Hannah.	Finally,	because
we’re	 after	 general	 conclusions	 that	 go	 beyond	 individual	 stories,	 we
look	 for	many	similar	 same-sex	and	same-SAT	contrasts	across	 the	 two
schools.	 That	 is,	 we	 compute	 the	 average	 earnings	 difference	 among
Harvard	and	U-Mass	students	with	the	same	gender	and	SAT	score.	The



average	of	all	 such	group-specific	Harvard	versus	U-Mass	differences	 is
our	first	shot	at	estimating	the	causal	effect	of	a	Harvard	education.	This
is	 an	 econometric	 matching	 estimator	 that	 controls	 for—that	 is,	 holds
fixed—sex	and	SAT	 scores.	Assuming	 that,	 conditional	on	 sex	and	SAT
scores,	 the	 students	 who	 attend	 Harvard	 and	 U-Mass	 have	 similar
earnings	potential,	this	estimator	captures	the	average	causal	effect	of	a
Harvard	degree	on	earnings.

Matchmaker,	Matchmaker
Alas,	 there’s	more	 to	earnings	 than	 sex,	 schools,	and	SAT	scores.	Since
college	attendance	decisions	aren’t	randomly	assigned,	we	must	control
for	 all	 factors	 that	 determine	 both	 attendance	 decisions	 and	 later
earnings.	 These	 factors	 include	 student	 characteristics,	 like	 writing
ability,	diligence,	family	connections,	and	more.	Control	for	such	a	wide
range	 of	 factors	 seems	 daunting:	 the	 possibilities	 are	 virtually	 infinite,
and	many	characteristics	are	hard	to	quantify.	But	Stacy	Berg	Dale	and
Alan	Krueger	came	up	with	a	clever	and	compelling	shortcut.2	Instead	of
identifying	everything	that	might	matter	for	college	choice	and	earnings,
they	work	with	a	key	summary	measure:	 the	characteristics	of	colleges
to	which	students	applied	and	were	admitted.
Consider	again	the	tale	of	Uma	and	Harvey:	both	applied	to,	and	were
admitted	to,	U-Mass	and	Harvard.	The	fact	that	Uma	applied	to	Harvard
suggests	 she	 has	 the	 motivation	 to	 go	 there,	 while	 her	 admission	 to
Harvard	suggests	she	has	 the	ability	 to	succeed	there,	 just	 like	Harvey.
At	 least	 that’s	what	 the	Harvard	admissions	office	 thinks,	and	 they	are
not	 easily	 fooled.3	 Uma	 nevertheless	 opts	 for	 a	 cheaper	 U-Mass
education.	 Her	 choice	 might	 be	 attributable	 to	 factors	 that	 are	 not
closely	 related	 to	 Uma’s	 earnings	 potential,	 such	 as	 a	 successful	 uncle
who	went	 to	U-Mass,	 a	best	 friend	who	chose	U-Mass,	or	 the	 fact	 that
Uma	missed	 the	 deadline	 for	 that	 easily	 won	 Rotary	 Club	 scholarship
that	would	have	funded	an	Ivy	League	education.	 If	such	serendipitous
events	were	decisive	for	Uma	and	Harvey,	then	the	two	of	them	make	a
good	match.



Dale	and	Krueger	analyzed	a	large	data	set	called	College	and	Beyond
(C&B).	The	C&B	data	set	contains	information	on	thousands	of	students
who	enrolled	in	a	group	of	moderately	to	highly	selective	U.S.	colleges
and	 universities,	 together	 with	 survey	 information	 collected	 from	 the
students	 at	 the	 time	 they	 took	 the	 SAT,	 about	 a	 year	 before	 college
entry,	and	information	collected	in	1996,	long	after	most	had	graduated
from	college.	The	analysis	here	focuses	on	students	who	enrolled	in	1976
and	 who	 were	 working	 in	 1995	 (most	 adult	 college	 graduates	 are
working).	The	 colleges	 include	prestigious	private	universities,	 like	 the
University	 of	 Pennsylvania,	 Princeton,	 and	 Yale;	 a	 number	 of	 smaller
private	colleges,	like	Swarthmore,	Williams,	and	Oberlin;	and	four	public
universities	(Michigan,	The	University	of	North	Carolina,	Penn	State,	and
Miami	 University	 in	 Ohio).	 The	 average	 (1978)	 SAT	 scores	 at	 these
schools	ranged	from	a	low	of	1,020	at	Tulane	to	a	high	of	1,370	at	Bryn
Mawr.	 In	1976,	 tuition	 rates	were	 as	 low	as	$540	at	 the	University	 of
North	Carolina	and	as	high	as	$3,850	at	Tufts	(those	were	the	days).
Table	 2.1	 details	 a	 stripped-down	 version	 of	 the	 Dale	 and	 Krueger

matching	strategy,	in	a	setup	we	call	the	“college	matching	matrix.”	This
table	 lists	 applications,	 admissions,	 and	 matriculation	 decisions	 for	 a
(made-up)	 list	 of	 nine	 students,	 each	 of	 whom	 applied	 to	 as	 many	 as
three	schools	chosen	from	an	imaginary	list	of	six.	Three	out	of	the	six
schools	 listed	 in	 the	 table	are	public	 (All	 State,	Tall	 State,	 and	Altered
State)	 and	 three	 are	 private	 (Ivy,	 Leafy,	 and	 Smart).	 Five	 of	 our	 nine
students	 (numbers	1,	2,	4,	6,	and	7)	attended	private	 schools.	Average
earnings	 in	 this	 group	 are	 $92,000.	 The	 other	 four,	 with	 average
earnings	of	$72,500,	went	 to	a	public	 school.	The	almost	$20,000	gap
between	these	two	groups	suggests	a	large	private	school	advantage.

TABLE	2.1
The	college	matching	matrix



Note:	Enrollment	decisions	are	highlighted	in	gray.

The	students	in	Table	2.1	are	organized	in	four	groups	defined	by	the
set	 of	 schools	 to	 which	 they	 applied	 and	 were	 admitted.	Within	 each
group,	 students	 are	 likely	 to	have	 similar	 career	 ambitions,	while	 they
were	 also	 judged	 to	 be	 of	 similar	 ability	 by	 admissions	 staff	 at	 the
schools	 to	 which	 they	 applied.	 Within-group	 comparisons	 should
therefore	 be	 considerably	 more	 apples-to-apples	 than	 uncontrolled
comparisons	involving	all	students.
The	three	group	A	students	applied	to	two	private	schools,	Leafy	and

Smart,	and	one	public	 school,	Tall	State.	Although	 these	 students	were
rejected	at	Leafy,	they	were	admitted	to	Smart	and	Tall	State.	Students	1
and	2	went	to	Smart,	while	student	3	opted	for	Tall	State.	The	students
in	group	A	have	high	earnings,	and	probably	come	 from	upper	middle
class	families	(a	signal	here	is	that	they	applied	to	more	private	schools
than	 public).	 Student	 3,	 though	 admitted	 to	 Smart,	 opted	 for	 cheaper
Tall	State,	perhaps	to	save	her	family	money	(like	our	friends	Nancy	and
Mandy).	 Although	 the	 students	 in	 group	 A	 have	 done	well,	 with	 high
average	 earnings	 and	 a	 high	 rate	 of	 private	 school	 attendance,	 within
group	A,	 the	private	 school	 differential	 is	 negative:	 (110	+	100)/2	−
110	=	−5,	in	other	words,	a	gap	of	−$5,000.
The	 comparison	 in	 group	A	 is	 one	 of	 a	 number	 of	 possible	matched



comparisons	in	the	table.	Group	B	includes	two	students,	each	of	whom
applied	to	one	private	and	two	public	schools	(Ivy,	All	State,	and	Altered
State).	The	students	in	group	B	have	lower	average	earnings	than	those
in	 group	 A.	 Both	 were	 admitted	 to	 all	 three	 schools	 to	 which	 they
applied.	Number	4	enrolled	at	Ivy,	while	number	5	chose	Altered	State.
The	 earnings	 differential	 here	 is	 $30,000	 (60	−	 30	=	 30).	 This	 gap
suggests	a	substantial	private	school	advantage.
Group	C	includes	two	students	who	applied	to	a	single	school	(Leafy),
where	 they	 were	 admitted	 and	 enrolled.	 Group	 C	 earnings	 reveal
nothing	 about	 the	 effects	 of	 private	 school	 attendance,	 because	 both
students	in	this	group	attended	private	school.	The	two	students	in	group
D	 applied	 to	 three	 schools,	 were	 admitted	 to	 two,	 and	made	 different
choices.	 But	 these	 two	 students	 chose	 All	 State	 and	 Tall	 State,	 both
public	schools,	so	their	earnings	also	reveal	nothing	about	the	value	of	a
private	education.	Groups	C	and	D	are	uninformative,	because,	from	the
perspective	 of	 our	 effort	 to	 estimate	 a	 private	 school	 treatment	 effect,
each	is	composed	of	either	all-treated	or	all-control	individuals.
Groups	A	 and	B	 are	where	 the	 action	 is	 in	 our	 example,	 since	 these
groups	 include	 public	 and	 private	 school	 students	who	 applied	 to	 and
were	admitted	to	the	same	set	of	schools.	To	generate	a	single	estimate
that	uses	all	available	data,	we	average	the	group-specific	estimates.	The
average	of	−$5,000	 for	 group	A	and	$30,000	 for	 group	B	 is	 $12,500.
This	 is	 a	 good	 estimate	 of	 the	 effect	 of	 private	 school	 attendance	 on
average	earnings,	because,	 to	a	 large	degree,	 it	 controls	 for	 applicants’
choices	and	abilities.
The	simple	average	of	treatment-control	differences	in	groups	A	and	B
isn’t	 the	 only	 well-controlled	 comparison	 that	 can	 be	 computed	 from
these	two	groups.	For	example,	we	might	construct	a	weighted	average
which	reflects	the	fact	that	group	B	includes	two	students	and	group	A
includes	three.	The	weighted	average	in	this	case	is	calculated	as



By	emphasizing	larger	groups,	this	weighting	scheme	uses	the	data	more
efficiently	 and	 may	 therefore	 generate	 a	 statistically	 more	 precise
summary	of	the	private-public	earnings	differential.
The	most	 important	 point	 in	 this	 context	 is	 the	 apples-to-apples	 and
oranges-to-oranges	 nature	 of	 the	 underlying	 matched	 comparisons.
Apples	in	group	A	are	compared	to	other	group	A	apples,	while	oranges
in	 group	 B	 are	 compared	 only	 with	 oranges.	 In	 contrast,	 naive
comparisons	 that	 simply	 compare	 the	 earnings	 of	 private	 and	 public
school	students	generate	a	much	larger	gap	of	$19,500	when	computed
using	 all	 nine	 students	 in	 the	 table.	 Even	 when	 limited	 to	 the	 five
students	in	groups	A	and	B,	the	uncontrolled	comparison	generates	a	gap
of	$20,000	(20	=	(110	+	100	+	60)/3	−	(110	+	30)/2).	These	much
larger	 uncontrolled	 comparisons	 reflect	 selection	 bias:	 students	 who
apply	 to	 and	 are	 admitted	 to	 private	 schools	 have	 higher	 earnings
wherever	they	ultimately	chose	to	go.
Evidence	 of	 selection	 bias	 emerges	 from	 a	 comparison	 of	 average
earnings	across	(instead	of	within)	groups	A	and	B.	Average	earnings	in
group	 A,	 where	 two-thirds	 apply	 to	 private	 schools,	 are	 around
$107,000.	Average	earnings	in	group	B,	where	two-thirds	apply	to	public
schools,	 are	 only	 $45,000.	 Our	 within-group	 comparisons	 reveal	 that
much	 of	 this	 shortfall	 is	 unrelated	 to	 students’	 college	 attendance
decisions.	 Rather,	 the	 cross-group	 differential	 is	 explained	 by	 a
combination	of	ambition	and	ability,	as	reflected	in	application	decisions
and	the	set	of	schools	to	which	students	were	admitted.

2.2	Make	Me	a	Match,	Run	Me	a	Regression

Regression	 is	 the	 tool	 that	 masters	 pick	 up	 first,	 if	 only	 to	 provide	 a
benchmark	for	more	elaborate	empirical	strategies.	Although	regression
is	a	many-splendored	thing,	we	think	of	it	as	an	automated	matchmaker.
Specifically,	 regression	 estimates	 are	 weighted	 averages	 of	 multiple
matched	 comparisons	 of	 the	 sort	 constructed	 for	 the	 groups	 in	 our
stylized	 matching	 matrix	 (the	 appendix	 to	 this	 chapter	 discusses	 a



closely	 related	 connection	 between	 regression	 and	 mathematical
expectation).

The	key	ingredients	in	the	regression	recipe	are

▪		the	dependent	variable,	 in	this	case,	student	 i’s	earnings	later	 in
life,	also	called	the	outcome	variable	(denoted	by	Yi);

▪	 	 the	 treatment	 variable,	 in	 this	 case,	 a	 dummy	 variable	 that
indicates	students	who	attended	a	private	college	or	university
(denoted	by	Pi);	and

▪		a	set	of	control	variables,	in	this	case,	variables	that	identify	sets
of	schools	to	which	students	applied	and	were	admitted.

In	 our	matching	matrix,	 the	 five	 students	 in	 groups	 A	 and	 B	 (Table
2.1)	 contribute	 useful	 data,	 while	 students	 in	 groups	 C	 and	 D	 can	 be
discarded.	 In	a	data	 set	 containing	 those	 left	 after	discarding	groups	C
and	D,	a	single	variable	indicating	the	students	in	group	A	tells	us	which
of	 the	 two	 groups	 the	 remaining	 students	 are	 in,	 because	 those	 not	 in
group	A	 are	 in	 group	 B.	 This	 variable,	which	we’ll	 call	Ai,	 is	 our	 sole
control.	Note	that	both	Pi	and	Ai	are	dummy	variables,	that	is,	they	equal
1	 to	 indicate	 observations	 in	 a	 specific	 state	 or	 condition,	 and	 0



otherwise.	 Dummies,	 as	 they	 are	 called	 (no	 reference	 to	 ability	 here),
classify	data	into	simple	yes-or-no	categories.	Even	so,	by	coding	many
dummies,	we	get	a	set	of	control	variables	that’s	as	detailed	as	we	like.4

The	 regression	 model	 in	 this	 context	 is	 an	 equation	 linking	 the
treatment	 variable	 to	 the	 dependent	 variable	 while	 holding	 control
variables	 fixed	by	 including	 them	 in	 the	model.	With	only	one	 control
variable,	Ai,	the	regression	of	interest	can	be	written	as

The	 distinction	 between	 the	 treatment	 variable,	 Pi,	 and	 the	 control
variable,	Ai,	in	equation	(2.1)	is	conceptual,	not	formal:	there	is	nothing
in	equation	(2.1)	to	indicate	which	is	which.	Your	research	question	and
empirical	strategy	justify	the	choice	of	variables	and	determine	the	roles
they	play.
As	 in	 the	 previous	 chapter,	 here	 we	 also	 use	 Greek	 letters	 for

parameters	 to	 distinguish	 them	 from	 the	 variables	 in	 the	 model.	 The
regression	parameters—called	regression	coefficients—are

▪		the	intercept,	α	(“alpha”);
▪		the	causal	effect	of	treatment,	β	(“beta”);
▪		and	the	effect	of	being	a	group	A	student,	γ	(“gamma”).

The	last	component	of	equation	(2.1)	is	the	residual,	ei	(also	called	an
error	 term).	 Residuals	 are	 defined	 as	 the	 difference	 between	 the
observed	 Yi	 and	 the	 fitted	 values	 generated	 by	 the	 specific	 regression
model	we	have	in	mind.	These	fitted	values	are	written	as

and	the	corresponding	residuals	are	given	by



Regression	analysis	assigns	values	to	model	parameters	(α,	β,	and	γ)	so
as	to	make	Ŷi	as	close	as	possible	to	Yi.	This	is	accomplished	by	choosing
values	 that	 minimize	 the	 sum	 of	 squared	 residuals,	 leading	 to	 the
moniker	 ordinary	 least	 squares	 (OLS)	 for	 the	 resulting	 estimates.5

Executing	 this	minimization	 in	 a	 particular	 sample,	 we	 are	 said	 to	 be
estimating	 regression	 parameters.	 ’Metrics	 masters,	 who	 estimate
regression	models	 every	 day,	 are	 sometimes	 said	 to	 “run	 regressions,”
though	often	it	seems	that	regressions	run	us	rather	than	the	other	way
around.	 The	 formalities	 of	 regression	 estimation	 and	 the	 statistical
theory	that	goes	with	it	are	sketched	in	the	appendix	to	this	chapter.
Running	regression	(2.1)	on	data	for	the	five	students	in	groups	A	and

B	 generates	 the	 following	 estimates	 (these	 estimates	 can	 be	 computed
using	a	hand	calculator,	but	for	real	empirical	work,	we	use	professional
regression	software):

The	private	school	coefficient	in	this	case	is	10,000,	implying	a	private-
public	 earnings	 differential	 of	 $10,000.	 This	 is	 indeed	 a	 weighted
average	 of	 our	 two	 group-specific	 effects	 (recall	 the	 group	 A	 effect	 is
−5,000	 and	 the	 group	 B	 effect	 is	 30,000).	 While	 this	 is	 neither	 the
simple	 unweighted	 average	 (12,500)	 nor	 the	 group-size	 weighted
average	 (9,000),	 it’s	 not	 too	 far	 from	 either	 of	 them.	 In	 this	 case,
regression	 assigns	 a	weight	 of	 4/7	 to	 group	A	and	3/7	 to	 group	B.	As
with	 these	 other	 averages,	 the	 regression-weighted	 average	 is
considerably	smaller	than	the	uncontrolled	earnings	gap	between	private
and	public	school	alumni.6

Regression	 estimates	 (and	 the	 associated	 standard	 errors	 used	 to
quantify	 their	 sampling	 variance)	 are	 readily	 constructed	 using
computers	and	econometric	software.	Computational	simplicity	and	the
conceptual	 interpretation	of	regression	estimates	as	a	weighted	average
of	 group-specific	 differences	 are	 two	 of	 the	 reasons	 we	 regress.



Regression	also	has	two	more	things	going	for	it.	First,	it’s	a	convention
among	 masters	 to	 report	 regression	 estimates	 in	 almost	 every
econometric	 investigation	 of	 causal	 effects,	 including	 those	 involving
treatment	 variables	 that	 take	 on	 more	 than	 two	 values.	 Regression
estimates	 provide	 a	 simple	 benchmark	 for	 fancier	 techniques.	 Second,
under	some	circumstances,	regression	estimates	are	efficient	in	the	sense
of	 providing	 the	 most	 statistically	 precise	 estimates	 of	 average	 causal
effects	 that	we	can	hope	 to	obtain	 from	a	given	sample.	This	 technical
point	is	reviewed	briefly	in	the	chapter	appendix.

Public-Private	Face-Off
The	 C&B	 data	 set	 includes	 more	 than	 14,000	 former	 students.	 These
students	were	admitted	and	rejected	at	many	different	combinations	of
schools	 (C&B	 asked	 for	 the	 names	 of	 at	 least	 three	 schools	 students
considered	 seriously,	 besides	 the	 one	 attended).	 Many	 of	 the	 possible
application/acceptance	 sets	 in	 this	 data	 set	 are	 represented	 by	 only	 a
single	 student.	Moreover,	 in	 some	sets	with	more	 than	one	student,	all
schools	are	either	public	or	private.	Just	as	with	groups	C	and	D	in	Table
2.1,	these	perfectly	homogeneous	groups	provide	no	guidance	as	to	the
value	of	a	private	education.
We	can	increase	the	number	of	useful	comparisons	by	deeming	schools

to	 be	 matched	 if	 they	 are	 equally	 selective	 instead	 of	 insisting	 on
identical	matches.	To	 fatten	up	 the	groups	 this	 scheme	produces,	we’ll
call	 schools	 comparable	 if	 they	 fall	 into	 the	 same	 Barron’s	 selectivity
categories.7	Returning	to	our	stylized	matching	matrix,	suppose	All	State
and	 Tall	 State	 are	 rated	 as	 Competitive,	 Altered	 State	 and	 Smart	 are
rated	Highly	Competitive,	 and	 Ivy	 and	 Leafy	 are	Most	 Competitive.	 In
the	Barron’s	scheme,	those	who	applied	to	Tall	State,	Smart,	and	Leafy,
and	 were	 admitted	 to	 Tall	 State	 and	 Smart	 can	 be	 compared	 with
students	who	applied	to	All	State,	Smart,	and	Ivy,	and	were	admitted	to
All	State	and	Smart.	Students	in	both	groups	applied	to	one	Competitive,
one	 Highly	 Competitive,	 and	 one	 Most	 Competitive	 school,	 and	 they
were	admitted	to	one	Competitive	and	one	Highly	Competitive	school.



In	 the	 C&B	 data,	 9,202	 students	 can	 be	 matched	 in	 this	 way.	 But
because	 we’re	 interested	 in	 public-private	 comparisons,	 our	 Barron’s
matched	sample	is	also	limited	to	matched	applicant	groups	that	contain
both	 public	 and	 private	 school	 students.	 This	 leaves	 5,583	 matched
students	 for	 analysis.	 These	 matched	 students	 fall	 into	 151	 similar-
selectivity	groups	containing	both	public	and	private	students.
Our	operational	regression	model	for	the	Barron’s	selectivity-matched

sample	 differs	 from	 regression	 (2.1),	 used	 to	 analyze	 the	 matching
matrix	in	Table	2.1,	 in	a	number	of	ways.	First,	 the	operational	model
puts	the	natural	log	of	earnings	on	the	left-hand	side	instead	of	earnings
itself.	As	explained	in	the	chapter	appendix,	use	of	a	 logged	dependent
variable	 allows	 regression	 estimates	 to	 be	 interpreted	 as	 a	 percent
change.	For	example,	an	estimated	β	of	 .05	 implies	 that	private	 school
alumni	earn	about	5%	more	 than	public	 school	alumni,	 conditional	on
whatever	controls	were	included	in	the	model.
Another	 important	 difference	 between	 our	 operational	 empirical

model	 and	 the	 Table	 2.1	 example	 is	 that	 the	 former	 includes	 many
control	 variables,	 while	 the	 example	 controls	 only	 for	 the	 dummy
variable	 Ai,	 indicating	 students	 in	 group	 A.	 The	 key	 controls	 in	 the
operational	 model	 are	 a	 set	 of	 many	 dummy	 variables	 indicating	 all
Barron’s	matches	represented	in	the	sample	(with	one	group	left	out	as	a
reference	category).	These	controls	capture	the	relative	selectivity	of	the
schools	to	which	students	applied	and	were	admitted	in	the	real	world,
where	 many	 combinations	 of	 schools	 are	 possible.	 The	 resulting
regression	model	looks	like

The	parameter	β	in	this	model	is	still	the	treatment	effect	of	interest,	an
estimate	of	 the	causal	effect	of	attendance	at	a	private	school.	But	 this
model	controls	for	151	groups	instead	of	the	two	groups	in	our	example.
The	 parameters	 γj,	 for	 j	 =	 1	 to	 150,	 are	 the	 coefficients	 on	 150



selectivity-group	dummies,	denoted	GROUPji.
It’s	worth	unpacking	the	notation	in	equation	(2.2),	since	we’ll	use	it
again.	The	dummy	variable	GROUPji	equals	1	when	student	i	is	in	group
j	 and	 is	0	otherwise.	For	 example,	 the	 first	of	 these	dummies,	denoted
GROUP1i,	 might	 indicate	 students	 who	 applied	 and	 were	 admitted	 to
three	Highly	Competitive	schools.	The	second,	GROUP2i,	might	indicate
students	who	applied	 to	 two	Highly	Competitive	 schools	and	one	Most
Competitive	school,	and	were	admitted	to	one	of	each	type.	The	order	in
which	 the	 categories	 are	 coded	 doesn’t	 matter	 as	 long	 as	 we	 code
dummies	 for	 all	 possible	 combinations,	 with	 one	 group	 omitted	 as	 a
reference	group.	Although	we’ve	gone	 from	one	group	dummy	 to	150,
the	idea	is	as	before:	controlling	for	the	sets	of	schools	to	which	students
applied	 and	were	 admitted	 brings	 us	 one	 giant	 step	 closer	 to	 a	 ceteris
paribus	comparison	between	private	and	public	school	students.
A	 final	modification	 for	 operational	 purposes	 is	 the	 addition	 of	 two
further	 control	 variables:	 individual	 SAT	 scores	 (SATi)	 and	 the	 log	 of
parental	income	(PIi),	plus	a	few	variables	we’ll	relegate	to	a	footnote.8

The	 individual	 SAT	 and	 log	 parental	 income	 controls	 appear	 in	 the
model	 with	 coefficients	 δ1	 and	 δ2	 (read	 as	 “delta-1”	 and	 “delta-2”),
respectively.	 Controls	 for	 a	 direct	measure	 of	 individual	 aptitude,	 like
students’	SAT	scores,	and	a	measure	of	family	background,	like	parental
income,	may	help	make	 the	public-private	 comparisons	at	 the	heart	of
our	 model	 more	 apples-to-apples	 and	 oranges-to-oranges	 than	 they
otherwise	would	be.	At	 the	same	time,	conditional	on	selectivity-group
dummies,	such	controls	may	no	longer	matter,	a	point	explored	in	detail
below.

Regressions	Run
We	 start	 with	 regression	 estimates	 of	 the	 private	 school	 earnings
advantage	 from	 models	 with	 no	 controls.	 The	 coefficient	 from	 a
regression	 of	 log	 earnings	 (in	 1995)	 on	 a	 dummy	 for	 private	 school
attendance,	with	 no	 other	 regressors	 (right-hand	 side	 variables)	 in	 the



model,	 gives	 the	 raw	 difference	 in	 log	 earnings	 between	 those	 who
attended	 a	 private	 school	 and	 everyone	 else	 (the	 chapter	 appendix
explains	 why	 regression	 on	 a	 single	 dummy	 variable	 produces	 a
difference	 in	 means	 across	 groups	 defined	 by	 the	 dummy).	 Not
surprisingly,	 this	 raw	 gap,	 reported	 in	 the	 first	 column	 of	 Table	 2.2,
shows	a	substantial	private	school	premium.	Specifically,	private	school
students	 are	 estimated	 to	 have	 earnings	 about	 14%	 higher	 than	 the
earnings	of	other	students.
The	 numbers	 that	 appear	 in	 parentheses	 below	 the	 regression
estimates	 in	 Table	 2.2	 are	 the	 estimated	 standard	 errors	 that	 go	 with
these	 estimates.	 Like	 the	 standard	 errors	 for	 a	 difference	 in	 means
discussed	 in	 the	 appendix	 to	Chapter	 1,	 these	 standard	 errors	 quantify
the	 statistical	 precision	 of	 the	 regression	 estimates	 reported	 here.	 The
standard	 error	 associated	with	 the	 estimate	 in	 column	 (1)	 is	 .055.	The
fact	that	.135	is	more	than	twice	the	size	of	the	associated	standard	error
of	.055	makes	it	very	unlikely	the	positive	estimated	private-school	gap
is	merely	a	chance	finding.	The	private	school	coefficient	is	statistically
significant.

TABLE	2.2
Private	school	effects:	Barron’s	matches



Notes:	This	table	reports	estimates	of	the	effect	of	attending	a	private	college	or	university	on
earnings.	 Each	 column	 reports	 coefficients	 from	 a	 regression	 of	 log	 earnings	 on	 a	 dummy	 for
attending	a	private	institution	and	controls.	The	results	in	columns	(4)–(6)	are	from	models	that
include	 applicant	 selectivity-group	 dummies.	 The	 sample	 size	 is	 5,583.	 Standard	 errors	 are
reported	in	parentheses.

The	large	private	school	premium	reported	in	column	(1)	of	Table	2.2
is	 an	 interesting	 descriptive	 fact,	 but,	 as	 in	 our	 example	 calculation,
some	of	 this	 gap	 is	 almost	 certainly	due	 to	 selection	bias.	As	we	 show
below,	 private	 school	 students	 have	higher	 SAT	 scores	 and	 come	 from
wealthier	 families	 than	 do	 public	 school	 students,	 and	 so	 might	 be
expected	 to	 earn	 more	 regardless	 of	 where	 they	 went	 to	 college.	 We
therefore	 control	 for	measures	 of	 ability	 and	 family	 background	when
estimating	the	private	school	premium.	An	estimate	of	the	private	school
premium	 from	 a	 regression	 model	 that	 includes	 an	 individual	 SAT



control	is	reported	in	column	(2)	of	Table	2.2.	Every	100	points	of	SAT
achievement	 are	 associated	 with	 about	 a	 5	 percentage	 point	 earnings
gain.	Controlling	for	students’	SAT	scores	reduces	the	measured	private
school	 premium	 to	 about	 .1.	 Adding	 controls	 for	 parental	 income,	 as
well	 as	 for	 demographic	 characteristics	 related	 to	 race	 and	 sex,	 high
school	rank,	and	whether	the	graduate	was	a	college	athlete	brings	the
private	 school	premium	down	a	 little	 further,	 to	a	 still	 substantial	 and
statistically	significant	.086,	reported	in	column	(3)	of	the	table.
A	 substantial	 effect	 indeed,	 but	 probably	 still	 too	 big,	 that	 is,
contaminated	 by	 positive	 selection	 bias.	 Column	 (4)	 reports	 estimates
from	 a	 model	 with	 no	 controls	 for	 ability,	 family	 background,	 or
demographic	characteristics.	Importantly,	however,	the	regression	model
used	to	construct	the	estimate	reported	in	this	column	includes	a	dummy
for	 each	matched	 college	 selectivity	 group	 in	 the	 sample.	 That	 is,	 the
model	 used	 to	 construct	 this	 estimate	 includes	 the	 dummy	 variables
GROUPji,	for	j	=	1,	…,	150	(the	table	omits	the	many	estimated	γj	 this
model	 produces,	 but	 indicates	 their	 inclusion	 in	 the	 row	 labeled
“selection	 controls”).	 The	 estimated	 private	 school	 premium	 with
selectivity-group	controls	included	is	almost	bang	on	0,	with	a	standard
error	 of	 about	 .04.	And	 that’s	 not	 all:	 having	 killed	 the	 private	 school
premium	with	selectivity-group	dummies,	columns	(5)	and	(6)	show	that
the	 premium	 moves	 little	 when	 controls	 for	 ability	 and	 family
background	 are	 added	 to	 the	 model.	 This	 suggests	 that	 control	 for
college	application	and	admissions	selectivity	groups	takes	us	a	long	way
toward	 the	 apples-to-apples	 and	oranges-to-oranges	 comparisons	 at	 the
heart	of	any	credible	regression	strategy	for	causal	inference.
The	 results	 in	 columns	 (4)–(6)	 of	 Table	 2.2	 are	 generated	 by	 the
subsample	 of	 5,583	 students	 for	 whom	 we	 can	 construct	 Barron’s
matches	 and	 generate	 within-group	 comparisons	 of	 public	 and	 private
school	 students.	 Perhaps	 there’s	 something	 special	 about	 this	 limited
sample,	 which	 contains	 less	 than	 half	 of	 the	 full	 complement	 of	 C&B
respondents.	 This	 concern	motivates	 a	 less	 demanding	 control	 scheme
that	 includes	only	 the	average	SAT	score	 in	 the	 set	of	 schools	 students
applied	to	plus	dummies	for	the	number	of	schools	applied	to	(that	is,	a



dummy	for	students	who	applied	to	two	schools,	a	dummy	for	students
who	 applied	 to	 three	 schools,	 and	 so	 on),	 instead	 of	 a	 full	 set	 of	 150
selectivity-group	 dummies.	 This	 regression,	which	 can	 be	 estimated	 in
the	 full	 C&B	 sample,	 is	 christened	 the	 “self-revelation	model”	 because
it’s	motivated	by	 the	notion	 that	applicants	have	a	pretty	good	 idea	of
their	ability	and	where	they’re	likely	to	be	admitted.	This	self-assessment
is	reflected	in	the	number	and	average	selectivity	of	the	schools	to	which
they	 apply.	 As	 a	 rule,	 weaker	 applicants	 apply	 to	 fewer	 and	 to	 less-
selective	schools	than	do	stronger	applicants.
The	self-revelation	model	generates	results	remarkably	similar	to	those

generated	by	Barron’s	matches.	The	self-revelation	estimates,	computed
in	a	sample	of	14,238	students,	can	be	seen	in	Table	2.3.	As	before,	the
first	 three	 columns	 of	 the	 table	 show	 that	 the	 raw	 private	 school
premium	 falls	 markedly,	 but	 remains	 substantial,	 when	 controls	 for
ability	 and	 family	 background	 are	 added	 to	 the	model	 (falling	 in	 this
case,	 from	 .21	 to	 .14).	 At	 the	 same	 time,	 columns	 (4)–(6)	 show	 that
models	controlling	for	the	number	and	average	selectivity	of	the	schools
students	apply	to	generate	small	and	statistically	insignificant	effects	on
the	order	of	.03.	Moreover,	as	with	the	models	that	control	for	Barron’s
matches,	 models	 with	 average	 selectivity	 controls	 generate	 estimates
that	 are	 largely	 insensitive	 to	 the	 inclusion	 of	 controls	 for	 ability	 and
family	background.
Private	university	attendance	seems	unrelated	to	future	earnings	once

we	 control	 for	 selection	 bias.	 But	 perhaps	 our	 focus	 on	 public-private
comparisons	 misses	 the	 point.	 Students	 may	 benefit	 from	 attending
schools	like	Ivy,	Leafy,	or	Smart	simply	because	their	classmates	at	such
schools	 are	 so	 much	 better.	 The	 synergy	 generated	 by	 a	 strong	 peer
group	may	be	the	feature	that	justifies	the	private	school	price	tag.
We	can	explore	this	hypothesis	by	replacing	the	private	school	dummy

in	the	self-revelation	model	with	a	measure	of	peer	quality.	Specifically,
as	in	the	original	Dale	and	Krueger	study	that	inspires	our	analysis,	we
replace	Pi	in	equation	(2.2)	with	the	average	SAT	score	of	classmates	at
the	 school	attended.9	Columns	 (1)–(3)	 of	Table	2.4	 show	 that	 students



who	 attended	 more	 selective	 schools	 do	 markedly	 better	 in	 the	 labor
market,	with	an	estimated	college	 selectivity	effect	on	 the	order	of	8%
higher	earnings	for	every	100	points	of	average	selectivity	increase.	Yet,
this	 effect	 too	 appears	 to	 be	 an	 artifact	 of	 selection	 bias	 due	 to	 the
greater	 ambition	 and	 ability	 of	 those	 who	 attend	 selective	 schools.
Estimates	from	models	with	self-revelation	controls,	reported	in	columns
(4)–(6)	 of	 the	 table,	 show	 average	 college	 selectivity	 to	 be	 essentially
unrelated	to	earnings.

TABLE	2.3
Private	school	effects:	Average	SAT	score	controls



Notes:	This	table	reports	estimates	of	the	effect	of	attending	a	private	college	or	university	on
earnings.	 Each	 column	 shows	 coefficients	 from	 a	 regression	 of	 log	 earnings	 on	 a	 dummy	 for
attending	 a	 private	 institution	 and	 controls.	 The	 sample	 size	 is	 14,238.	 Standard	 errors	 are
reported	in	parentheses.

TABLE	2.4
School	selectivity	effects:	Average	SAT	score	controls



Notes:	This	 table	 reports	estimates	of	 the	effect	of	alma	mater	 selectivity	on	earnings.	Each
column	 shows	 coefficients	 from	 a	 regression	 of	 log	 earnings	 on	 the	 average	 SAT	 score	 at	 the
institution	 attended	 and	 controls.	 The	 sample	 size	 is	 14,238.	 Standard	 errors	 are	 reported	 in
parentheses.

2.3	Ceteris	Paribus?

TOPIC:	Briefly	describe	experiences,	challenges,	and	accomplishments
that	define	you	as	a	person.



ESSAY:	I	am	a	dynamic	figure,	often	seen	scaling	walls	and	crushing
ice.	I	cook	Thirty-Minute	Brownies	in	twenty	minutes.	I	am	an
expert	in	stucco,	a	veteran	in	love,	and	an	outlaw	in	Peru.	On
Wednesdays,	after	school,	I	repair	electrical	appliances	free	of
charge.

I	am	an	abstract	artist,	a	concrete	analyst,	and	a	ruthless	bookie.	I
wave,	dodge,	and	frolic,	yet	my	bills	are	all	paid.	I	have	won
bullfights	in	San	Juan,	cliff-diving	competitions	in	Sri	Lanka,	and
spelling	bees	at	the	Kremlin.	I	have	played	Hamlet,	I	have
performed	open-heart	surgery,	and	I	have	spoken	with	Elvis.

But	I	have	not	yet	gone	to	college.
From	an	essay	by	Hugh	Gallagher,	age	19.
(Hugh	later	went	to	New	York	University.)

Imagine	Harvey	and	Uma	on	 the	day	admissions	 letters	go	out.	Both
are	delighted	to	get	into	Harvard	(it	must	be	those	20-minute	brownies).
Harvey	 immediately	 accepts	 Harvard’s	 offer—wouldn’t	 you?	 But	 Uma
makes	 a	 difficult	 choice	 and	 goes	 to	 U-Mass	 instead.	 What’s	 up	 with
Uma?	Is	her	ceteris	really	paribus?
Uma	might	have	good	reasons	to	opt	for	less-prestigious	U-Mass	over

Harvard.	 Price	 is	 an	 obvious	 consideration	 (Uma	won	 a	Massachusetts
Adams	 Scholarship,	 which	 pays	 state	 school	 tuition	 for	 good	 students
like	her	but	cannot	be	used	at	private	schools).	If	price	matters	more	to
Uma	than	to	Harvey,	 it’s	possible	 that	Uma’s	circumstances	differ	 from
Harvey’s	 in	 other	 ways.	 Perhaps	 she’s	 poorer.	 Some	 of	 our	 regression
models	control	for	parental	income,	but	this	is	an	imperfect	measure	of
family	living	standards.	Among	other	things,	we	don’t	know	how	many
brothers	and	sisters	the	students	in	the	C&B	sample	had.	A	larger	family
at	 the	 same	 income	 level	 may	 find	 it	 harder	 to	 pay	 for	 each	 child’s
education.	If	 family	size	is	also	related	to	later	earnings	(see	Chapter	3
for	 more	 on	 this	 point),	 our	 regression	 estimates	 of	 private	 college
premia	may	not	be	apples-to-apples	after	all.
This	is	more	than	a	campfire	story.	Regression	is	a	way	to	make	other

things	 equal,	 but	 equality	 is	 generated	 only	 for	 variables	 included	 as



controls	on	the	right-hand	side	of	the	model.	Failure	to	include	enough
controls	 or	 the	 right	 controls	 still	 leaves	 us	 with	 selection	 bias.	 The
regression	version	of	the	selection	bias	generated	by	inadequate	controls
is	called	omitted	variables	bias	(OVB),	and	it’s	one	of	the	most	important
ideas	in	the	’metrics	canon.
To	illustrate	OVB,	we	return	to	our	five-student	example	and	the	bias

from	omitting	control	 for	membership	 in	applicant	group	A.	The	“long
regression”	here	includes	the	dummy	variable,	Ai,	which	indicates	those
in	group	A.	We	write	the	regression	model	that	includes	Ai	as

This	is	equation	(2.1)	rewritten	with	superscript	l	on	parameters	and	the
residual	to	remind	us	that	the	intercept	and	private	school	coefficient	are
from	the	long	model,	and	to	facilitate	comparisons	with	the	short	model
to	come.
Does	 the	 inclusion	 of	 Ai	 matter	 for	 estimates	 of	 the	 private	 school

effect	 in	 the	 regression	 above?	 Suppose	 we	 make	 do	 with	 a	 short
regression	with	no	controls.	This	can	be	written	as

Because	 the	 single	 regressor	 here	 is	 a	 dummy	 variable,	 the	 slope
coefficient	 in	 this	model	 is	 the	 difference	 in	 average	Yi	 between	 those
with	 Pi	 switched	 on	 and	 those	 with	 Pi	 switched	 off.	 As	 we	 noted	 in
Section	 2.1,	 βs	 =	 20,000	 in	 the	 short	 regression,	 while	 the	 long
regression	parameter,	βl,	is	only	10,000.	The	difference	between	βs	and	βl

is	 the	 OVB	 due	 to	 omission	 of	 Ai	 in	 the	 short	 regression.	 Here,	 OVB
amounts	to	$10,000,	a	figure	worth	worrying	about.
Why	 does	 the	 omission	 of	 the	 group	 A	 dummy	 change	 the	 private

college	effect	 so	much?	Recall	 that	 the	average	earnings	of	 students	 in
group	 A	 exceeds	 the	 average	 earnings	 of	 those	 in	 group	 B.	Moreover,
two-thirds	 of	 the	 students	 in	 high-earning	 group	 A	 attended	 a	 private



school,	while	 lower-earning	group	B	 is	only	half	private.	Differences	 in
earnings	between	private	and	public	alumni	come	in	part	from	the	fact
that	 the	 mostly	 private	 students	 in	 group	 A	 have	 higher	 earnings
anyway,	 regardless	 of	 where	 they	 enrolled.	 Inclusion	 of	 the	 group	 A
dummy	in	the	long	regression	controls	for	this	difference.
As	this	discussion	suggests,	 the	formal	connection	between	short	and

long	regression	coefficients	has	two	components:

	 	 (i)	 The	 relationship	 between	 the	 omitted	 variable	 (Ai)	 and	 the
treatment	variable	(Pi);	we’ll	soon	see	how	to	quantify	this	with
an	additional	regression.

	 (ii)	 The	 relationship	 between	 the	 omitted	 variable	 (Ai)	 and	 the
outcome	 variable	 (Yi).	 This	 is	 given	 by	 the	 coefficient	 on	 the
omitted	 variable	 in	 the	 long	 regression,	 in	 this	 case,	 the
parameter	γ	in	equation	(2.3).

Together,	these	pieces	produce	the	OVB	formula.	We	start	with	the	fact
that

To	 be	 specific,	 when	 the	 omitted	 variable	 is	 Ai	 and	 the	 treatment
variable	is	Pi,	we	have

Omitted	variables	bias,	defined	as	the	difference	between	the	coefficient
on	Pi	 in	 the	 short	 and	 long	models,	 is	 a	 simple	 rearrangement	 of	 this
equation:



We	can	refine	the	OVB	formula	using	the	fact	 that	both	terms	in	the
formula	 are	 themselves	 regression	 coefficients.	 The	 first	 term	 is	 the
coefficient	 from	 a	 regression	 of	 the	 omitted	 variable	Ai	 on	 the	 private
school	dummy.	In	other	words,	this	term	is	the	coefficient	π1	(read	“pi-
1”)	in	the	regression	model

where	ui	is	a	residual.	We	can	now	write	the	OVB	formula	compactly	in
Greek:

where	 γ	 is	 the	 coefficient	 on	Ai	 in	 the	 long	 regression.	 This	 important
formula	is	derived	in	the	chapter	appendix.
Among	students	who	attended	private	school,	two	are	in	group	A	and

one	in	group	B,	while	among	those	who	went	to	public	school,	one	is	in
group	 A	 and	 one	 in	 group	 B.	 The	 coefficient	 π1	 in	 our	 five-student
example	 is	 therefore	2/3	−	1/2	=	.1667.	As	noted	 in	Section	2.2,	 the
coefficient	γ	is	60,000,	reflecting	the	higher	earnings	of	group	A.	Putting
the	pieces	together,	we	have

and



Phew!	The	calculation	suggested	by	the	OVB	formula	indeed	matches	the
direct	comparison	of	short	and	long	regression	coefficients.
The	 OVB	 formula	 is	 a	 mathematical	 result	 that	 explains	 differences

between	 regression	 coefficients	 in	 any	 short-versus-long	 scenario,
irrespective	 of	 the	 causal	 interpretation	 of	 the	 regression	 parameters.
The	 labels	 “short”	 and	 “long”	 are	 purely	 relative:	 The	 short	 regression
need	not	be	particularly	short,	but	the	long	regression	is	always	longer,
since	 it	 includes	 the	same	regressors	plus	at	 least	one	more.	Often,	 the
additional	variables	that	make	the	long	regression	long	are	hypothetical,
that	is,	unavailable	in	our	data.	The	OVB	formula	is	a	tool	that	allows	us
to	consider	the	impact	of	control	 for	variables	we	wish	we	had.	This	 in
turn	 helps	 us	 assess	whether	 ceteris	 is	 indeed	 paribus.	Which	 brings	 us
back	to	Uma	and	Harvey.
Suppose	an	omitted	variable	in	equation	(2.2)	is	family	size,	FSi.	We’ve

included	parental	 income	as	 a	 control	 variable,	 but	 not	 the	number	 of
brothers	and	sisters	who	might	also	go	to	college,	which	is	not	available
in	the	C&B	data	set.	When	the	omitted	variable	is	FSi,	we	have

Why	might	the	omission	of	family	size	bias	regression	estimates	of	the
private	college	effect?	Because	differences	in	earnings	between	Harvard
and	 U-Mass	 graduates	 arise	 in	 part	 from	 differences	 in	 family	 size
between	the	two	groups	of	students	(this	is	the	relationship	between	FSi
and	Pi)	and	from	the	fact	that	smaller	families	are	associated	with	higher
earnings,	 even	 after	 controlling	 for	 the	 variables	 included	 in	 the	 short
regression	(this	is	the	effect	of	FSi	in	the	long	regression,	which	includes
these	 same	 controls	 as	well).	 The	 long	 regression	 controls	 for	 the	 fact



that	 students	 who	 go	 to	 Harvard	 come	 from	 smaller	 families	 (on
average)	 than	 do	 students	 who	 went	 to	 U-Mass,	 while	 the	 short
regression	that	omits	FSi	does	not.
The	first	term	in	this	application	of	the	OVB	formula	is	the	coefficient
in	a	regression	of	omitted	(FSi)	on	included	(Pi)	variables	and	everything
else	 that	 appears	 on	 the	 right-hand	 side	 of	 equation	 (2.2).	 This
regression—which	is	sometimes	said	to	be	“auxiliary”	because	it	helps	us
interpret	the	regression	we	care	about—can	be	written	as

Most	 of	 the	 coefficients	 in	 equation	 (2.4)	 are	 of	 little	 interest.	 What
matters	 here	 is	 π1,	 since	 this	 captures	 the	 relationship	 between	 the
omitted	variable,	FSi,	and	the	variable	whose	effect	we’re	after,	Pi,	after
controlling	 for	 other	 variables	 that	 appear	 in	 both	 the	 short	 and	 long
regression	models.10

To	 complete	 the	 OVB	 formula	 for	 this	 case,	 we	 write	 the	 long
regression	as

again	using	superscript	l	for	“long.”	The	regressor	FSi	appears	here	with
coefficient	λ.11	The	OVB	formula	is	therefore

where	β	is	from	equation	(2.2).
Continuing	to	think	of	equation	(2.2)	as	the	short	regression,	while	the
long	regression	includes	the	control	variables	that	appear	in	this	model
plus	 family	 size,	 we	 see	 that	 OVB	 here	 is	 probably	 positive.	 Private
school	 students	 tend	 to	 come	 from	 smaller	 families	 on	 average,	 even



after	 conditioning	 on	 family	 income.	 If	 so,	 the	 regression	 coefficient
linking	family	size	and	private	college	attendance	is	negative	(π1	<	0	in
equation	 (2.4)).	 Students	 from	 smaller	 families	 are	 also	 likely	 to	 earn
more	no	matter	where	they	go	to	school,	so	the	effect	of	omitting	family
size	 controls	 in	 a	 long	 regression	 is	 also	 negative	 (λ	<	 0	 in	 equation
(2.5)).	The	product	of	these	two	negative	terms	is	positive.
Careful	reasoning	about	OVB	is	an	essential	part	of	the	’metrics	game.
We	can’t	use	data	to	check	the	consequences	of	omitting	variables	 that
we	don’t	observe,	but	we	can	use	the	OVB	formula	to	make	an	educated
guess	as	to	the	likely	consequences	of	their	omission.	Most	of	the	control
variables	that	might	be	omitted	from	equation	(2.2)	are	similar	to	family
size	in	that	the	sign	of	the	OVB	from	their	omission	is	probably	positive.
From	 this	we	 conclude	 that,	 as	 small	 as	 the	 estimates	 of	 the	 effects	 of
private	school	attendance	in	columns	(4)–(6)	of	Tables	2.2–2.3	are,	they
could	well	be	too	big.	These	estimates	therefore	weigh	strongly	against
the	hypothesis	of	a	substantial	private	school	earnings	advantage.

Regression	Sensitivity	Analysis
Because	we	can	never	be	sure	whether	a	given	set	of	controls	is	enough
to	eliminate	selection	bias,	it’s	important	to	ask	how	sensitive	regression
results	are	to	changes	in	the	list	of	controls.	Our	confidence	in	regression
estimates	of	causal	effects	grows	when	treatment	effects	are	insensitive—
masters	 say	 “robust”—to	 whether	 a	 particular	 variable	 is	 added	 or
dropped	as	long	as	a	few	core	controls	are	always	included	in	the	model.
This	desirable	pattern	is	illustrated	by	columns	(4)–(6)	in	Tables	2.2–2.3,
which	show	that	estimates	of	the	private	school	premium	are	insensitive
to	 the	 inclusion	 of	 students’	 ability	 (as	measured	 by	 own	 SAT	 scores),
parental	income,	and	a	few	other	control	variables,	once	we	control	for
the	nature	of	the	schools	to	which	students	applied.
The	OVB	 formula	 explains	 this	 remarkable	 finding.	 Start	with	 Table
2.5,	 which	 reports	 coefficients	 from	 regressions	 like	 equation	 (2.4),
except	that	instead	of	FSi,	we	put	SATi	on	the	left-hand	side	to	produce
the	 estimates	 in	 columns	 (1)–(3)	 while	 ln	 PIi	 on	 the	 left-hand	 side



generates	 columns	 (4)–(6).	 These	 auxiliary	 regressions	 assess	 the
relationship	between	private	school	attendance	and	two	of	our	controls,
SATi	 and	 ln	 PIi,	 conditional	 on	 other	 controls	 in	 the	 model.	 Not
surprisingly,	private	school	attendance	is	a	strong	predictor	of	students’
own	 SAT	 scores	 and	 family	 income,	 relationships	 documented	 in
columns	(1)	and	(4)	in	the	table.	The	addition	of	demographic	controls,
high	 school	 rank,	 and	a	dummy	 for	 athletic	participation	does	 little	 to
change	this,	as	can	be	seen	 in	columns	(2)	and	(5).	But	control	 for	 the
number	of	applications	and	the	average	SAT	score	of	schools	applied	to,
as	 in	 the	 self-revelation	 model,	 effectively	 eliminates	 the	 relationship
between	 private	 school	 attendance	 and	 these	 important	 background
variables.	This	explains	why	the	estimated	private	school	coefficients	in
columns	(4),	(5),	and	(6)	of	Table	2.3	are	essentially	the	same.

TABLE	2.5
Private	school	effects:	Omitted	variables	bias



Notes:	This	 table	describes	 the	relationship	between	private	school	attendance	and	personal
characteristics.	Dependent	variables	are	the	respondent’s	SAT	score	(divided	by	100)	in	columns
(1)–(3)	and	log	parental	 income	in	columns	(4)–(6).	Each	column	shows	the	coefficient	 from	a
regression	of	the	dependent	variable	on	a	dummy	for	attending	a	private	institution	and	controls.
The	sample	size	is	14,238.	Standard	errors	are	reported	in	parentheses.

The	OVB	 formula	 is	 the	 Prime	Directive	 of	 applied	 econometrics,	 so
let’s	rock	it	with	our	numbers	and	see	how	it	works	out.	For	illustration,
we’ll	take	the	short	model	to	be	a	regression	of	log	wages	on	Pi	with	no
controls	 and	 the	 long	model	 to	 be	 the	 regression	 that	 adds	 individual
SAT	 scores.	 The	 short	 (no	 controls)	 coefficient	 on	Pi	 in	 column	 (1)	 of
Table	2.3	 is	 .212,	while	 the	corresponding	 long	coefficient	 (controlling



for	SATi)	in	column	(2)	is	.152.	As	can	also	be	seen	in	column	(2)	of	the
table,	the	effect	of	SATi	in	the	long	regression	is	.051.	The	first	column	in
Table	 2.5	 shows	 that	 the	 regression	 of	 omitted	 SATi	 on	 included	 Pi
produces	 a	 coefficient	 of	 1.165.	 Putting	 these	 together,	we	 have	OVB,
two	ways:

Compare	this	with	the	parallel	calculation	taking	us	from	column	(4)
to	 column	 (5)	 in	 Table	 2.3.	 These	 columns	 report	 results	 from	models
that	include	self-revelation	controls.	Here,	Short	−	Long	is	small:	.034	−
.031	=	.003,	to	be	precise.	Both	the	short	and	long	regressions	include
selectivity	controls	 from	the	self-revelation	model,	as	does	 the	 relevant
auxiliary	 regression	 of	 own	 SAT	 scores	 on	 Pi.	 With	 self-revelation
controls	included	in	both	models,	we	have

(Rounding	error	with	small	numbers	pushes	us	off	of	the	target	of	.003.)
The	effect	of	the	omitted	SATi	in	the	long	regression	falls	here	from	.051
to	 .036,	while	 the	 regression	of	omitted	on	 included	goes	 from	a	hefty
1.165	 to	 something	 an	 order	 of	 magnitude	 smaller	 at	 .066	 (shown	 in
column	 (3)	 of	 Table	 2.5).	 This	 shows	 that,	 conditional	 on	 the	 number
and	average	selectivity	of	schools	applied	to,	students	who	chose	private
and	public	schools	aren’t	very	different,	at	least	as	far	as	their	own	SAT
scores	 go.	 Consequently,	 the	 gap	 between	 short	 and	 long	 estimates
disappears.
Because	 our	 estimated	 private	 school	 effect	 is	 insensitive	 to	 the
inclusion	of	 the	available	ability	and	 family	background	variables	once



the	 self-revelation	 controls	 are	 included,	 other	 control	 variables,
including	those	for	which	we	have	no	data,	might	matter	little	as	well.	In
other	 words,	 any	 remaining	 OVB	 due	 to	 uncontrolled	 differences	 is
probably	modest.12	This	circumstantial	evidence	for	modest	OVB	doesn’t
guarantee	 that	 the	regression	results	discussed	 in	 this	chapter	have	 the
same	 causal	 force	 as	 results	 from	a	 randomized	 trial—we’d	 still	 rather
have	a	real	experiment.	At	a	minimum,	however,	these	findings	call	into
question	claims	 for	a	 substantial	earnings	advantage	due	 to	attendance
at	expensive	private	colleges.

MASTER	STEVEFU:	In	a	nutshell,	please,	Grasshopper.
GRASSHOPPER:	Causal	comparisons	compare	like	with	like.	In	assessing
the	effects	of	college	choice,	we	focus	on	students	with	similar
characteristics.
MASTER	STEVEFU:	Each	is	different	in	a	thousand	ways.	Must	all	ways
be	similar?
GRASSHOPPER:	Good	comparisons	eliminate	systematic	differences
between	those	who	chose	one	path	and	those	who	choose	another,
when	such	differences	are	associated	with	outcomes.
MASTER	STEVEFU:	How	is	this	accomplished?
GRASSHOPPER:	The	method	of	matching	sorts	individuals	into	groups
with	the	same	values	of	control	variables,	like	measures	of	ability
and	family	background.	Matched	comparisons	within	these	groups
are	then	averaged	to	get	a	single	overall	effect.
MASTER	STEVEFU:	And	regression?
GRASSHOPPER:	Regression	is	an	automated	matchmaker.	The
regression	estimate	of	a	causal	effect	is	also	an	average	of	within-
group	comparisons.
MASTER	STEVEFU:	What	is	the	Tao	of	OVB?
GRASSHOPPER:	OVB	is	the	difference	between	short	and	long
regression	coefficients.	The	long	regression	includes	additional
controls,	those	omitted	from	the	short.	Short	equals	long	plus	the



effect	of	omitted	in	long	times	the	regression	of	omitted	on
included.
MASTER	JOSHWAY:	Nothing	omitted	here,	Grasshopper.

Masters	of	’Metrics:	Galton	and	Yule

The	 term	 “regression”	 was	 coined	 by	 Sir	 Francis	 Galton,	 Charles
Darwin’s	 half-cousin,	 in	 1886.	 Galton	 had	many	 interests,	 but	 he	 was
gripped	by	Darwin’s	masterpiece,	The	Origin	of	Species.	Galton	hoped	to
apply	Darwin’s	 theory	of	evolution	 to	variation	 in	human	 traits.	 In	 the
course	 of	 his	 research,	 Galton	 studied	 attributes	 ranging	 from
fingerprints	 to	beauty.	He	was	also	one	of	many	British	 intellectuals	 to
use	Darwin	in	the	sinister	service	of	eugenics.	This	regrettable	diversion
notwithstanding,	 his	 work	 in	 theoretical	 statistics	 had	 a	 lasting	 and
salutary	 effect	 on	 social	 science.	Galton	 laid	 the	 statistical	 foundations
for	quantitative	social	science	of	the	sort	that	grips	us.

Galton	 discovered	 that	 the	 average	 heights	 of	 fathers	 and	 sons	 are
linked	 by	 a	 regression	 equation.	 He	 also	 uncovered	 an	 interesting
implication	 of	 this	 particular	 regression	 model:	 the	 average	 height	 of
sons	is	a	weighted	average	of	their	fathers’	height	and	the	average	height
in	the	population	from	which	the	fathers	and	sons	were	sampled.	Thus,
parents	who	are	taller	than	average	will	have	children	who	are	not	quite



as	 tall,	while	 parents	who	 are	 shorter	 than	 average	will	 have	 children
who	 are	 a	 bit	 taller.	 To	 be	 specific,	 Master	 Stevefu,	 who	 is	 6′3″,	 can
expect	 his	 children	 to	 be	 tall,	 though	 not	 as	 tall	 as	 he	 is.	 Thankfully,
however,	Master	 Joshway,	 who	 is	 5′6″	 on	 a	 good	 day,	 can	 expect	 his
children	to	attain	somewhat	grander	stature.
Galton	 explained	 this	 averaging	 phenomenon	 in	 his	 celebrated	 1886
paper	 “Regression	 towards	Mediocrity	 in	Hereditary	 Stature.”13	 Today,
we	call	this	property	“regression	to	the	mean.”	Regression	to	the	mean	is
not	a	causal	relationship.	Rather,	it’s	a	statistical	property	of	correlated
pairs	of	variables	like	the	heights	of	fathers	and	sons.	Although	fathers’
and	 sons’	 heights	 are	 never	 exactly	 the	 same,	 their	 frequency
distributions	 are	 essentially	 unchanging.	 This	 distributional	 stability
generates	the	Galton	regression.
We	 see	 regression	as	 a	 statistical	procedure	with	 the	power	 to	make
comparisons	 more	 equal	 through	 the	 inclusion	 of	 control	 variables	 in
models	for	treatment	effects.	Galton	seems	to	have	been	uninterested	in
regression	 as	 a	 control	 strategy.	 The	 use	 of	 regression	 for	 statistical
control	 was	 pioneered	 by	 George	 Udny	 Yule,	 a	 student	 of	 statistician
Karl	 Pearson,	 who	 was	 Galton’s	 protégé.	 Yule	 realized	 that	 Galton’s
regression	method	 could	be	 extended	 to	 include	many	variables.	 In	 an
1899	 paper,	 Yule	 used	 this	 extension	 to	 link	 the	 administration	 of	 the
English	Poor	Laws	in	different	counties	to	the	likelihood	county	residents
were	 poor,	 while	 controlling	 for	 population	 growth	 and	 the	 age
distribution	in	the	county.14	The	poor	laws	provided	subsistence	for	the
indigent,	 usually	 by	 offering	 shelter	 and	 employment	 in	 institutions
called	 workhouses.	 Yule	 was	 particularly	 interested	 in	 whether	 the
practice	 of	 outdoor	 relief,	 which	 provided	 income	 support	 for	 poor
people	 without	 requiring	 them	 to	 move	 to	 a	 workhouse,	 increased
poverty	rates	by	making	pauperism	less	onerous.	This	 is	a	well-defined
causal	question	much	like	those	that	occupy	social	scientists	today.



Appendix:	Regression	Theory

Conditional	Expectation	Functions
Chapter	 1	 introduces	 the	 notion	 of	 mathematical	 expectation,	 called
“expectation”	for	short.	We	write	E[Yi]	for	the	expectation	of	a	variable,
Yi.	 We’re	 also	 concerned	 with	 conditional	 expectations,	 that	 is,	 the
expectation	 of	 a	 variable	 in	 groups	 (also	 called	 “cells”)	 defined	 by	 a
second	variable.	Sometimes	this	second	variable	is	a	dummy,	taking	on
only	 two	 values,	 but	 it	 need	 not	 be.	 Often,	 as	 in	 this	 chapter,	 we’re
interested	in	conditional	expectations	in	groups	defined	by	the	values	of
variables	 that	 aren’t	 dummies,	 for	 example,	 the	 expected	 earnings	 for
people	 who	 have	 completed	 16	 years	 of	 schooling.	 This	 sort	 of
conditional	expectation	can	be	written	as

and	 it’s	 read	as	“The	conditional	expectation	of	Yi	given	 that	Xi	equals
the	particular	value	x.”
Conditional	 expectations	 tell	 us	 how	 the	 population	 average	 of	 one
variable	changes	as	we	move	 the	conditioning	variable	over	 the	values
this	variable	might	assume.	For	every	value	of	the	conditioning	variable,



we	 might	 get	 a	 different	 average	 of	 the	 dependent	 variable,	 Yi.	 The
collection	 of	 all	 such	 averages	 is	 called	 the	 conditional	 expectation
function	 (CEF	 for	 short).	 E[Yi|Xi]	 is	 the	 CEF	 of	 Yi	 given	 Xi,	 without
specifying	a	value	for	Xi,	while	E[Yi|Xi	=	x]	is	one	point	in	the	range	of
this	function.
A	 favorite	CEF	of	ours	appears	 in	Figure	2.1.	The	dots	 in	 this	 figure

show	 the	 average	 log	 weekly	 wage	 for	 men	 with	 different	 levels	 of
schooling	(measured	by	highest	grade	completed),	with	schooling	levels
arrayed	 on	 the	 X-axis	 (data	 here	 come	 from	 the	 1980	 U.S.	 Census).
Though	 it	 bobs	 up	 and	 down,	 the	 earnings-schooling	 CEF	 is	 strongly
upward-sloping,	with	an	average	slope	of	about	.1.	In	other	words,	each
year	of	schooling	is	associated	with	wages	that	are	about	10%	higher	on
average.

FIGURE	2.1
The	CEF	and	the	regression	line

Notes:	This	figure	shows	the	conditional	expectation	function	(CEF)	of	log	weekly	wages	given
years	of	education,	and	the	line	generated	by	regressing	log	weekly	wages	on	years	of	education
(plotted	as	a	broken	line).

Many	 of	 the	 CEFs	 we’re	 interested	 in	 involve	 more	 than	 one
conditioning	variable,	 each	of	which	 takes	on	 two	or	more	values.	We
write



for	 a	 CEF	 with	 K	 conditioning	 variables.	 With	 many	 conditioning
variables,	the	CEF	is	harder	to	plot,	but	the	idea	is	the	same.	E[Yi|X1i	=
x1,	…,	XKi	=	xK]	gives	the	population	average	of	Yi	with	these	K	other
variables	 held	 fixed.	 Instead	 of	 looking	 at	 average	 wages	 conditional
only	on	schooling,	for	example,	we	might	also	condition	on	cells	defined
by	age,	race,	and	sex.

Regression	and	the	CEF
Table	2.1	 illustrates	 the	matchmaking	 idea	by	comparing	students	who
attended	public	and	private	colleges,	after	sorting	students	into	cells	on
the	basis	of	the	colleges	to	which	they	applied	and	were	admitted.	The
body	of	the	chapter	explains	how	we	see	regression	as	a	quick	and	easy
way	of	automating	such	matched	comparisons.	Here,	we	use	the	CEF	to
make	this	interpretation	of	regression	more	rigorous.15

The	 regression	 estimates	 of	 equation	 (2.2)	 reported	 in	 Table	 2.3
suggest	 that	private	 school	attendance	 is	unrelated	 to	average	earnings
once	 individual	 SAT	 scores,	 parental	 income,	 and	 the	 selectivity	 of
colleges	 applied	 and	 admitted	 to	 are	 held	 fixed.	 As	 a	 simplification,
suppose	 that	 the	 CEF	 of	 log	 wages	 is	 a	 linear	 function	 of	 these
conditioning	variables.	Specifically,	assume	that

where	Greek	letters,	as	always,	are	parameters.	When	the	CEF	of	ln	Yi	is
a	 linear	 function	of	 the	conditioning	variables	as	 in	equation	(2.6),	 the
regression	 of	 ln	Yi	 on	 these	 same	 conditioning	 variables	 recovers	 this
linear	 function.	 (We	 skip	 a	 detailed	 proof	 of	 this	 fact,	 though	 it’s	 not
hard	 to	 show.)	 In	 particular,	 given	 linearity,	 the	 coefficient	 on	 Pi	 in
equation	(2.2)	will	be	equal	to	the	coefficient	on	Pi	in	equation	(2.6).



With	a	linear	CEF,	regression	estimates	of	private	school	effects	based
on	equation	(2.2)	are	also	identical	to	those	we’d	get	from	a	strategy	that
(i)	matches	students	by	values	of	GROUPi,	SATi,	and	ln	PIi;	(ii)	compares
the	average	earnings	of	matched	students	who	went	to	private	(Pi	=	1)
and	 public	 (Pi	 =	 0)	 schools	 for	 each	 possible	 combination	 of	 the
conditioning	variables;	and	(iii)	produces	a	single	average	by	averaging
all	of	these	cell-specific	contrasts.	To	see	this,	it’s	enough	to	use	equation
(2.6)	to	write	cell-specific	comparisons	as

Because	our	linear	model	for	the	CEF	assumes	that	the	effect	of	private
school	attendance	is	equal	to	the	constant	β	in	every	cell,	any	weighted
average	of	cell-specific	private-attendance	contrasts	is	also	equal	to	β.
Linear	 models	 help	 us	 understand	 regression,	 but	 regression	 is	 a

wonderfully	 flexible	 tool,	 useful	 regardless	 of	 whether	 the	 underlying
CEF	is	linear.	Regression	inherits	this	flexibility	from	the	following	pair
of	closely	related	theoretical	properties:

▪	 	 If	E	 	 for	 some	 constants	a	 and	b1,
…,	bK,	 then	 the	 regression	of	Yi	on	X1i,	…,	XKi	has	 intercept	a
and	slopes	b1,	…,	bK.	In	other	words,	if	the	CEF	of	Yi	on	X1i,	…,
XKi	is	linear,	then	the	regression	of	Yi	on	X1i,	…,	XKi	is	it.

▪	 	 If	E[Yi|X1i,	…,	XKi]	 is	 a	nonlinear	 function	of	 the	 conditioning
variables,	then	the	regression	of	Yi	on	X1i,	…,	XKi	gives	the	best
linear	 approximation	 to	 this	 nonlinear	 CEF	 in	 the	 sense	 of
minimizing	 the	 expected	 squared	 deviation	 between	 the	 fitted
values	from	a	linear	model	and	the	CEF.

To	 summarize:	 if	 the	 CEF	 is	 linear,	 regression	 finds	 it;	 if	 not	 linear,
regression	 finds	 a	 good	 approximation	 to	 it.	 We’ve	 just	 used	 the	 first
theoretical	 property	 to	 interpret	 regression	 estimates	 of	 private	 school



effects	when	the	CEF	is	linear.	The	second	property	tells	us	that	we	can
expect	 regression	 estimates	 of	 a	 treatment	 effect	 to	 be	 close	 to	 those
we’d	 get	 by	 matching	 on	 covariates	 and	 then	 averaging	 within-cell
treatment-control	differences,	even	if	the	CEF	isn’t	linear.
Figure	 2.1	 documents	 the	manner	 in	which	 regression	 approximates

the	nonlinear	CEF	of	 log	wages	conditional	on	schooling.	Although	the
CEF	 bounces	 around	 the	 regression	 line,	 this	 line	 captures	 the	 strong
positive	 relationship	 between	 schooling	 and	 wages.	 Moreover,	 the
regression	 slope	 is	 close	 to	 E{E[Yi|Xi]−	 E[Yi|Xi	 −	 1]};	 that	 is,	 the
regression	 slope	 also	 comes	 close	 to	 the	 expected	 effect	 of	 a	 one-unit
change	in	Xi	on	E[Yi|Xi].16

Bivariate	Regression	and	Covariance

Regression	is	closely	related	to	the	statistical	concept	of	covariance.	The
covariance	between	two	variables,	Xi	and	Yi,	is	defined	as

Covariance	has	three	important	properties:

	 	 (i)	 The	 covariance	 of	 a	 variable	 with	 itself	 is	 its	 variance;	
.

	(ii)	If	the	expectation	of	either	Xi	or	Yi	is	0,	the	covariance	between
them	is	the	expectation	of	their	product;	C(Xi,	Yi)	=	E[XiYi].

(iii)	The	covariance	between	linear	functions	of	variables	Xi	and	Yi
—written	Wi	=	a	+	bXi	and	Zi	=	c	+	dYi	for	constants	a,	b,	c,
d—is	given	by

The	 intimate	 connection	 between	 regression	 and	 covariance	 can	 be
seen	 in	 a	 bivariate	 regression	 model,	 that	 is,	 a	 regression	 with	 one
regressor,	 Xi,	 plus	 an	 intercept.17	 The	 bivariate	 regression	 slope	 and



intercept	are	the	values	of	a	and	b	that	minimize	the	associated	residual
sum	of	squares,	which	we	write	as

The	 term	 RSS	 references	 a	 sum	 of	 squares	 because,	 carrying	 out	 this
minimization	 in	 a	 particular	 sample,	 we	 replace	 expectation	 with	 a
sample	average	or	sum.	The	solution	for	the	bivariate	case	is

An	 implication	 of	 equation	 (2.7)	 is	 that	 when	 two	 variables	 are
uncorrelated	(have	a	covariance	of	0),	the	regression	of	either	one	on	the
other	generates	a	slope	coefficient	of	0.	Likewise,	a	bivariate	regression
slope	of	0	implies	the	two	variables	involved	are	uncorrelated.

Fits	and	Residuals
Regression	breaks	any	dependent	variable	 into	 two	pieces.	Specifically,
for	dependent	variable	Yi,	we	can	write

The	first	term	consists	of	the	fitted	values,	Ŷi,	sometimes	said	to	be	the
part	of	Yi	that’s	“explained”	by	the	model.	The	second	part,	the	residuals,
ei,	is	what’s	left	over.
Regression	 residuals	 and	 the	 regressors	 included	 in	 the	 model	 that

produced	them	are	uncorrelated.	In	other	words,	if	ei	is	the	residual	from
a	 regression	 on	 X1i,	 …,	 XKi,	 then	 the	 regression	 of	 ei	 on	 these	 same
variables	produces	coefficients	that	are	all	0.	Because	fitted	values	are	a
linear	 combination	 of	 regressors,	 they’re	 also	 uncorrelated	 with
residuals.	We	summarize	these	important	properties	here.



PROPERTIES	OF	RESIDUALS	Suppose	that	α	and	β1,	…,	βK	are	the	intercept	and
slope	 coefficients	 from	 a	 regression	 of	Yi	 on	X1i,	…,	XKi.	 The	 fitted
values	from	this	regression	are

and	the	associated	regression	residuals	are

Regression	residuals

		(i)	have	expectation	and	sample	mean	0:	E[ei]	=	
	 (ii)	 are	 uncorrelated	 in	 both	 population	 and	 sample	 with	 all
regressors	 that	 made	 them	 and	 with	 the	 corresponding	 fitted
values.	That	is,	for	each	regressor,	Xki,

You	can	take	these	properties	on	faith,	but	for	those	who	know	a	little
calculus,	 they’re	 easy	 to	 establish.	 Start	 with	 the	 fact	 that	 regression
parameters	 and	 estimates	 minimize	 the	 residual	 sum	 of	 squares.	 The
first-order	 conditions	 for	 this	 minimization	 problem	 amount	 to
statements	equivalent	to	(i)	and	(ii).

Regression	for	Dummies
An	 important	 regression	 special	 case	 is	 bivariate	 regression	 with	 a
dummy	 regressor.	 The	 conditional	 expectation	 of	 Yi	 given	 a	 dummy
variable,	Zi,	takes	on	two	values.	Write	them	in	Greek,	like	this:



so	that

is	the	difference	in	expected	Yi	with	the	dummy	regressor,	Zi,	switched
on	and	off.
Using	this	notation,	we	can	write

This	 shows	 that	 E[Yi|Zi]	 is	 a	 linear	 function	 of	 Zi,	 with	 slope	 β	 and
intercept	 α.	 Because	 the	 CEF	 with	 a	 single	 dummy	 variable	 is	 linear,
regression	fits	 this	CEF	perfectly.	As	a	result,	 the	regression	slope	must
also	be	β	=	E[Yi|Zi	=	1]	−	E[Yi|Zi	=	0],	the	difference	in	expected	Yi
with	Zi	switched	on	and	off.
Regression	for	dummies	is	 important	because	dummy	regressors	crop

up	 often,	 as	 in	 our	 analyses	 of	 health	 insurance	 and	 types	 of	 college
attended.

Regression	Anatomy	and	the	OVB	Formula

The	 most	 interesting	 regressions	 are	 multiple;	 that	 is,	 they	 include	 a
causal	variable	of	interest,	plus	one	or	more	control	variables.	Equation
(2.2),	for	example,	regresses	log	earnings	on	a	dummy	for	private	college
attendance	in	a	model	that	controls	for	ability,	family	background,	and
the	 selectivity	 of	 schools	 that	 students	 have	 applied	 to	 and	 been
admitted	 to.	 We’ve	 argued	 that	 control	 for	 covariates	 in	 a	 regression
model	 is	 much	 like	 matching.	 That	 is,	 the	 regression	 coeffiicent	 on	 a
private	school	dummy	in	a	model	with	controls	is	similar	to	what	we’d
get	 if	we	divided	students	 into	cells	based	on	these	controls,	compared



public	 school	 and	 private	 school	 students	 within	 these	 cells,	 and	 then
took	an	average	of	the	resulting	set	of	conditional	comparisons.	Here,	we
offer	a	more	detailed	“regression	anatomy”	lesson.
Suppose	the	causal	variable	of	interest	is	X1i	(say,	a	dummy	for	private

school)	 and	 the	 control	 variable	 is	X2i	 (say,	 SAT	 scores).	With	 a	 little
work,	 the	 coefficient	 on	X1i	 in	 a	 regression	 controlling	 for	X2i	 can	 be
written	as

where	 	is	the	residual	from	a	regression	of	X1i	on	X2i:

As	 always,	 residuals	 are	 uncorrelated	 with	 the	 regressors	 that	 made
them,	and	so	it	is	for	the	residual	 .	It’s	not	surprising,	therefore,	that
the	coefficient	on	X1i	in	a	multivariate	regression	that	controls	for	X2i	is
the	bivariate	coefficient	from	a	model	that	includes	only	the	part	of	X1i
that	is	uncorrelated	with	X2i.	This	important	regression	anatomy	formula
shapes	 our	 understanding	 of	 regression	 coefficients	 from	 around	 the
world.
The	 regression	anatomy	 idea	 extends	 to	models	with	more	 than	 two

regressors.	 The	 multivariate	 coefficient	 on	 a	 given	 regressor	 can	 be
written	 as	 the	 coefficient	 from	 a	 bivariate	 regression	 on	 the	 residual
from	 regressing	 this	 regressor	 on	 all	 others.	Here’s	 the	 anatomy	of	 the
kth	coefficient	in	a	model	with	K	regressors:

REGRESSION	ANATOMY

where	 	is	the	residual	from	a	regression	of	Xki	on	the	K	−	1	other



covariates	included	in	the	model.

Regression	anatomy	 is	 especially	 revealing	when	 the	controls	 consist
of	 dummy	 variables,	 as	 in	 equation	 (2.2).	 For	 the	 purposes	 of	 this
discussion,	 we	 simplify	 the	 model	 of	 interest	 to	 have	 only	 dummy
controls,	that	is,

Regression	anatomy	tells	us	that	the	coefficient	on	Pi	controlling	for	the
set	 of	 150	 GROUPji	 dummies	 is	 the	 bivariate	 coefficient	 from	 a
regression	on	 ,	where	 this	 is	 the	residual	 from	a	regression	of	Pi	on	a
constant	and	the	set	of	150	GROUPji	dummies.
It’s	helpful	here	to	add	a	second	subscript	to	index	groups	as	well	as

individuals.	In	this	scheme,	ln	Yij	is	the	log	earnings	of	college	graduate	i
in	 selectivity	 group	 j,	 while	 Pij	 is	 this	 graduate’s	 private	 school
enrollment	status.	What	is	the	residual,	 ,	from	the	auxiliary	regression
of	Pij	on	the	set	of	150	selectivity-group	dummies?	Because	the	auxiliary
regression	that	generates	 	has	a	parameter	for	every	possible	value	of
the	underlying	CEF,	this	regression	captures	the	CEF	of	Pij	conditional	on
selectivity	 group	 perfectly.	 (Here	 we’re	 extending	 the	 dummy-variable
result	described	by	equation	(2.8)	to	regression	on	dummies	describing	a
categorical	 variable	 that	 takes	 on	 many	 values	 instead	 of	 just	 two.)
Consequently,	the	fitted	value	from	a	regression	of	Pij	on	the	full	set	of
selectivity-group	dummies	is	the	mean	private	school	attendance	rate	in
each	group.	For	applicant	i	in	group	j,	the	auxiliary	regression	residual	is
therefore	 ,	where	 	is	shorthand	for	the	mean	private	school
enrollment	rate	in	the	selectivity	group	to	which	i	belongs.
Finally,	 putting	 the	 pieces	 together,	 regression	 anatomy	 tells	 us	 that

the	multivariate	β	in	the	model	described	by	equation	(2.9)	is



This	expression	reveals	that,	just	as	if	we	were	to	manually	sort	students
into	groups	and	compare	public	and	private	students	within	each	group,
regression	 on	 private	 school	 attendance	 with	 control	 for	 selectivity-
group	dummies	is	also	a	within-group	procedure:	variation	across	groups
is	removed	by	subtracting	 	to	construct	the	residual,	 .	Moreover,	as
for	groups	C	and	D	in	Table	2.1,	equation	(2.10)	implies	that	applicant
groups	 in	which	everyone	attends	 either	a	public	or	private	 institution
are	uninformative	about	the	effects	of	private	school	attendance	because	

	is	0	for	everyone	in	such	groups.
The	OVB	formula,	used	at	 the	end	of	 this	chapter	(in	Section	2.3)	to

interpret	estimates	from	models	with	different	sets	of	controls,	provides
another	revealing	take	on	regression	anatomy.	Call	the	coefficient	on	X1i
in	a	multivariate	regression	model	controlling	for	X2i	the	long	regression
coefficient,	βl:

Call	the	coefficient	on	X1i	in	a	bivariate	regression	(that	is,	without	X2i)
the	short	regression	coefficient,	βs:

The	 OVB	 formula	 describes	 the	 relationship	 between	 short	 and	 long
coefficients	as	follows.

OMITTED	VARIABLES	BIAS	(OVB)	FORMULA

where	γ	is	the	coefficient	on	X2i	in	the	long	regression,	and	π21	is	the
coefficient	on	X1i	 in	a	regression	of	X2i	on	X1i.	 In	words:	short	 equals



long	plus	the	effect	of	omitted	times	the	regression	of	omitted	on	included.

This	 central	 formula	 is	 worth	 deriving.	 The	 slope	 coefficient	 in	 the
short	model	is

Substituting	the	long	model	for	Yi	in	equation	(2.11)	gives

The	first	equals	sign	comes	from	the	fact	that	the	covariance	of	a	linear
combination	 of	 variables	 is	 the	 corresponding	 linear	 combination	 of
covariances	 after	 distributing	 terms.	Also,	 the	 covariance	of	 a	 constant
with	anything	else	is	0,	and	the	covariance	of	a	variable	with	itself	is	the
variance	 of	 that	 variable.	 The	 second	 equals	 sign	 comes	 from	 the	 fact
that	 ,	 because	 residuals	 are	uncorrelated	with	 the	 regressors
that	made	 them	( 	 is	 the	 residual	 from	a	regression	 that	 includes	X1i).
The	 third	 equals	 sign	 defines	 π21	 to	 be	 the	 coefficient	 on	 X1i	 in	 a
regression	of	X2i	on	X1i.18

Often,	 as	 in	 the	 discussion	 of	 equations	 (2.2)	 and	 (2.5),	 we’re
interested	 in	 short	 vs.	 long	 comparisons	 across	 regression	models	 that
include	a	set	of	controls	common	to	both	models.	The	OVB	formula	for
this	 scenario	 is	 a	 straightforward	 extension	 of	 the	 one	 above.	 Call	 the
coefficient	on	X1i	in	a	multivariate	regression	controlling	for	X2i	and	X3i
the	 long	 regression	 coefficient,	 βl;	 call	 the	 coefficient	 on	 X1i	 in	 a
multivariate	regression	controlling	only	for	X3i	(that	is,	without	X2i)	the
short	regression	coefficient,	βs.	The	OVB	formula	in	this	case	can	still	be



written

where	 γ	 is	 the	 coefficient	 on	 X2i	 in	 the	 long	 regression,	 but	 that
regression	now	includes	X3i	as	well	as	X2i,	and	π21	 is	 the	coefficient	on
X1i	 in	a	 regression	of	X2i	on	both	X1i	 and	X3i.	Once	again,	we	can	say:
short	equals	long	plus	the	effect	of	omitted	times	the	regression	of	omitted	on
included.	 We	 leave	 it	 to	 the	 reader	 to	 derive	 equation	 (2.12);	 this
derivation	 tests	 your	 understanding	 (and	 makes	 an	 awesome	 exam
question).

Building	Models	with	Logs
The	regressions	discussed	in	this	chapter	look	like

a	repeat	of	equation	(2.2).	What’s	up	with	 ln	Yi	 on	 the	 left-hand	 side?
Why	use	logs	and	not	the	variable	Yi	itself?	The	answer	is	easiest	to	see
in	a	bivariate	regression,	say,

where	Pi	is	a	dummy	for	private	school	attendance.	Because	this	is	a	case
of	regression	for	dummies,	we	have

In	other	words,	regression	in	this	case	fits	the	CEF	perfectly.
Suppose	we	engineer	a	ceteris	paribus	 change	 in	Pi	 for	 student	 i.	This

reveals	 potential	 outcome	 Y0i	 when	 Pi	 =	 0	 and	 Y1i	 when	 Pi	 =	 1.
Thinking	now	of	equation	(2.13)	as	a	model	for	the	log	of	these	potential
outcomes,	we	have



The	difference	in	potential	outcomes	is	therefore

Rearranging	further	gives

where	 Δ%Yp	 is	 shorthand	 for	 the	 percentage	 change	 in	 potential
outcomes	induced	by	Pi.	Calculus	tells	us	that	ln{1+	Δ%Yp}	is	close	to	Δ
%Yp,	when	the	latter	is	small.	From	this,	we	conclude	that	the	regression
slope	in	a	model	with	ln	Yi	on	the	left-hand	side	gives	the	approximate
percentage	 change	 in	 Yi	 generated	 by	 changing	 the	 corresponding
regressor.
To	 calculate	 the	 exact	 percentage	 change	 generated	 by	 changing	 Pi,

exponentiate	both	sides	of	equation	(2.14)

so

When	β	 is	 less	 than	 about	 .2,	 exp(β)	−	 1	 and	 β	 are	 close	 enough	 to
justify	reference	to	the	latter	as	percentage	change.19

You	might	 hear	 masters	 describe	 regression	 coefficients	 from	 a	 log-
linear	 model	 as	 measuring	 “log	 points.”	 This	 terminology	 reminds



listeners	 that	 the	 percentage	 change	 interpretation	 is	 approximate.	 In
general,	log	points	underestimate	percentage	change,	that	is,

with	 the	 gap	 between	 the	 two	 growing	 as	 β	 increases.	 For	 example,
when	β	=	.05,	exp(β)	−	1	=	.051,	but	when	β	=	.3,	exp(β)	−	1	=	.35.

Regression	Standard	Errors	and	Confidence	Intervals
Our	regression	discussion	has	largely	ignored	the	fact	that	our	data	come
from	samples.	As	we	noted	in	the	appendix	to	the	first	chapter,	sample
regression	 estimates,	 like	 sample	 means,	 are	 subject	 to	 sampling
variance.	Although	we	imagine	the	underlying	relationship	quantified	by
a	 regression	 to	 be	 fixed	 and	 nonrandom,	 we	 expect	 estimates	 of	 this
relationship	to	change	when	computed	in	a	new	sample	drawn	from	the
same	 population.	 Suppose	 we’re	 after	 the	 relationship	 between	 the
earnings	of	college	graduates	and	the	types	of	colleges	they’ve	attended.
We’re	 unlikely	 to	 have	 data	 on	 the	 entire	 population	 of	 graduates.	 In
practice,	therefore,	we	work	with	samples	drawn	from	the	population	of
interest.	 (Even	 if	 we	 had	 a	 complete	 enumeration	 of	 the	 student
population	 in	 one	 year,	 different	 students	will	 have	 gone	 to	 school	 in
other	 years.)	The	data	 set	 analyzed	 to	produce	 the	 estimates	 in	Tables
2.2–2.5	 is	 one	 such	 sample.	 We	 would	 like	 to	 quantify	 the	 sampling
variance	associated	with	these	estimates.
Just	 as	 with	 a	 sample	 mean,	 the	 sampling	 variance	 of	 a	 regression

coefficient	is	measured	by	its	standard	error.	In	the	appendix	to	Chapter
1,	we	explained	that	the	standard	error	of	a	sample	average	is

The	 standard	 error	 of	 the	 slope	 estimate	 in	 a	 bivariate	 regression	 ( )
looks	similar	and	can	be	written	as



where	σe	 is	the	standard	deviation	of	the	regression	residuals,	and	σX	 is
the	standard	deviation	of	the	regressor,	Xi.
Like	the	standard	error	of	a	sample	average,	regression	standard	errors

decrease	with	 sample	 size.	 Standard	errors	 increase	 (that	 is,	 regression
estimates	are	less	precise)	when	the	residual	variance	is	large.	This	isn’t
surprising,	 since	 a	 large	 residual	 variance	 means	 the	 regression	 line
doesn’t	fit	very	well.	On	the	other	hand,	variability	in	regressors	is	good:
as	 σX	 increases,	 the	 slope	 estimate	 becomes	 more	 precise.	 This	 is
illustrated	 in	 Figure	 2.2,	 which	 shows	 how	 adding	 variability	 in	 Xi
(specifically,	adding	the	observations	plotted	in	gray)	helps	pin	down	the
slope	linking	Yi	and	Xi.

FIGURE	2.2
Variance	in	X	is	good

The	regression	anatomy	formula	for	multiple	regression	carries	over	to
standard	errors.	In	a	multivariate	model	like	this,



the	standard	error	for	the	kth	sample	slope,	 ,	is

where	 	is	the	standard	deviation	of	 ,	the	residual	from	a	regression
of	Xki	on	all	other	regressors.	The	addition	of	controls	has	two	opposing
effects	 on	 SE( ).	 The	 residual	 variance	 (σe	 in	 the	 numerator	 of	 the
standard	error	 formula)	 falls	when	covariates	 that	predict	Yi	 are	added
to	the	regression.	On	the	other	hand,	the	standard	deviation	of	 	in	the
denominator	 of	 the	 standard	 error	 formula	 is	 less	 than	 the	 standard
deviation	 of	 Xki,	 increasing	 the	 standard	 error.	 Additional	 covariates
explain	 some	 of	 the	 variation	 in	 other	 regressors,	 and	 this	 variation	 is
removed	by	virtue	of	regression	anatomy.	The	upshot	of	these	changes	to
top	and	bottom	can	be	either	an	increase	or	decrease	in	precision.
Standard	 errors	 computed	 using	 equation	 (2.15)	 are	 nowadays

considered	 old-fashioned	 and	 are	 not	 often	 seen	 in	 public.	 The	 old-
fashioned	 formula	 is	 derived	 assuming	 the	 variance	 of	 residuals	 is
unrelated	 to	 regressors—a	 scenario	 that	 masters	 call	 homoskedasticity.
Homoskedastic	 residuals	 can	 make	 regression	 estimates	 a	 statistically
efficient	 matchmaker.	 However,	 because	 the	 homoskedasticity
assumption	may	 not	 be	 satisfied,	 kids	 today	 rock	 a	 more	 complicated
calculation	known	as	robust	standard	errors.
The	robust	standard	error	formula	can	be	written	as

Robust	standard	errors	allow	for	 the	possibility	 that	 the	regression	 line
fits	 more	 or	 less	 well	 for	 different	 values	 of	 Xi,	 a	 scenario	 known	 as
heteroskedasticity.	If	the	residuals	turn	out	to	be	homoskedastic	after	all,
the	robust	numerator	simplifies:



In	 this	 case,	 estimates	 of	RSE( )	 should	 be	 close	 to	 estimates	 of	SE( ),
since	 the	 theoretical	 standard	errors	are	 then	 identical.	But	 if	 residuals
are	 indeed	heteroskedastic,	estimates	of	RSE( )	 usually	provide	 a	more
accurate	 (and	 typically	 somewhat	 larger)	 measure	 of	 sampling
variance.20
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