
192

This chapter continues the treatment of linear regression with a single regressor. 
Chapter 4 explained how the OLS estimator bn1 of the slope coefficient b1 differs 

from one sample to the next—that is, how bn1 has a sampling distribution. In this 
chapter, we show how knowledge of this sampling distribution can be used to 
make statements about b1 that accurately summarize the sampling uncertainty. 
The starting point is the standard error of the OLS estimator, which measures the 
spread of the sampling distribution of  bn1. Section 5.1 provides an expression for 
this standard error (and for the standard error of the OLS estimator of the intercept), 
then shows how to use bn1 and its standard error to test hypotheses. Section 5.2 
explains how to construct confidence intervals for b1. Section 5.3 takes up the  
special case of a binary regressor.

Sections 5.1 through 5.3 assume that the three least squares assumptions of 
Chapter 4 hold. If, in addition, some stronger conditions hold, then some stronger 
results can be derived regarding the distribution of the OLS estimator. One of these 
stronger conditions is that the errors are homoskedastic, a concept introduced in 
Section 5.4. Section 5.5 presents the Gauss–Markov theorem, which states that, 
under certain conditions, OLS is efficient (has the smallest variance) among a cer-
tain class of estimators. Section 5.6 discusses the distribution of the OLS estimator 
when the population distribution of the regression errors is normal.

	 5.1	 Testing Hypotheses About  
One of the Regression Coefficients

Your client, the superintendent, calls you with a problem. She has an angry tax-
payer in her office who asserts that cutting class size will not help boost test scores, 
so reducing them is a waste of money. Class size, the taxpayer claims, has no effect 
on test scores.

The taxpayer’s claim can be rephrased in the language of regression analysis. 
Because the effect on test scores of a unit change in class size is bClassSize, the tax-
payer is asserting that the population regression line is flat—that is, the slope 
bClassSize of the population regression line is zero. Is there, the superintendent asks, 
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evidence in your sample of 420 observations on California school districts that this 
slope is nonzero? Can you reject the taxpayer’s hypothesis that bClassSize = 0, or 
should you accept it, at least tentatively pending further new evidence?

This section discusses tests of hypotheses about the slope b1 or intercept b0 of 
the population regression line. We start by discussing two-sided tests of the slope 
b1 in detail, then turn to one-sided tests and to tests of hypotheses regarding the 
intercept b0.

Two-Sided Hypotheses Concerning b1

The general approach to testing hypotheses about the coefficient b1 is the same as 
to testing hypotheses about the population mean, so we begin with a brief review.

Testing hypotheses about the population mean.  Recall from Section 3.2 that the 
null hypothesis that the mean of Y is a specific value mY,0 can be written as 
H0 : E(Y ) = mY,0, and the two-sided alternative is H1 : E(Y ) ≠ mY,0.

The test of the null hypothesis H0 against the two-sided alternative proceeds as in 
the three steps summarized in Key Concept 3.6. The first is to compute the standard 
error of Y, SE(Y ), which is an estimator of the standard deviation of the sampling 
distribution of Y. The second step is to compute the t-statistic, which has the general 
form given in Key Concept 5.1; applied here, the t-statistic is t = (Y - mY,0)>SE(Y ).

The third step is to compute the p-value, which is the smallest significance level 
at which the null hypothesis could be rejected, based on the test statistic actually 
observed; equivalently, the p-value is the probability of obtaining a statistic, by 
random sampling variation, at least as different from the null hypothesis value as is 
the statistic actually observed, assuming that the null hypothesis is correct (Key 
Concept 3.5). Because the t-statistic has a standard normal distribution in large 
samples under the null hypothesis, the p-value for a two-sided hypothesis test is 
2Φ(- � t act �), where tact is the value of the t-statistic actually computed and Φ is the 
cumulative standard normal distribution tabulated in Appendix Table 1. Alternatively, 

General Form of the t-Statistic

In general, the t-statistic has the form

	 t =
estimator - hypothesized value

standard error of the estimator
.	 (5.1)

Key Concept

5.1
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the third step can be replaced by simply comparing the t-statistic to the critical value 
appropriate for the test with the desired significance level. For example, a two-sided 
test with a 5% significance level would reject the null hypothesis if � t act � 7 1.96. In 
this case, the population mean is said to be statistically significantly different from 
the hypothesized value at the 5% significance level.

Testing hypotheses about the slope b1.  At a theoretical level, the critical feature 
justifying the foregoing testing procedure for the population mean is that, in large 
samples, the sampling distribution of Y is approximately normal. Because bn1 also 
has a normal sampling distribution in large samples, hypotheses about the true 
value of the slope b1 can be tested using the same general approach.

The null and alternative hypotheses need to be stated precisely before they 
can be tested. The angry taxpayer’s hypothesis is that bClassSize = 0. More gener-
ally, under the null hypothesis the true population slope b1 takes on some specific 
value, b1,0. Under the two-sided alternative, b1 does not equal b1,0. That is, the null 
hypothesis and the two-sided alternative hypothesis are

	 H0 : b1 = b1,0 vs. H1 : b1 ≠ b1,0 (two@sided alternative).	 (5.2)

To test the null hypothesis H0, we follow the same three steps as for the popula-
tion mean.

The first step is to compute the standard error of Bn1, SE(bn1). The standard 
error of bn1 is an estimator of s

nb1
 the standard deviation of the sampling distribu-

tion of bn1. Specifically,

	 SE(bn1) = 4sn 2
nb1

,	 (5.3)

where

	 sn 2
nb1
=

1
n *

1
n - 2

 a
n

i= 1
(Xi - X )2un2

i

c 1
n a

n

i= 1
(Xi - X )2 d

2 .	 (5.4)

The estimator of the variance in Equation (5.4) is discussed in Appendix (5.1). 
Although the formula for sn 2

nb1
  is complicated, in applications the standard error 

is computed by regression software so that it is easy to use in practice.
The second step is to compute the t-statistic,

	 t =
bn1 - b1,0

SE(bn1)
.	 (5.5)
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The third step is to compute the p-value, the probability of observing a value 
of bn1 at least as different from b1,0 as the estimate actually computed (bn act

1 ), assum-
ing that the null hypothesis is correct. Stated mathematically,

	  p@value = PrH0
30bn1 - b1,0 0 7 0bn act

1 - b1,0 04 	

	  = PrH0
c ` b

n

1 - b1,0

SE(bn1)
` 7 ` b

nact
1 - b1,0

SE(bn1)
` d = PrH0

( 0 t 0 7 0 t act 0 ),	 (5.6)

where PrH0
 denotes the probability computed under the null hypothesis, the sec-

ond equality follows by dividing by SE(bn1), and t act is the value of the t-statistic 
actually computed. Because bn1 is approximately normally distributed in large 
samples, under the null hypothesis the t-statistic is approximately distributed as a 
standard normal random variable, so in large samples,

	 p@value = Pr( 0Z 0 7 0 t act 0 ) = 2Φ(- 0 t act 0 ).	 (5.7)

A p-value of less than 5% provides evidence against the null hypothesis in the 
sense that, under the null hypothesis, the probability of obtaining a value of bn1 at 
least as far from the null as that actually observed is less than 5%. If so, the null 
hypothesis is rejected at the 5% significance level.

Alternatively, the hypothesis can be tested at the 5% significance level simply 
by comparing the absolute value of the t-statistic to 1.96, the critical value for a 
two-sided test, and rejecting the null hypothesis at the 5% level if 0 t act 0 7 1.96.

These steps are summarized in Key Concept 5.2.

Testing the Hypothesis b1 = b1,0  
Against the Alternative b1 ≠ b1,0

	 1.	 Compute the standard error of bn1, SE(bn1) [Equation (5.3)].

	 2.	 Compute the t-statistic [Equation (5.5)].

	 3.	 Compute the p-value [Equation (5.7)]. Reject the hypothesis at the 5% sig-
nificance level if the p-value is less than 0.05 or, equivalently, if � t act � 7 1.96.

The standard error and (typically) the t-statistic and p-value testing b1 = 0 are 
computed automatically by regression software.

Key Concept

5.2
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Reporting regression equations and application to test scores.  The OLS regres-
sion of the test score against the student–teacher ratio, reported in Equation 
(4.11), yielded bn0 = 698.9 and bn1 = -2.28. The standard errors of these estimates 
are SE(bn0) = 10.4 and SE(bn1) = 0.52.

Because of the importance of the standard errors, by convention they are 
included when reporting the estimated OLS coefficients. One compact way to 
report the standard errors is to place them in parentheses below the respective 
coefficients of the OLS regression line:

	 TestScore = 698.9 - 2.28 * STR, R2 = 0.051, SER = 18.6.	 (5.8)
	 (10.4)  (0.52)

Equation (5.8) also reports the regression R2 and the standard error of the regres-
sion (SER) following the estimated regression line. Thus Equation (5.8) provides 
the estimated regression line, estimates of the sampling uncertainty of the slope 
and the intercept (the standard errors), and two measures of the fit of this regres-
sion line (the R2 and the SER). This is a common format for reporting a single 
regression equation, and it will be used throughout the rest of this book.

Suppose you wish to test the null hypothesis that the slope b1 is zero in the 
population counterpart of Equation (5.8) at the 5% significance level. To do so, con-
struct the t-statistic and compare its absolute value to 1.96, the 5% (two-sided) 
critical value taken from the standard normal distribution. The t-statistic is con-
structed by substituting the hypothesized value of b1 under the null hypothesis (zero), 
the estimated slope, and its standard error from Equation (5.8) into the general formula 
in Equation (5.5); the result is t act = (-2.28 - 0) >  0.52 = -4.38. The absolute value 
of this t-statistic exceeds the 5% two-sided critical value of 1.96, so the null hypothesis 
is rejected in favor of the two-sided alternative at the 5% significance level.

Alternatively, we can compute the p-value associated with tact = -4.38. This 
probability is the area in the tails of standard normal distribution, as shown in 
Figure 5.1. This probability is extremely small, approximately 0.00001, or 0.001%. 
That is, if the null hypothesis bClassSize = 0 is true, the probability of obtaining a 
value of bn1 as far from the null as the value we actually obtained is extremely 
small, less than 0.001%. Because this event is so unlikely, it is reasonable to con-
clude that the null hypothesis is false.

One-Sided Hypotheses Concerning b1

The discussion so far has focused on testing the hypothesis that b1 = b1,0 against 
the hypothesis that b1 ≠ b1,0. This is a two-sided hypothesis test, because under the 
alternative b1 could be either larger or smaller than b1,0. Sometimes, however, it 
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is appropriate to use a one-sided hypothesis test. For example, in the student–
teacher ratio/test score problem, many people think that smaller classes provide 
a better learning environment. Under that hypothesis, b1 is negative: Smaller 
classes lead to higher scores. It might make sense, therefore, to test the null 
hypothesis that b1 = 0 (no effect) against the one-sided alternative that b1 6 0.

For a one-sided test, the null hypothesis and the one-sided alternative hypoth-
esis are

	 H0 : b1 = b1,0 vs. H1 : b1 6 b1,0 (one@sided alternative).	 (5.9)

where b1,0 is the value of b1 under the null (0 in the student–teacher ratio example) 
and the alternative is that b1 is less than b1,0. If the alternative is that b1 is greater 
than b1,0, the inequality in Equation (5.9) is reversed.

Because the null hypothesis is the same for a one- and a two-sided hypothesis 
test, the construction of the t-statistic is the same. The only difference between a 
one- and two-sided hypothesis test is how you interpret the t-statistic. For the one-
sided alternative in Equation (5.9), the null hypothesis is rejected against the one-
sided alternative for large negative, but not large positive, values of the t-statistic: 
Instead of rejecting if � tact � 7 1.96, the hypothesis is rejected at the 5% signifi-
cance level if t act 6 -1.64.

Figure 5.1 	Calculating the p-Value of a Two-Sided Test When tact = -4.38

The p-value of a two-sided 
test is the probability that 
0 Z 0  7  0 t act 0  where Z is a  
standard normal random 
variable and t act is the value 
of the t-statistic calculated 
from the sample. When 
t act = -4.38, the p-value is 
only 0.00001.

z
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The p-value is the area
to the left of –4.38

+
the area to the right of +4.38.
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The p-value for a one-sided test is obtained from the cumulative standard 
normal distribution as

	 p@value = Pr(Z 6 t act) = Φ(t act) (p@value, one@sided left@tail test).	 (5.10)

If the alternative hypothesis is that b1 is greater than b1,0, the inequalities in Equa-
tions (5.9) and (5.10) are reversed, so the p-value is the right-tail probability, 
Pr(Z 7 t act).

When should a one-sided test be used?  In practice, one-sided alternative hypoth-
eses should be used only when there is a clear reason for doing so. This reason 
could come from economic theory, prior empirical evidence, or both. However, 
even if it initially seems that the relevant alternative is one-sided, upon reflection 
this might not necessarily be so. A newly formulated drug undergoing clinical tri-
als actually could prove harmful because of previously unrecognized side effects. 
In the class size example, we are reminded of the graduation joke that a univer-
sity’s secret of success is to admit talented students and then make sure that the 
faculty stays out of their way and does as little damage as possible. In practice, 
such ambiguity often leads econometricians to use two-sided tests.

Application to test scores.  The t-statistic testing the hypothesis that there is no 
effect of class size on test scores [so b1,0 = 0 in Equation (5.9)] is t act = -4.38. This 
value is less than -2.33 (the critical value for a one-sided test with a 1% signifi-
cance level), so the null hypothesis is rejected against the one-sided alternative at 
the 1% level. In fact, the p-value is less than 0.0006%. Based on these data, you 
can reject the angry taxpayer’s assertion that the negative estimate of the slope 
arose purely because of random sampling variation at the 1% significance level.

Testing Hypotheses About the Intercept b0

This discussion has focused on testing hypotheses about the slope, b1. Occasion-
ally, however, the hypothesis concerns the intercept b0. The null hypothesis con-
cerning the intercept and the two-sided alternative are

	 H0 : b0 = b0,0 vs. H1 : b0 ≠ b0,0 (two@sided alternative).	 (5.11)

The general approach to testing this null hypothesis consists of the three steps in 
Key Concept 5.2 applied to b0 (the formula for the standard error of bn0 is given in 
Appendix 5.1). If the alternative is one-sided, this approach is modified as was 
discussed in the previous subsection for hypotheses about the slope.
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Hypothesis tests are useful if you have a specific null hypothesis in mind (as 
did our angry taxpayer). Being able to accept or reject this null hypothesis based 
on the statistical evidence provides a powerful tool for coping with the uncertainty 
inherent in using a sample to learn about the population. Yet, there are many 
times that no single hypothesis about a regression coefficient is dominant, and 
instead one would like to know a range of values of the coefficient that are con-
sistent with the data. This calls for constructing a confidence interval.

	 5.2	 Confidence Intervals  
for a Regression Coefficient

Because any statistical estimate of the slope b1 necessarily has sampling uncer-
tainty, we cannot determine the true value of b1 exactly from a sample of data. It 
is possible, however, to use the OLS estimator and its standard error to construct 
a confidence interval for the slope b1 or for the intercept b0.

Confidence interval for b1.  Recall from the discussion of confidence intervals in 
Section 3.3 that a 95% confidence interval for B1 has two equivalent definitions. First, 
it is the set of values that cannot be rejected using a two-sided hypothesis test with a 
5% significance level. Second, it is an interval that has a 95% probability of contain-
ing the true value of b1; that is, in 95% of possible samples that might be drawn, the 
confidence interval will contain the true value of b1. Because this interval contains 
the true value in 95% of all samples, it is said to have a confidence level of 95%.

The reason these two definitions are equivalent is as follows. A hypothesis 
test with a 5% significance level will, by definition, reject the true value of b1 in 
only 5% of all possible samples; that is, in 95% of all possible samples, the true 
value of b1 will not be rejected. Because the 95% confidence interval (as defined 
in the first definition) is the set of all values of b1 that are not rejected at the 5% 
significance level, it follows that the true value of b1 will be contained in the con-
fidence interval in 95% of all possible samples.

As in the case of a confidence interval for the population mean (Section 3.3), 
in principle a 95% confidence interval can be computed by testing all possible 
values of b1 (that is, testing the null hypothesis b1 = b1,0 for all values of b1,0) at 
the 5% significance level using the t-statistic. The 95% confidence interval is then 
the collection of all the values of b1 that are not rejected. But constructing the 
t-statistic for all values of b1 would take forever.

An easier way to construct the confidence interval is to note that the t-statistic 
will reject the hypothesized value b1,0 whenever b1,0 is outside the range 
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bn1 { 1.96SE(bn1). This implies that the 95% confidence interval for b1 is the inter-
val 3bn1 - 1.96SE(bn1), bn1 + 1.96SE(bn1)4. This argument parallels the argument 
used to develop a confidence interval for the population mean.

The construction of a confidence interval for b1 is summarized as Key  
Concept 5.3.

Confidence interval for b0.  A 95% confidence interval for b0 is constructed as in 
Key Concept 5.3, with bn0 and SE(bn0) replacing bn1 and SE(bn1).

Application to test scores.  The OLS regression of the test score against the student–
teacher ratio, reported in Equation (5.8), yielded bn1 = -2.28 and SE(bn1) = 0.52. 
The 95% two-sided confidence interval for b1 is 5-2.28 { 1.96 * 0.526, or 
-3.30 … b1 … -1.26. The value b1 = 0 is not contained in this confidence interval, 
so (as we knew already from Section 5.1) the hypothesis b1 = 0 can be rejected at the 
5% significance level.

Confidence intervals for predicted effects of changing X.  The 95% confidence 
interval for b1 can be used to construct a 95% confidence interval for the pre-
dicted effect of a general change in X.

Consider changing X by a given amount, ∆x. The predicted change in Y asso-
ciated with this change in X is b1∆x. The population slope b1 is unknown, but 
because we can construct a confidence interval for b1, we can construct a confi-
dence interval for the predicted effect b1∆x. Because one end of a 95% confidence 
interval for b1 is bn1 - 1.96SE(bn1), the predicted effect of the change ∆x using 
this estimate of b1 is 3bn1 - 1.96SE(bn1)4 * ∆x. The other end of the confidence 

Confidence Interval for b1

A 95% two-sided confidence interval for b1 is an interval that contains the true 
value of b1 with a 95% probability; that is, it contains the true value of b1 in 95% 
of all possible randomly drawn samples. Equivalently, it is the set of values of b1 
that cannot be rejected by a 5% two-sided hypothesis test. When the sample size 
is large, it is constructed as

	 95% confidence interval for b1 = 3bn1 - 1.96SE(bn1), bn1 + 1.96SE(bn1)4.	 (5.12)

Key Concept

5.3
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interval is bn1 + 1.96SE(bn1), and the predicted effect of the change using that esti-
mate is 3bn1 + 1.96SE(bn1)4 * ∆x. Thus a 95% confidence interval for the effect of 
changing x by the amount ∆x can be expressed as

95% confidence interval for b1∆x

	 = 3(bn1 - 1.96SE(bn1))∆x, (bn1 + 1.96SE(bn1))∆x4.	 (5.13)

For example, our hypothetical superintendent is contemplating reducing the 
student–teacher ratio by 2. Because the 95% confidence interval for b1 is 
3-3.30, -1.264, the effect of reducing the student–teacher ratio by 2 could be as 
great as -3.30 * (-2) = 6.60 or as little as -1.26 * (-2) = 2.52. Thus decreas-
ing the student–teacher ratio by 2 is predicted to increase test scores by between 
2.52 and 6.60 points, with a 95% confidence level.

	 5.3	 Regression When X Is a Binary Variable

The discussion so far has focused on the case that the regressor is a continuous 
variable. Regression analysis can also be used when the regressor is binary—that 
is, when it takes on only two values, 0 or 1. For example, X might be a worker’s 
gender (=1 if female, = 0 if male), whether a school district is urban or rural 
(= 1 if urban,  = 0 if rural), or whether the district’s class size is small or large 
(= 1 if small, = 0 if large). A binary variable is also called an indicator variable 
or sometimes a dummy variable.

Interpretation of the Regression Coefficients
The mechanics of regression with a binary regressor are the same as if it is con-
tinuous. The interpretation of b1, however, is different, and it turns out that 
regression with a binary variable is equivalent to performing a difference of means 
analysis, as described in Section 3.4.

To see this, suppose you have a variable Di that equals either 0 or 1, depend-
ing on whether the student–teacher ratio is less than 20:

	 Di = e1 if the student9teacher ratio in ith district 6 20
0 if the student9teacher ratio in ith district Ú 20

.	
(5.14)

The population regression model with Di as the regressor is

	 Yi = b0 + b1Di + ui, i = 1, c, n.	 (5.15)
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This is the same as the regression model with the continuous regressor Xi 
except that now the regressor is the binary variable Di. Because Di is not continu-
ous, it is not useful to think of b1 as a slope; indeed, because Di can take on only 
two values, there is no “line,” so it makes no sense to talk about a slope. Thus we 
will not refer to b1 as the slope in Equation (5.15); instead we will simply refer to b1 as 
the coefficient multiplying Di in this regression or, more compactly, the coefficient 
on Di.

If b1 in Equation (5.15) is not a slope, what is it? The best way to interpret b0 
and b1 in a regression with a binary regressor is to consider, one at a time, the two 
possible cases, Di = 0 and Di = 1. If the student–teacher ratio is high, then 
Di = 0 and Equation (5.15) becomes

	 Yi = b0 + ui (Di = 0).	 (5.16)

Because E(ui  �  Di) = 0, the conditional expectation of Yi when Di = 0 is 
E(Yi  �  Di = 0) = b0; that is, b0 is the population mean value of test scores when 
the student–teacher ratio is high. Similarly, when Di = 1,

	 Yi = b0 + b1 + ui  (Di = 1).	 (5.17)

Thus, when Di = 1, E(Yi  �  Di = 1) = b0 + b1; that is, b0 + b1 is the population 
mean value of test scores when the student–teacher ratio is low.

Because b0 + b1 is the population mean of Yi when Di = 1 and b0 is the 
population mean of Yi when Di = 0, the difference (b0 + b1) - b0 = b1 is the 
difference between these two means. In other words, b1 is the difference between 
the conditional expectation of Yi when Di = 1 and when Di = 0, or 
b1 = E(Yi  �  Di = 1) - E(Yi  �  Di = 0). In the test score example, b1 is the differ-
ence between mean test score in districts with low student–teacher ratios and the 
mean test score in districts with high student–teacher ratios.

Because b1 is the difference in the population means, it makes sense that the 
OLS estimator b1 is the difference between the sample averages of Yi in the two 
groups, and, in fact, this is the case.

Hypothesis tests and confidence intervals.  If the two population means are the 
same, then b1 in Equation (5.15) is zero. Thus the null hypothesis that the two 
population means are the same can be tested against the alternative hypothesis 
that they differ by testing the null hypothesis b1 = 0 against the alternative 
b1 ≠ 0. This hypothesis can be tested using the procedure outlined in Section 5.1. 
Specifically, the null hypothesis can be rejected at the 5% level against the two-sided 
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alternative when the OLS t-statistic t = bn1 >  SE(bn1) exceeds 1.96 in absolute value. 
Similarly, a 95% confidence interval for b1, constructed as bn1 { 1.96SE(bn1). as 
described in Section 5.2, provides a 95% confidence interval for the difference 
between the two population means.

Application to test scores.  As an example, a regression of the test score against 
the student–teacher ratio binary variable D defined in Equation (5.14) estimated 
by OLS using the 420 observations in Figure 4.2 yields

TestScore = 650.0 + 7.4D, R2 = 0.037, SER = 18.7,
	 (1.3)  (1.8)	 (5.18)

where the standard errors of the OLS estimates of the coefficients b0 and b1 are 
given in parentheses below the OLS estimates. Thus the average test score for the 
subsample with student–teacher ratios greater than or equal to 20 (that is, for 
which D = 0) is 650.0, and the average test score for the subsample with student–
teacher ratios less than 20 (so D = 1) is 650.0 + 7.4 = 657.4. The difference 
between the sample average test scores for the two groups is 7.4. This is the OLS 
estimate of b1, the coefficient on the student–teacher ratio binary variable D.

Is the difference in the population mean test scores in the two groups statisti-
cally significantly different from zero at the 5% level? To find out, construct the 
t-statistic on b1 : t = 7.4 >  1.8 = 4.04. This value exceeds 1.96 in absolute value, so 
the hypothesis that the population mean test scores in districts with high and low 
student–teacher ratios is the same can be rejected at the 5% significance level.

The OLS estimator and its standard error can be used to construct a 95% con-
fidence interval for the true difference in means. This is 7.4 { 1.96 *
1.8 = (3.9, 10.9). This confidence interval excludes b1 = 0, so that (as we know 
from the previous paragraph) the hypothesis b1 = 0 can be rejected at the 5% 
significance level.

	 5.4	 Heteroskedasticity and Homoskedasticity

Our only assumption about the distribution of ui conditional on Xi is that it has a 
mean of zero (the first least squares assumption). If, furthermore, the variance of 
this conditional distribution does not depend on Xi, then the errors are said to be 
homoskedastic. This section discusses homoskedasticity, its theoretical implica-
tions, the simplified formulas for the standard errors of the OLS estimators that 
arise if the errors are homoskedastic, and the risks you run if you use these simpli-
fied formulas in practice.
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What Are Heteroskedasticity and Homoskedasticity?
Definitions of heteroskedasticity and homoskedasticity.  The error term ui is 
homoskedastic if the variance of the conditional distribution of ui given Xi is con-
stant for i = 1, c, n and in particular does not depend on Xi. Otherwise, the 
error term is heteroskedastic.

As an illustration, return to Figure 4.4. The distribution of the errors ui is 
shown for various values of x. Because this distribution applies specifically for 
the indicated value of x, this is the conditional distribution of ui given Xi = x. 
As drawn in that figure, all these conditional distributions have the same 
spread; more precisely, the variance of these distributions is the same for the 
various values of x. That is, in Figure 4.4, the conditional variance of ui given 
Xi = x does not depend on x, so the errors illustrated in Figure 4.4 are homo-
skedastic.

In contrast, Figure 5.2 illustrates a case in which the conditional distribution 
of ui spreads out as x increases. For small values of x, this distribution is tight, but 
for larger values of x, it has a greater spread. Thus in Figure 5.2 the variance of ui 
given Xi = x increases with x, so that the errors in Figure 5.2 are heteroskedastic.

The definitions of heteroskedasticity and homoskedasticity are summarized 
in Key Concept 5.4.

Figure 5.2 	An Example of Heteroskedasticity

Like Figure 4.4, this 
shows the conditional 
distribution of test 
scores for three differ-
ent class sizes. Unlike  
Figure 4.4, these  
distributions become 
more spread out (have 
a larger variance) 
for larger class sizes. 
Because the variance 
of the distribution of 
u given X, var(u � X ), 
depends on X, u is  
heteroskedastic.
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Example.  These terms are a mouthful, and the definitions might seem abstract. 
To help clarify them with an example, we digress from the student–teacher ratio/
test score problem and instead return to the example of earnings of male versus 
female college graduates considered in the box in Chapter 3 “The Gender Gap in 
Earnings of College Graduates in the United States.” Let MALEi be a binary 
variable that equals 1 for male college graduates and equals 0 for female gradu-
ates. The binary variable regression model relating a college graduate’s earnings 
to his or her gender is

	 Earningsi = b0 + b1MALEi + ui	 (5.19)

for i = 1,c, n. Because the regressor is binary, b1 is the difference in the popu-
lation means of the two groups—in this case, the difference in mean earnings 
between men and women who graduated from college.

The definition of homoskedasticity states that the variance of ui does not 
depend on the regressor. Here the regressor is MALEi, so at issue is whether the 
variance of the error term depends on MALEi. In other words, is the variance of 
the error term the same for men and for women? If so, the error is homoskedastic; 
if not, it is heteroskedastic.

Deciding whether the variance of ui depends on MALEi requires thinking 
hard about what the error term actually is. In this regard, it is useful to write 
Equation (5.19) as two separate equations, one for men and one for women:

	 Earningsi = b0 + ui (women) and	 (5.20)

	 Earningsi = b0 + b1 + ui (men).	 (5.21)

Thus, for women, ui is the deviation of the ith woman’s earnings from the popula-
tion mean earnings for women (b0), and for men, ui is the deviation of the ith man’s 
earnings from the population mean earnings for men (b0 + b1). It follows that the 
statement “the variance of ui does not depend on MALE” is equivalent to the 

Heteroskedasticity and Homoskedasticity

The error term ui is homoskedastic if the variance of the conditional distribution 
of ui given Xi, var(ui � Xi = x), is constant for i = 1,c, n and in particular does 
not depend on x. Otherwise, the error term is heteroskedastic.

Key Concept

5.4
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statement “the variance of earnings is the same for men as it is for women.” In 
other words, in this example, the error term is homoskedastic if the variance of 
the population distribution of earnings is the same for men and women; if these 
variances differ, the error term is heteroskedastic.

Mathematical Implications of Homoskedasticity
The OLS estimators remain unbiased and asymptotically normal.  Because the 
least squares assumptions in Key Concept 4.3 place no restrictions on the condi-
tional variance, they apply to both the general case of heteroskedasticity and the 
special case of homoskedasticity. Therefore, the OLS estimators remain unbiased 
and consistent even if the errors are homoskedastic. In addition, the OLS estima-
tors have sampling distributions that are normal in large samples even if the errors 
are homoskedastic. Whether the errors are homoskedastic or heteroskedastic, the 
OLS estimator is unbiased, consistent, and asymptotically normal.

Efficiency of the OLS estimator when the errors are homoskedastic.  If the least 
squares assumptions in Key Concept 4.3 hold and the errors are homoskedastic, 
then the OLS estimators bn0 and bn1 are efficient among all estimators that are 
linear in Y1,c, Yn and are unbiased, conditional on X1,c, Xn. This result, 
which is called the Gauss–Markov theorem, is discussed in Section 5.5.

Homoskedasticity-only variance formula.  If the error term is homoskedastic, 
then the formulas for the variances of bn0 and bn1 in Key Concept 4.4 simplify. Con-
sequently, if the errors are homoskedastic, then there is a specialized formula that 
can be used for the standard errors of bn0 and bn1. The homoskedasticity-only stan-
dard error of bn1, derived in Appendix (5.1), is SE(bn1) = 2s ∼2

nb1
 where s  

∼2
nb1

  is the 
homoskedasticity-only estimator of the variance of bn1:

	 s  

∼2
nb1
=

s2
un

a
n

i= 1
(Xi - X )2

 (homoskedasticity@only),	 (5.22) 

where s2
un is given in Equation (4.19). The homoskedasticity-only formula for the 

standard error of bn0 is given in Appendix (5.1). In the special case that X is a 
binary variable, the estimator of the variance of bn1 under homoskedasticity (that 
is, the square of the standard error of bn1 under homoskedasticity) is the so-called 
pooled variance formula for the difference in means, given in Equation (3.23).

Because these alternative formulas are derived for the special case that the 
errors are homoskedastic and do not apply if the errors are heteroskedastic, they 
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will be referred to as the “homoskedasticity-only” formulas for the variance and 
standard error of the OLS estimators. As the name suggests, if the errors are 
heteroskedastic, then the homoskedasticity-only standard errors are inappropri-
ate. Specifically, if the errors are heteroskedastic, then the t-statistic computed 
using the homoskedasticity-only standard error does not have a standard normal 
distribution, even in large samples. In fact, the correct critical values to use for this 
homoskedasticity-only t-statistic depend on the precise nature of the heteroskedas-
ticity, so those critical values cannot be tabulated. Similarly, if the errors are hetero-
skedastic but a confidence interval is constructed as {1.96 homoskedasticity-only 
standard errors, in general the probability that this interval contains the true value 
of the coefficient is not 95%, even in large samples.

In contrast, because homoskedasticity is a special case of heteroskedasticity, 
the estimators sn 2

nb1
 and sn 2

nb0
 of the variances of bn1 and bn0 given in Equations (5.4) 

and (5.26) produce valid statistical inferences whether the errors are heteroske-
dastic or homoskedastic. Thus hypothesis tests and confidence intervals based on 
those standard errors are valid whether or not the errors are heteroskedastic. 
Because the standard errors we have used so far [that is, those based on Equations 
(5.4) and (5.26)] lead to statistical inferences that are valid whether or not the 
errors are heteroskedastic, they are called heteroskedasticity-robust standard 
errors. Because such formulas were proposed by Eicker (1967), Huber (1967), and 
White (1980), they are also referred to as Eicker–Huber–White standard errors.

What Does This Mean in Practice?
Which is more realistic, heteroskedasticity or homoskedasticity?  The answer to 
this question depends on the application. However, the issues can be clarified by 
returning to the example of the gender gap in earnings among college graduates. 
Familiarity with how people are paid in the world around us gives some clues as to 
which assumption is more sensible. For many years—and, to a lesser extent, today—
women were not found in the top-paying jobs: There have always been poorly paid 
men, but there have rarely been highly paid women. This suggests that the distribu-
tion of earnings among women is tighter than among men (see the box in Chapter 3 
“The Gender Gap in Earnings of College Graduates in the United States”). In 
other words, the variance of the error term in Equation (5.20) for women is plausi-
bly less than the variance of the error term in Equation (5.21) for men. Thus the 
presence of a “glass ceiling” for women’s jobs and pay suggests that the error term 
in the binary variable regression model in Equation (5.19) is heteroskedastic. Unless 
there are compelling reasons to the contrary—and we can think of none—it makes 
sense to treat the error term in this example as heteroskedastic.
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On average, workers with more education have 

higher earnings than workers with less educa-

tion. But if the best-paying jobs mainly go to the col-

lege educated, it might also be that the spread of the 

distribution of earnings is greater for workers with 

more education. Does the distribution of earnings 

spread out as education increases?

This is an empirical question, so answering it 

requires analyzing data. Figure 5.3 is a scatterplot of 

the hourly earnings and the number of years of edu-

cation for a sample of 2829 full-time workers in the 

United States in 2012, ages 29 and 30, with between 

6 and 18 years of education. The data come from 

the March 2013 Current Population Survey, which 

is described in Appendix 3.1.

Figure 5.3 has two striking features. The first is 

that the mean of the distribution of earnings increases 

with the number of years of education. This increase 

is summarized by the OLS regression line,

Earnings = -7.29 + 1.93Years Education,

	 (1.10)   (0.08)

	 R2 = 0.162, SER = 10.29.	 (5.23)

This line is plotted in Figure 5.3. The coefficient 

of 1.93 in the OLS regression line means that, on 

average, hourly earnings increase by $1.93 for each 

additional year of education. The 95% confidence 

interval for this coefficient is 1.93 { 1.96 * 0.08, or 

1.77 to 2.09.

The second striking feature of Figure 5.3 is that 

the spread of the distribution of earnings increases 

with the years of education. While some workers 

with many years of education have low-paying jobs, 

very few workers with low levels of education have 

high-paying jobs. This can be quantified by looking 

at the spread of the residuals around the OLS regres-

sion line. For workers with ten years of education, 

the standard deviation of the residuals is $4.32; for 

workers with a high school diploma, this standard 

deviation is $7.80; and for workers with a college 

degree, this standard deviation increases to $12.46. 

Because these standard deviations differ for differ-

ent levels of education, the variance of the residuals 

in the regression of Equation (5.23) depends on the 

value of the regressor (the years of education); in 

other words, the regression errors are heteroskedas-

tic. In real-world terms, not all college graduates will 

be earning $50 per hour by the time they are 29, but 

some will, and workers with only ten years of educa-

tion have no shot at those jobs.

The Economic Value of a Year of Education: 
Homoskedasticity or Heteroskedasticity?

Figure 5.3 	Scatterplot of Hourly Earnings and Years of Education  
for 29- to 30-Year-Olds in the United States in 2012

Hourly earnings are plotted against years of education for  
2,829 full-time 29- to 30-year-old workers. The spread  
around the regression line increases with the years of  
education, indicating that the regression errors are  
heteroskedastic.
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As this example of modeling earnings illustrates, heteroskedasticity arises in 
many econometric applications. At a general level, economic theory rarely gives 
any reason to believe that the errors are homoskedastic. It therefore is prudent to 
assume that the errors might be heteroskedastic unless you have compelling rea-
sons to believe otherwise.

Practical implications.  The main issue of practical relevance in this discussion is 
whether one should use heteroskedasticity-robust or homoskedasticity-only stan-
dard errors. In this regard, it is useful to imagine computing both, then choosing 
between them. If the homoskedasticity-only and heteroskedasticity-robust stan-
dard errors are the same, nothing is lost by using the heteroskedasticity-robust 
standard errors; if they differ, however, then you should use the more reliable 
ones that allow for heteroskedasticity. The simplest thing, then, is always to use 
the heteroskedasticity-robust standard errors.

For historical reasons, many software programs report homoskedasticity-
only standard errors as their default setting, so it is up to the user to specify the 
option of heteroskedasticity-robust standard errors. The details of how to imple-
ment heteroskedasticity-robust standard errors depend on the software package 
you use.

All of the empirical examples in this book employ heteroskedasticity-robust 
standard errors unless explicitly stated otherwise.1

	 *5.5	 The Theoretical Foundations  
of Ordinary Least Squares

As discussed in Section 4.5, the OLS estimator is unbiased, is consistent, has a 
variance that is inversely proportional to n, and has a normal sampling distribu-
tion when the sample size is large. In addition, under certain conditions the OLS 
estimator is more efficient than some other candidate estimators. Specifically, if 
the least squares assumptions hold and if the errors are homoskedastic, then the 
OLS estimator has the smallest variance of all conditionally unbiased estimators 
that are linear functions of Y1,c, Yn. This section explains and discusses this 
result, which is a consequence of the Gauss–Markov theorem. The section concludes 

1In case this book is used in conjunction with other texts, it might be helpful to note that some text-
books add homoskedasticity to the list of least squares assumptions. As just discussed, however, 
this additional assumption is not needed for the validity of OLS regression analysis as long as 
heteroskedasticity-robust standard errors are used.
*This section is optional and is not used in later chapters.
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with a discussion of alternative estimators that are more efficient than OLS when 
the conditions of the Gauss–Markov theorem do not hold.

Linear Conditionally Unbiased Estimators and  
the Gauss–Markov Theorem
If the three least squares assumptions (Key Concept 4.3) hold and if the error is 
homoskedastic, then the OLS estimator has the smallest variance, conditional on 
X1,c, Xn, among all estimators in the class of linear conditionally unbiased esti-
mators. In other words, the OLS estimator is the Best Linear conditionally Unbi-
ased Estimator—that is, it is BLUE. This result is an extension of the result, 
summarized in Key Concept 3.3, that the sample average Y is the most efficient 
estimator of the population mean among the class of all estimators that are unbi-
ased and are linear functions (weighted averages) of Y1,c, Yn.

Linear conditionally unbiased estimators.  The class of linear conditionally unbi-
ased estimators consists of all estimators of b1 that are linear functions of 
Y1,c, Yn and that are unbiased, conditional on X1,c, Xn. That is, if b∼1 is a 
linear estimator, then it can be written as

	 b
∼

1 = a
n

i= 1
aiYi (b∼1 is linear),	 (5.24)

where the weights a1,c, an can depend on X1,c, Xn but not on Y1,c, Yn. 
The estimator b∼1 is conditionally unbiased if the mean of its conditional sampling 
distribution, given X1,c, Xn, is b1. That is, the estimator b∼1 is conditionally 
unbiased if

	 E(b∼1 �  X1,c, Xn) = b1 (b∼1 is conditionally unbiased).	 (5.25)

The estimator b∼1 is a linear conditionally unbiased estimator if it can be written 
in the form of Equation (5.24) (it is linear) and if Equation (5.25) holds (it is con-
ditionally unbiased). It is shown in Appendix 5.2 that the OLS estimator is linear 
and conditionally unbiased.

The Gauss–Markov theorem.  The Gauss–Markov theorem states that, under a set 
of conditions known as the Gauss–Markov conditions, the OLS estimator bn1 has 
the smallest conditional variance, given X1,c, Xn, of all linear conditionally 
unbiased estimators of b1; that is, the OLS estimator is BLUE. The Gauss–Markov 
conditions, which are stated in Appendix 5.2, are implied by the three least 
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squares assumptions plus the assumption that the errors are homoskedastic. Con-
sequently, if the three least squares assumptions hold and the errors are homo-
skedastic, then OLS is BLUE. The Gauss–Markov theorem is stated in Key 
Concept 5.5 and proven in Appendix 5.2.

Limitations of the Gauss–Markov theorem.  The Gauss–Markov theorem provides 
a theoretical justification for using OLS. However, the theorem has two important 
limitations. First, its conditions might not hold in practice. In particular, if the error 
term is heteroskedastic—as it often is in economic applications—then the OLS 
estimator is no longer BLUE. As discussed in Section 5.4, the presence of hetero-
skedasticity does not pose a threat to inference based on heteroskedasticity-robust 
standard errors, but it does mean that OLS is no longer the efficient linear condi-
tionally unbiased estimator. An alternative to OLS when there is heteroskedasticity 
of a known form, called the weighted least squares estimator, is discussed below.

The second limitation of the Gauss–Markov theorem is that even if the condi-
tions of the theorem hold, there are other candidate estimators that are not linear 
and conditionally unbiased; under some conditions, these other estimators are 
more efficient than OLS.

Regression Estimators Other Than OLS
Under certain conditions, some regression estimators are more efficient than OLS.

The weighted least squares estimator.  If the errors are heteroskedastic, then OLS 
is no longer BLUE. If the nature of the heteroskedasticity is known—specifically, 
if the conditional variance of ui given Xi is known up to a constant factor of 
proportionality—then it is possible to construct an estimator that has a smaller 
variance than the OLS estimator. This method, called weighted least squares 
(WLS), weights the ith observation by the inverse of the square root of the condi-
tional variance of ui given Xi. Because of this weighting, the errors in this weighted 
regression are homoskedastic, so OLS, when applied to the weighted data, is BLUE. 

The Gauss–Markov Theorem for bn1

If the three least squares assumptions in Key Concept 4.3 hold and if errors are 
homoskedastic, then the OLS estimator bn1 is the Best (most efficient) Linear 
conditionally Unbiased Estimator (BLUE).

Key Concept

5.5
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Although theoretically elegant, the practical problem with weighted least squares 
is that you must know how the conditional variance of ui depends on Xi, some-
thing that is rarely known in econometric applications. Weighted least squares is 
therefore used far less frequently than OLS, and further discussion of WLS is 
deferred to Chapter 17.

The least absolute deviations estimator.  As discussed in Section 4.3, the OLS 
estimator can be sensitive to outliers. If extreme outliers are not rare, then other 
estimators can be more efficient than OLS and can produce inferences that are 
more reliable. One such estimator is the least absolute deviations (LAD) estima-
tor, in which the regression coefficients b0 and b1 are obtained by solving a mini-
mization problem like that in Equation (4.6) except that the absolute value of the 
prediction “mistake” is used instead of its square. That is, the LAD estimators of 
b0 and b1 are the values of b0 and b1 that minimize gn

i= 1 0Yi - b0 - b1Xi 0 . The 
LAD estimator is less sensitive to large outliers in u than is OLS.

In many economic data sets, severe outliers in u are rare, so use of the LAD 
estimator, or other estimators with reduced sensitivity to outliers, is uncommon 
in applications. Thus the treatment of linear regression throughout the remainder 
of this text focuses exclusively on least squares methods.

	 *5.6	 Using the t-Statistic in Regression  
When the Sample Size Is Small

When the sample size is small, the exact distribution of the t-statistic is compli-
cated and depends on the unknown population distribution of the data. If, how-
ever, the three least squares assumptions hold, the regression errors are 
homoskedastic, and the regression errors are normally distributed, then the OLS 
estimator is normally distributed and the homoskedasticity-only t-statistic has a 
Student t distribution. These five assumptions—the three least squares assump-
tions, that the errors are homoskedastic, and that the errors are normally distrib-
uted—are collectively called the homoskedastic normal regression assumptions.

The t-Statistic and the Student t Distribution
Recall from Section 2.4 that the Student t distribution with m degrees of freedom 
is defined to be the distribution of Z  >  2W>  m, where Z is a random variable with 
a standard normal distribution, W is a random variable with a chi-squared distribution 

*This section is optional and is not used in later chapters.
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with m degrees of freedom, and Z and W are independent. Under the null hypoth-
esis, the t-statistic computed using the homoskedasticity-only standard error can 
be written in this form.

The details of the calculation is presented in Sections 17.4 and 18.4, but the main 
ideas are as follows. The homoskedasticity-only t-statistic testing b1 = b1,0 is 
t∼ = (bn1 - b1,0)>s∼ nb1

, where s ∼2
nb1

 is defined in Equation (5.22). Under the homoske-
dastic normal regression assumptions, Y has a normal distribution, conditional on 
X1,c, Xn. As discussed in Section 5.5, the OLS estimator is a weighted average 
of Y1,c, Yn, where the weights depend on X1,c, Xn [see Equation (5.32) in 
Appendix 5.2]. Because a weighted average of independent normal random variables 
is normally distributed, bn1 has a normal distribution, conditional on X1,c, Xn. 
Thus (bn1 - b1,0) has a normal distribution under the null hypothesis, conditional 
on X1,c, Xn. In addition, sections 17.4 and 18.4 show that the (normalized) 
homoskedasticity-only variance estimator has a chi-squared distribution with n - 2 
degrees of freedom, divided by n - 2, and s∼2

bn1
 and bn1 are independently distributed. 

Consequently, the homoskedasticity-only t-statistic has a Student t distribution with 
n - 2 degrees of freedom.

This result is closely related to a result discussed in Section 3.5 in the context of 
testing for the equality of the means in two samples. In that problem, if the two 
population distributions are normal with the same variance and if the t-statistic is con-
structed using the pooled standard error formula [Equation (3.23)], then the (pooled) 
t-statistic has a Student t distribution. When X is binary, the homoskedasticity-only 
standard error for bn1 simplifies to the pooled standard error formula for the difference 
of means. It follows that the result of Section 3.5 is a special case of the result that if 
the homoskedastic normal regression assumptions hold, then the homoskedasticity-
only regression t-statistic has a Student t distribution (see Exercise 5.10).

Use of the Student t Distribution in Practice
If the regression errors are homoskedastic and normally distributed and if the 
homoskedasticity-only t-statistic is used, then critical values should be taken from 
the Student t distribution (Appendix Table 2) instead of the standard normal 
distribution. Because the difference between the Student t distribution and the 
normal distribution is negligible if n is moderate or large, this distinction is rele-
vant only if the sample size is small.

In econometric applications, there is rarely a reason to believe that the errors are 
homoskedastic and normally distributed. Because sample sizes typically are large, 
however, inference can proceed as described in Section 5.1 and 5.2—that is, by first 
computing heteroskedasticity-robust standard errors and then by using the standard 
normal distribution to compute p-values, hypothesis tests, and confidence intervals.
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	 5.7	 Conclusion

Return for a moment to the problem that started Chapter 4: the superintendent 
who is considering hiring additional teachers to cut the student–teacher ratio. 
What have we learned that she might find useful?

Our regression analysis, based on the 420 observations for 1998 in the Cali-
fornia test score data set, showed that there was a negative relationship between 
the student–teacher ratio and test scores: Districts with smaller classes have higher 
test scores. The coefficient is moderately large, in a practical sense: Districts with 
two fewer students per teacher have, on average, test scores that are 4.6 points 
higher. This corresponds to moving a district at the 50th percentile of the distribu-
tion of test scores to approximately the 60th percentile.

The coefficient on the student–teacher ratio is statistically significantly different 
from 0 at the 5% significance level. The population coefficient might be 0, and we 
might simply have estimated our negative coefficient by random sampling variation. 
However, the probability of doing so (and of obtaining a t-statistic on b1 as large as 
we did) purely by random variation over potential samples is exceedingly small, 
approximately 0.001%. A 95% confidence interval for b1 is -3.30 … b1 … -1.26.

This result represents considerable progress toward answering the superin-
tendent’s question yet a nagging concern remains. There is a negative relation-
ship between the student–teacher ratio and test scores, but is this relationship 
necessarily the causal one that the superintendent needs to make her decision? 
Districts with lower student–teacher ratios have, on average, higher test scores. 
But does this mean that reducing the student–teacher ratio will, in fact, increase 
scores?

There is, in fact, reason to worry that it might not. Hiring more teachers, after 
all, costs money, so wealthier school districts can better afford smaller classes. But 
students at wealthier schools also have other advantages over their poorer neigh-
bors, including better facilities, newer books, and better-paid teachers. Moreover, 
students at wealthier schools tend themselves to come from more affluent families 
and thus have other advantages not directly associated with their school. For 
example, California has a large immigrant community; these immigrants tend to 
be poorer than the overall population, and in many cases, their children are not 
native English speakers. It thus might be that our negative estimated relationship 
between test scores and the student–teacher ratio is a consequence of large classes 
being found in conjunction with many other factors that are, in fact, the real cause 
of the lower test scores.

These other factors, or “omitted variables,” could mean that the OLS analysis 
done so far has little value to the superintendent. Indeed, it could be misleading: 
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Changing the student–teacher ratio alone would not change these other factors 
that determine a child’s performance at school. To address this problem, we need 
a method that will allow us to isolate the effect on test scores of changing the 
student–teacher ratio, holding these other factors constant. That method is multi-
ple regression analysis, the topic of Chapters 6 and 7.

Summary

	 1.	 Hypothesis testing for regression coefficients is analogous to hypothesis test-
ing for the population mean: Use the t-statistic to calculate the p-values and 
either accept or reject the null hypothesis. Like a confidence interval for the 
population mean, a 95% confidence interval for a regression coefficient is 
computed as the estimator {1.96 standard errors.

	 2.	 When X is binary, the regression model can be used to estimate and test 
hypotheses about the difference between the population means of the 
“X = 0” group and the “X = 1” group.

	 3.	 In general, the error ui is heteroskedastic—that is, the variance of ui at a given 
value of Xi, var(ui  �  Xi = x), depends on x. A special case is when the error is 
homoskedastic—that is, var(ui  �  Xi = x) is constant. Homoskedasticity-only 
standard errors do not produce valid statistical inferences when the errors are 
heteroskedastic, but heteroskedasticity-robust standard errors do.

	 4.	 If the three least squares assumption hold and if the regression errors are 
homoskedastic, then, as a result of the Gauss–Markov theorem, the OLS 
estimator is BLUE.

	 5.	 If the three least squares assumptions hold, if the regression errors are 
homoskedastic, and if the regression errors are normally distributed, then 
the OLS t-statistic computed using homoskedasticity-only standard errors 
has a Student t distribution when the null hypothesis is true. The difference 
between the Student t distribution and the normal distribution is negligible 
if the sample size is moderate or large.

Key Terms

null hypothesis (194)
two-sided alternative hypothesis 

(194)
standard error of bn1 (194)

t-statistic (194)
p-value (195)
confidence interval for b1 (199)
confidence level (199)
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Review the Concepts

 	 5.1	 Outline the procedures for computing the p-value of a two-sided test of 
H0 : mY = 0 using an i.i.d. set of observations Yi, i = 1,c, n. Outline the 
procedures for computing the p-value of a two-sided test of H0 : b1 = 0 in 
a regression model using an i.i.d. set of observations (Yi, Xi), i = 1,c, n.

 	 5.2	 When are one-sided hypothesis tests constructed for estimated regression 
coefficients as opposed to two-sided hypothesis tests? When are confi-
dence intervals constructed instead of hypothesis tests?

 	 5.3	 Describe the important characteristics of the variance of a conditional dis-
tribution of an error term in a linear regression. What are the implications 
for OLS estimation?

 	 5.4	 What is a dummy variable or an indicator variable? Describe the differences 
in interpretation of the coefficients of a linear regression when the indepen-
dent variable is continuous and when it is binary. Give an example of each 
case. How are the construction of confidence intervals and hypothesis tests 
different when the independent variable is binary compared to when it is 
continuous?

indicator variable (201)
dummy variable (201)
coefficient multiplying Di (202)
coefficient on Di (202)
heteroskedasticity and  

homoskedasticity (204)
homoskedasticity-only standard  

errors (206)
heteroskedasticity-robust standard 

error (206)

Gauss–Markov theorem (210)
best linear unbiased estimator 

(BLUE) (210)
weighted least squares (211)
homoskedastic normal regression  

assumptions (212)
Gauss–Markov conditions  

(225)

MyEconLab Can Help You Get a Better Grade

MyEconLab  	 If your exam were tomorrow, would you be ready? For each chapter,  
	 MyEconLab Practice Tests and Study Plan help you prepare for your exams. 
You can also find similar Exercises and Review the Concepts Questions now in MyEconLab.  
To see how it works, turn to the MyEconLab spread on pages 2 and 3 of this book and then go to 
www.myeconlab.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
www.pearsonglobaleditions.com/Stock_Watson.
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Exercises

 	 5.1	 Suppose that a researcher, using data on class size (CS) and average test 
scores from 50 third-grade classes, estimates the OLS regression

TestScore = 640.3 - 4.93 * CS, R2 = 0.11, SER = 8.7.
	   (23.5)  (2.02)

	 a.	 Construct a 95% confidence interval for b1, the regression slope 
coefficient.

	 b.	 Calculate the p-value for the two-sided test of the null hypothesis 
H0 : b1 = 0. Do you reject the null hypothesis (i) at the 5% level  
(ii) at the 1% level?

	 c.	 Calculate the p-value for the two-sided test of the null hypothesis 
H0 : b1 = -5.0. Without doing any additional calculations, determine 
whether -5.0 is contained in the 95% confidence interval for b1.

	 d.	 Construct a 90% confidence interval for b0.

 	 5.2	 Suppose a researcher, using wage data on 200 randomly selected male 
workers and 240 female workers, estimates the OLS regression

Wage = 10.73 + 1.78 * Male, R2 = 0.09, SER = 3.8,
	 (0.16)   (0.29)

		  where Wage is measured in dollars per hour and Male is a binary variable 
that is equal to 1 if the person is a male and 0 if the person is a female. 
Define the wage-gender gap as the difference in mean earnings between 
men and women.

	 a.	 What is the estimated gender gap?

	 b.	 Is the estimated gender gap significantly different from 0? (Compute 
the p-value for testing the null hypothesis that there is no gender gap.)

	 c.	 Construct a 95% confidence interval for the gender gap.

	 d.	 In the sample, what is the mean wage of women? What is the mean 
wage of men?

	 e.	 Another researcher uses these same data but regresses Wages on Female, 
a variable that is equal to 1 if the person is female and 0 if the person is 
male. What are the regression estimates calculated from this regression?

Wage =        +        * Female, R2 =        , SER =        .
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 	 5.3	 Suppose a random sample of 100 20-year-old men is selected from a popu-
lation, and that these men’s height and weight are recorded. A regression 
of weight on height yields

Weight = -79.24 + 4.16 * Height, R2 = 0.72, SER = 12.6,
	 (3.42)   (.42)

		  where weight is measured in pounds and height is measured in inches. A 
man has a late growth spurt and grows 2 inches over the course of a year. 
Construct a 95% confidence interval for the person’s weight gain.

 	 5.4	 Read the box “The Economic Value of a Year of Education: Homoskedas-
ticity or Heteroskedasticity?” in Section 5.4. Use the regression reported 
in Equation (5.23) to answer the following.

	 a.	 A randomly selected 30-year-old worker reports an education level  
of 16 years. What is the worker’s expected average hourly earnings?

	 b.	 A high school graduate (12 years of education) is contemplating 
going to a community college for a 2-year degree. How much is this 
worker’s average hourly earnings expected to increase?

	 c.	 A high school counselor tells a student that, on average, college grad-
uates earn $10 per hour more than high school graduates. Is this state-
ment consistent with the regression evidence? What range of values is 
consistent with the regression evidence?

 	 5.5	 In the 1980s, Tennessee conducted an experiment in which kindergarten 
students were randomly assigned to “regular” and “small” classes and given 
standardized tests at the end of the year. (Regular classes contained approx-
imately 24 students, and small classes contained approximately 15 students.) 
Suppose that, in the population, the standardized tests have a mean score 
of 925 points and a standard deviation of 75 points. Let SmallClass denote a 
binary variable equal to 1 if the student is assigned to a small class and equal 
to 0 otherwise. A regression of TestScore on SmallClass yields

TestScore = 918.0 + 13.9 * SmallClass, R2 = 0.01, SER = 74.6.
	 (1.6)    (2.5)

	 a.	 Do small classes improve test scores? By how much? Is the effect 
large? Explain.

	 b.	 Is the estimated effect of class size on test scores statistically signifi-
cant? Carry out a test at the 5% level.
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	 c.	 Construct a 99% confidence interval for the effect of SmallClass on 
Test Score.

 	 5.6	 Refer to the regression described in Exercise 5.5.

	 a.	 Do you think that the regression errors are plausibly homoskedastic? 
Explain.

	 b.	 SE(bn1) was computed using Equation (5.3). Suppose that the  
regression errors were homoskedastic: Would this affect the valid-
ity of the confidence interval constructed in Exercise 5.5(c)? 
Explain.

 	 5.7	 Suppose that (Yi, Xi) satisfy the least squares assumptions in Key Concept 
4.3. A random sample of size n = 250 is drawn and yields

Yn = 5.4 + 3.2X, R2 = 0.26, SER = 6.2.
	 (3.1)    (1.5)

	 a.	 Test H0 : b1 = 0 vs. H1 : b1 ≠ 0 at the 5% level.

	 b.	 Construct a 95% confidence interval for b1.

	 c.	 Suppose you learned that Yi and Xi were independent. Would you be 
surprised? Explain.

	 d.	 Suppose that Yi and Xi are independent and many samples of size 
n = 250 are drawn, regressions estimated, and (a) and (b) answered. 
In what fraction of the samples would H0 from (a) be rejected? In 
what fraction of samples would the value b1 = 0 be included in the 
confidence interval from (b)?

 	 5.8	 Suppose that (Yi, Xi) satisfy the least squares assumptions in Key Concept 
4.3 and, in addition, ui is N(0, s2

u) and is independent of Xi. A sample of 
size n = 30 yields

Yn = 43.2 + 61.5X, R2 = 0.54, SER = 1.52,
	 (10.2)   (7.4)

		  where the numbers in parentheses are the homoskedastic-only standard 
errors for the regression coefficients.

	 a.	 Construct a 95% confidence interval for b0.

	 b.	 Test H0 : b1 = 55 vs. H1 : b1 ≠ 55 at the 5% level.

	 c.	 Test H0 : b1 = 55 vs. H1 : b1 7 55 at the 5% level.
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 	 5.9	 Consider the regression model

Yi = bXi + ui,

		  where ui and Xi satisfy the least squares assumptions in Key Concept 4.3. 
Let b denote an estimator of b that is constructed as b = Y  >  X, where Y 
and X are the sample means of Yi and Xi, respectively.

	 a.	 Show that b is a linear function of Y1, Y2,c, Yn.

	 b.	 Show that b is conditionally unbiased.

 	 5.10	 Let Xi denote a binary variable and consider the regression Yi =
b0 + b1Xi + ui. Let Y0 denote the sample mean for observations with 
X = 0 and let Y1 denote the sample mean for observations with X = 1. 
Show that bn0 = Y0, bn0 + bn1 = Y1, and bn1 = Y1 - Y0.

 	 5.11	 A random sample of workers contains nm = 100 men and nw = 150 women.
		  The sample average of men’s weekly earnings Ym = $565.89, and the sample 

standard deviation is sm = $75.62. The corresponding values for women 
are Yw = $502.37 and sw = $53.40. Let Women denote an indicator 
variable that is equal to 1 for women and 0 for men and suppose that all  
250 observations are used in the regression Yi = b0 + b1 Womeni + ui. Find 
the OLS estimates of b0 and b1 and their corresponding standard errors.

 	 5.12	 Starting from Equation (4.22), derive the variance of bn0 under homoske-
dasticity given in Equation (5.28) in Appendix 5.1.

 	 5.13	 Suppose that (Yi, Xi) satisfy the least squares assumptions in Key Concept 
4.3 and, in addition, ui is N(0, s2

u) and is independent of Xi.

	 a.	 Is bn1 conditionally unbiased?

	 b.	 Is bn1 the best linear conditionally unbiased estimator of b1?

	 c.	 How would your answers to (a) and (b) change if you assumed only 
that (Yi, Xi) satisfied the least squares assumptions in Key Concept 4.3 
and var(ui �  Xi = x) is constant?

	 d.	 How would your answers to (a) and (b) change if you assumed only that 
(Yi, Xi) satisfied the least squares assumptions in Key Concept 4.3?

 	 5.14	 Suppose that Yi = bXi + ui, where (ui, Xi) satisfy the Gauss–Markov con-
ditions given in Equation (5.31).

	 a.	 Derive the least squares estimator of b and show that it is a linear 
function of Y1,c, Yn.
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	 b.	 Show that the estimator is conditionally unbiased.

	 c.	 Derive the conditional variance of the estimator.

	 d.	 Prove that the estimator is BLUE.

 	 5.15	 A researcher has two independent samples of observations on (Yi, Xi). To 
be specific, suppose that Yi denotes earnings, Xi denotes years of school-
ing, and the independent samples are for men and women. Write the 
regression for men as Ym,i = bm,0 + bm,1Xm,i + um,i and the regression for 
women as Yw,i = bw,0 + bw,1Xw,i + uw,i. Let bnm,1 denote the OLS estimator 
constructed using the sample of men, bnw,1 denote the OLS estimator con-
structed from the sample of women, and SE(bnm,1) and SE(bnw,1) denote the 
corresponding standard errors. Show that the standard error of bnm,1 - bnw,1 

		  is given by SE(bnm,1 - bnw,1) = 23SE(bnm,1)42 + 3SE(bnw,1)42.

Empirical Exercises

(Only three empirical exercises for this chapter are given in the text, but you can 
find more on the text website, www.pearsonglobaleditions.com/Stock_Watson.)

 	 E5.1	 Use the data set Earnings_and_Height described in Empirical Exercise 4.2 
to carry out the following exercises.

	 a.	 Run a regression of Earnings on Height.

	 i.	 Is the estimated slope statistically significant?

	 ii.	 Construct a 95% confidence interval for the slope coefficient.

	 b.	 Repeat (a) for women.

	 c.	 Repeat (a) for men.

	 d.	 Test the null hypothesis that the effect of height on earnings is the 
same for men and women. (Hint: See Exercise 5.15.)

	 e.	 One explanation for the effect on height on earnings is that some  
professions require strength, which is correlated with height. Does  
the effect of height on earnings disappear when the sample is restricted 
to occupations in which strength is unlikely to be important?

 	 E5.2	 Using the data set Growth described in Empirical Exercise 4.1, but exclud-
ing the data for Malta, run a regression of Growth on TradeShare.

	 a.	 Is the estimated regression slope statistically significant? This is, can 
you reject the null hypothesis H0: b1 = 0 vs. a two-sided alternative 
hypothesis at the 10%, 5%, or 1% significance level?
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2These data were provided by Professors Douglas Almond (Columbia University), Ken Chay (Brown 
University), and David Lee (Princeton University) and were used in their paper “The Costs of Low 
Birth Weight,” Quarterly Journal of Economics, August 2005, 120(3): 1031–1083.

	 b.	 What is the p-value associated with the coefficient’s t-statistic?

	 c.	 Construct a 90% confidence interval for b1.

 	 E5.3	 On the text website, www.pearsonglobaleditions.com/Stock_Watson, you 
will find the data file Birthweight_Smoking, which contains data for a ran-
dom sample of babies born in Pennsylvania in 1989. The data include the 
baby’s birth weight together with various characteristics of the mother, 
including whether she smoked during the pregnancy.2 A detailed descrip-
tion is given in Birthweight_Smoking_Description, also available on the 
website. In this exercise you will investigate the relationship between birth 
weight and smoking during pregnancy.

	 a.	 In the sample:

	 i.	 What is the average value of Birthweight for all mothers?

	 ii.	 For mothers who smoke?

	 iii.	 For mothers who do not smoke?

	 b.	 i.	� Use the data in the sample to estimate the difference in average 
birth weight for smoking and nonsmoking mothers.

	 ii.	 What is the standard error for the estimated difference in (i)?

	 iii.	 Construct a 95% confidence interval for the difference in the 
average birth weight for smoking and nonsmoking mothers.

	 c.	 Run a regression of Birthweight on the binary variable Smoker.

	 i.	 Explain how the estimated slope and intercept are related to your 
answers in parts (a) and (b).

	 ii.	 Explain how the SE(bn1) is related to your answer in b(ii).

	 iii.	 Construct a 95% confidence interval for the effect of smoking on 
birth weight.

	 d.	 Do you think smoking is uncorrelated with other factors that cause 
low birth weight? That is, do you think that the regression error term, 
say ui, has a conditional mean of zero, given Smoking (Xi)? (You will 
investigate this further in Birthweight and Smoking exercises in later 
chapters.)
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