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A state implements tough new penalties on drunk drivers: What is the effect  
on highway fatalities? A school district cuts the size of its elementary school 

classes: What is the effect on its students’ standardized test scores? You successfully  
complete one more year of college classes: What is the effect on your future  
earnings?

All three of these questions are about the unknown effect of changing one  
variable, X (X being penalties for drunk driving, class size, or years of schooling), on 
another variable, Y (Y being highway deaths, student test scores, or earnings).

This chapter introduces the linear regression model relating one variable, X, to 
another, Y. This model postulates a linear relationship between X and Y; the slope of 
the line relating X and Y is the effect of a one-unit change in X on Y. Just as the mean 
of Y is an unknown characteristic of the population distribution of Y, the slope of the 
line relating X and Y is an unknown characteristic of the population joint distribution 
of X and Y. The econometric problem is to estimate this slope—that is, to estimate the 
effect on Y of a unit change in X—using a sample of data on these two variables.

This chapter describes methods for estimating this slope using a random sample 
of data on X and Y. For instance, using data on class sizes and test scores from  
different school districts, we show how to estimate the expected effect on test scores 
of reducing class sizes by, say, one student per class. The slope and the intercept of 
the line relating X and Y can be estimated by a method called ordinary least squares 
(OLS).

	 4.1	 The Linear Regression Model

The superintendent of an elementary school district must decide whether to hire 
additional teachers and she wants your advice. If she hires the teachers, she will 
reduce the number of students per teacher (the student–teacher ratio) by two.  
She faces a trade-off. Parents want smaller classes so that their children can 
receive more individualized attention. But hiring more teachers means spending 
more money, which is not to the liking of those paying the bill! So she asks you: 
If she cuts class sizes, what will the effect be on student performance?

C h a p t e r

4
Linear Regression  
with One Regressor
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156	 Chapter 4  Linear Regression with One Regressor

In many school districts, student performance is measured by standardized 
tests, and the job status or pay of some administrators can depend in part on how 
well their students do on these tests. We therefore sharpen the superintendent’s 
question: If she reduces the average class size by two students, what will the effect 
be on standardized test scores in her district?

A precise answer to this question requires a quantitative statement about changes. 
If the superintendent changes the class size by a certain amount, what would she 
expect the change in standardized test scores to be? We can write this as a math-
ematical relationship using the Greek letter beta, bClassSize, where the subscript 
ClassSize distinguishes the effect of changing the class size from other effects. Thus,

	 bClassSize =
change in TestScore

change in ClassSize
=

∆TestScore
∆ClassSize

,	 (4.1)

where the Greek letter ∆ (delta) stands for “change in.” That is, bClassSize is the 
change in the test score that results from changing the class size divided by the 
change in the class size.

If you were lucky enough to know bClassSize, you would be able to tell the 
superintendent that decreasing class size by one student would change district-
wide test scores by bClassSize. You could also answer the superintendent’s actual 
question, which concerned changing class size by two students per class. To do so, 
rearrange Equation (4.1) so that

	 ∆TestScore = bClassSize * ∆ClassSize.	 (4.2)

Suppose that bClassSize = -0.6. Then a reduction in class size of two students per 
class would yield a predicted change in test scores of (-0.6) * (-2) = 1.2; that 
is, you would predict that test scores would rise by 1.2 points as a result of the 
reduction in class sizes by two students per class.

Equation (4.1) is the definition of the slope of a straight line relating test 
scores and class size. This straight line can be written

	 TestScore = b0 + bClassSize * ClassSize,	 (4.3)

where b0 is the intercept of this straight line and, as before, bClassSize is the slope. 
According to Equation (4.3), if you knew b0 and bClassSize, not only would you be 
able to determine the change in test scores at a district associated with a change 
in class size, but you also would be able to predict the average test score itself for 
a given class size.
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When you propose Equation (4.3) to the superintendent, she tells you that 
something is wrong with this formulation. She points out that class size is just one 
of many facets of elementary education and that two districts with the same class 
sizes will have different test scores for many reasons. One district might have bet-
ter teachers or it might use better textbooks. Two districts with comparable class 
sizes, teachers, and textbooks still might have very different student populations; 
perhaps one district has more immigrants (and thus fewer native English speak-
ers) or wealthier families. Finally, she points out that even if two districts are the 
same in all these ways they might have different test scores for essentially random 
reasons having to do with the performance of the individual students on the day 
of the test. She is right, of course; for all these reasons, Equation (4.3) will not hold 
exactly for all districts. Instead, it should be viewed as a statement about a rela-
tionship that holds on average across the population of districts.

A version of this linear relationship that holds for each district must incorpo-
rate these other factors influencing test scores, including each district’s unique 
characteristics (for example, quality of their teachers, background of their stu-
dents, how lucky the students were on test day). One approach would be to list 
the most important factors and to introduce them explicitly into Equation (4.3) 
(an idea we return to in Chapter 6). For now, however, we simply lump all these 
“other factors” together and write the relationship for a given district as

	 TestScore = b0 + bClassSize * ClassSize + other factors.	 (4.4)

Thus the test score for the district is written in terms of one component, 
b0 + bClassSize * ClassSize, that represents the average effect of class size on scores 
in the population of school districts and a second component that represents all 
other factors.

Although this discussion has focused on test scores and class size, the idea 
expressed in Equation (4.4) is much more general, so it is useful to introduce more 
general notation. Suppose you have a sample of n districts. Let Yi be the average 
test score in the ith district, let Xi be the average class size in the ith district, and let 
ui denote the other factors influencing the test score in the ith district. Then Equa-
tion (4.4) can be written more generally as

	 Yi = b0 + b1Xi + ui,	 (4.5)

for each district (that is, i = 1, c, n), where b0 is the intercept of this line and b1 
is the slope. [The general notation b1 is used for the slope in Equation (4.5) instead 
of bClassSize because this equation is written in terms of a general variable Xi.]
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158	 Chapter 4  Linear Regression with One Regressor

Equation (4.5) is the linear regression model with a single regressor, in which 
Y is the dependent variable and X is the independent variable or the regressor.

The first part of Equation (4.5), b0 + b1Xi, is the population regression line 
or the population regression function. This is the relationship that holds between 
Y and X on average over the population. Thus, if you knew the value of X, accord-
ing to this population regression line you would predict that the value of the 
dependent variable, Y, is b0 + b1X.

The intercept b0 and the slope b1 are the coefficients of the population regres-
sion line, also known as the parameters of the population regression line.  
The slope b1 is the change in Y associated with a unit change in X. The intercept 
is the value of the population regression line when X = 0; it is the point at which the 
population regression line intersects the Y axis. In some econometric applications,  
the intercept has a meaningful economic interpretation. In other applications, the 
intercept has no real-world meaning; for example, when X is the class size, strictly 
speaking the intercept is the predicted value of test scores when there are no stu-
dents in the class! When the real-world meaning of the intercept is nonsensical, it 
is best to think of it mathematically as the coefficient that determines the level of 
the regression line.

The term ui in Equation (4.5) is the error term. The error term incorporates 
all of the factors responsible for the difference between the ith district’s average 
test score and the value predicted by the population regression line. This error 
term contains all the other factors besides X that determine the value of the 
dependent variable, Y, for a specific observation, i. In the class size example, these 
other factors include all the unique features of the ith district that affect the per-
formance of its students on the test, including teacher quality, student economic 
background, luck, and even any mistakes in grading the test.

The linear regression model and its terminology are summarized in Key  
Concept 4.1.

Figure 4.1 summarizes the linear regression model with a single regressor for 
seven hypothetical observations on test scores (Y) and class size (X). The popula-
tion regression line is the straight line b0 + b1X. The population regression line 
slopes down (b1 6 0), which means that districts with lower student–teacher 
ratios (smaller classes) tend to have higher test scores. The intercept b0 has a math-
ematical meaning as the value of the Y axis intersected by the population regression 
line, but, as mentioned earlier, it has no real-world meaning in this example.

Because of the other factors that determine test performance, the hypotheti-
cal observations in Figure 4.1 do not fall exactly on the population regression line. 
For example, the value of Y for district #1, Y1, is above the population regression 
line. This means that test scores in district #1 were better than predicted by the 
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Terminology for the Linear Regression Model  
with a Single Regressor

The linear regression model is

Yi = b0 + b1Xi + ui,

where

the subscript i runs over observations, i = 1, c, n;

Yi is the dependent variable, the regressand, or simply the left-hand variable;

Xi is the independent variable, the regressor, or simply the right-hand variable;

b0 + b1X is the population regression line or the population regression function;

b0 is the intercept of the population regression line;

b1 is the slope of the population regression line; and

ui is the error term.

Key Concept

4.1

Figure 4.1 	Scatterplot of Test Score vs. Student–Teacher Ratio  
(Hypothetical Data)

The scatterplot shows  
hypothetical observations  
for seven school districts.  
The population regres-
sion line is b0 + b1X. The 
vertical distance from the 
ith point to the population 
regression line is  
Yi - (b0 + b1Xi), which  
is the population error 
term ui for the ith  
observation.
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160	 Chapter 4  Linear Regression with One Regressor

population regression line, so the error term for that district, u1, is positive. In 
contrast, Y2 is below the population regression line, so test scores for that district 
were worse than predicted, and u2 6 0.

Now return to your problem as advisor to the superintendent: What is the 
expected effect on test scores of reducing the student–teacher ratio by two students 
per teacher? The answer is easy: The expected change is (-2) * bClassSize.  
But what is the value of bClassSize?

	 4.2	 Estimating the Coefficients 
of the Linear Regression Model

In a practical situation such as the application to class size and test scores, the 
intercept b0 and slope b1 of the population regression line are unknown. There-
fore, we must use data to estimate the unknown slope and intercept of the popu-
lation regression line.

This estimation problem is similar to others you have faced in statistics. For 
example, suppose you want to compare the mean earnings of men and women 
who recently graduated from college. Although the population mean earnings are 
unknown, we can estimate the population means using a random sample of male 
and female college graduates. Then the natural estimator of the unknown popula-
tion mean earnings for women, for example, is the average earnings of the female 
college graduates in the sample.

The same idea extends to the linear regression model. We do not know the 
population value of bClassSize, the slope of the unknown population regression line 
relating X (class size) and Y (test scores). But just as it was possible to learn about 
the population mean using a sample of data drawn from that population, so is it 
possible to learn about the population slope bClassSize using a sample of data.

The data we analyze here consist of test scores and class sizes in 1999 in 420 
California school districts that serve kindergarten through eighth grade. The test 
score is the districtwide average of reading and math scores for fifth graders. Class 
size can be measured in various ways. The measure used here is one of the broadest, 
which is the number of students in the district divided by the number of teachers—
that is, the districtwide student–teacher ratio. These data are described in more 
detail in Appendix 4.1.

Table 4.1 summarizes the distributions of test scores and class sizes for this sam-
ple. The average student–teacher ratio is 19.6 students per teacher, and the standard 
deviation is 1.9 students per teacher. The 10th percentile of the distribution of the 
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student–teacher ratio is 17.3 (that is, only 10% of districts have student–teacher 
ratios below 17.3), while the district at the 90th percentile has a student–teacher 
ratio of 21.9.

A scatterplot of these 420 observations on test scores and the student–teacher 
ratio is shown in Figure 4.2. The sample correlation is -0.23, indicating a weak 
negative relationship between the two variables. Although larger classes in this 
sample tend to have lower test scores, there are other determinants of test scores 
that keep the observations from falling perfectly along a straight line.

Despite this low correlation, if one could somehow draw a straight line 
through these data, then the slope of this line would be an estimate of bClassSize 

TABLE 4.1 	 Summary of the Distribution of Student–Teacher Ratios and Fifth-Grade  
Test Scores for 420 K–8 Districts in California in 1999

      Percentile

   
Average

Standard 
Deviation

10% 25% 40% 50%  
(median)

60% 75% 90%

Student–teacher ratio 

Test score

  19.6

654.2

  1.9

19.1

  17.3

630.4

  18.6

640.0

  19.3

649.1

  19.7

654.5

  20.1

659.4

  20.9

666.7

  21.9

679.1

Figure 4.2 	Scatterplot of Test Score vs. Student–Teacher Ratio (California School District Data)

Data from 420  
California school dis-
tricts. There is a weak 
negative relationship 
between the student–
teacher ratio and test 
scores: The sample  
correlation is -0.23.
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162	 Chapter 4  Linear Regression with One Regressor

based on these data. One way to draw the line would be to take out a pencil 
and a ruler and to “eyeball” the best line you could. While this method is easy, 
it is very unscientific, and different people will create different estimated 
lines.

How, then, should you choose among the many possible lines? By far the 
most common way is to choose the line that produces the “least squares” fit to 
these data—that is, to use the ordinary least squares (OLS) estimator.

The Ordinary Least Squares Estimator
The OLS estimator chooses the regression coefficients so that the estimated 
regression line is as close as possible to the observed data, where closeness is 
measured by the sum of the squared mistakes made in predicting Y given X.

As discussed in Section 3.1, the sample average, Y, is the least squares estimator of 
the population mean, E(Y); that is, Y minimizes the total squared estimation mistakes 
gn

i= 1(Yi - m)2 among all possible estimators m [see Expression (3.2)].
The OLS estimator extends this idea to the linear regression model. Let b0 and 

b1 be some estimators of b0 and b1. The regression line based on these estimators is 
b0 + b1X, so the value of Yi predicted using this line is b0 + b1Xi. Thus the mistake 
made in predicting the ith observation is Yi - (b0 + b1Xi) = Yi - b0 - b1Xi.  
The sum of these squared prediction mistakes over all n observations is

	 a
n

i= 1
(Yi - b0 - b1Xi)

2.	 (4.6)

The sum of the squared mistakes for the linear regression model in Expression 
(4.6) is the extension of the sum of the squared mistakes for the problem of 
estimating the mean in Expression (3.2). In fact, if there is no regressor, then 
b1 does not enter Expression (4.6) and the two problems are identical except 
for the different notation [m in Expression (3.2), b0 in Expression (4.6)]. Just 
as there is a unique estimator, Y , that minimizes the Expression (3.2), so is 
there a unique pair of estimators of b0 and b1 that minimize Expression (4.6).

The estimators of the intercept and slope that minimize the sum of squared 
mistakes in Expression (4.6) are called the ordinary least squares (OLS) estima-
tors of b0 and b1.

OLS has its own special notation and terminology. The OLS estimator of b0 
is denoted bn0, and the OLS estimator of b1 is denoted bn1. The OLS regression line, 
also called the sample regression line or sample regression function, is the straight 
line constructed using the OLS estimators: bn0 + bn1X. The predicted value of Yi 
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given Xi, based on the OLS regression line, is Yn i = bn0 + bn1Xi. The residual for the 
ith observation is the difference between Yi and its predicted value: un i = Yi - Yn i.

The OLS estimators, bn0 and bn1, are sample counterparts of the population 
coefficients, b0 and b1. Similarly, the OLS regression line bn0 + bn1X is the sample 
counterpart of the population regression line b0 + b1X, and the OLS residuals un i 
are sample counterparts of the population errors ui.

You could compute the OLS estimators bn0 and bn1 by trying different values 
of b0 and b1 repeatedly until you find those that minimize the total squared mis-
takes in Expression (4.6); they are the least squares estimates. This method would 
be quite tedious, however. Fortunately, there are formulas, derived by minimiz-
ing Expression (4.6) using calculus, that streamline the calculation of the OLS 
estimators.

The OLS formulas and terminology are collected in Key Concept 4.2. These 
formulas are implemented in virtually all statistical and spreadsheet programs. 
These formulas are derived in Appendix 4.2.

The OLS Estimator, Predicted Values, and Residuals

The OLS estimators of the slope b1 and the intercept b0 are

	 bn1 =
a
n

i= 1
(Xi - X)(Yi - Y)

a
n

i= 1
(Xi - X)2

=
sXY

s2
X

	 (4.7)

	 bn0 = Y - bn1X.	 (4.8)

The OLS predicted values Yn i and residuals un i are

	 Yn i = bn0 + bn1Xi, i = 1, c, n	 (4.9)

	 un i = Yi - Yn i, i = 1, c, n.	 (4.10)

The estimated intercept (bn0), slope (bn1), and residual (un i) are computed from a 
sample of n observations of Xi and Yi, i = 1, c, n. These are estimates of the 
unknown true population intercept (b0), slope (b1), and error term (ui).

Key Concept

4.2
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OLS Estimates of the Relationship Between Test 
Scores and the Student–Teacher Ratio
When OLS is used to estimate a line relating the student–teacher ratio to test 
scores using the 420 observations in Figure 4.2, the estimated slope is -2.28 and 
the estimated intercept is 698.9. Accordingly, the OLS regression line for these 
420 observations is

	 TestScore = 698.9 - 2.28 * STR,	 (4.11)

where TestScore is the average test score in the district and STR is the student–
teacher ratio. The “N” over TestScore in Equation (4.11) indicates that it is the 
predicted value based on the OLS regression line. Figure 4.3 plots this OLS 
regression line superimposed over the scatterplot of the data previously shown in 
Figure 4.2.

The slope of -2.28 means that an increase in the student–teacher ratio by one 
student per class is, on average, associated with a decline in districtwide test scores 
by 2.28 points on the test. A decrease in the student–teacher ratio by two students 
per class is, on average, associated with an increase in test scores of 4.56 points 
3=  -2 * (-2.28)4. The negative slope indicates that more students per teacher 
(larger classes) is associated with poorer performance on the test.

Figure 4.3 	The Estimated Regression Line for the California Data

The estimated regres-
sion line shows a 
negative relationship 
between test scores  
and the student–
teacher ratio. If class 
sizes fall by one  
student, the estimated 
regression predicts that 
test scores will increase 
by 2.28 points.
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It is now possible to predict the districtwide test score given a value of the student–
teacher ratio. For example, for a district with 20 students per teacher, the predicted 
test score is 698.9 - 2.28 * 20 = 653.3. Of course, this prediction will not be exactly 
right because of the other factors that determine a district’s performance. But the 
regression line does give a prediction (the OLS prediction) of what test scores would 
be for that district, based on their student–teacher ratio, absent those other factors.

Is this estimate of the slope large or small? To answer this, we return to the 
superintendent’s problem. Recall that she is contemplating hiring enough teach-
ers to reduce the student–teacher ratio by 2. Suppose her district is at the median 
of the California districts. From Table 4.1, the median student–teacher ratio is 
19.7 and the median test score is 654.5. A reduction of two students per class, from 
19.7 to 17.7, would move her student–teacher ratio from the 50th percentile to 
very near the 10th percentile. This is a big change, and she would need to hire 
many new teachers. How would it affect test scores?

According to Equation (4.11), cutting the student–teacher ratio by 2 is pre-
dicted to increase test scores by approximately 4.6 points; if her district’s test 
scores are at the median, 654.5, they are predicted to increase to 659.1. Is this 
improvement large or small? According to Table 4.1, this improvement would 
move her district from the median to just short of the 60th percentile. Thus a 
decrease in class size that would place her district close to the 10% with the small-
est classes would move her test scores from the 50th to the 60th percentile. 
According to these estimates, at least, cutting the student–teacher ratio by a large 
amount (two students per teacher) would help and might be worth doing depend-
ing on her budgetary situation, but it would not be a panacea.

What if the superintendent were contemplating a far more radical change, 
such as reducing the student–teacher ratio from 20 students per teacher to 5? 
Unfortunately, the estimates in Equation (4.11) would not be very useful to her. 
This regression was estimated using the data in Figure 4.2, and, as the figure 
shows, the smallest student–teacher ratio in these data is 14. These data contain 
no information on how districts with extremely small classes perform, so these 
data alone are not a reliable basis for predicting the effect of a radical move to 
such an extremely low student–teacher ratio.

Why Use the OLS Estimator?
There are both practical and theoretical reasons to use the OLS estimators bn0 and 
bn1. Because OLS is the dominant method used in practice, it has become the com-
mon language for regression analysis throughout economics, finance (see “The 
‘Beta’ of a Stock” box), and the social sciences more generally. Presenting results 
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using OLS (or its variants discussed later in this book) means that you are “speak-
ing the same language” as other economists and statisticians. The OLS formulas 
are built into virtually all spreadsheet and statistical software packages, making 
OLS easy to use.

A fundamental idea of modern finance is that an 

investor needs a financial incentive to take a 

risk. Said differently, the expected return1 on a risky 

investment, R, must exceed the return on a safe, or 

risk-free, investment, Rf . Thus the expected excess 

return, R - Rf , on a risky investment, like owning 

stock in a company, should be positive.

At first it might seem like the risk of a stock 

should be measured by its variance. Much of that 

risk, however, can be reduced by holding other 

stocks in a “portfolio”—in other words, by diversify-

ing your financial holdings. This means that the right 

way to measure the risk of a stock is not by its vari-

ance but rather by its covariance with the market.

The capital asset pricing model (CAPM) formal-

izes this idea. According to the CAPM, the expected 

excess return on an asset is proportional to the 

expected excess return on a portfolio of all available 

assets (the “market portfolio”). That is, the CAPM 

says that

	 R - Rf = b(Rm - Rf),	 (4.12)

where Rm is the expected return on the market 

portfolio and b is the coefficient in the population 

regression of R - Rf  on Rm - Rf . In practice, the 

risk-free return is often taken to be the rate of inter-

est on short-term U.S. government debt. Accord-

ing to the CAPM, a stock with a b 6 1 has less risk 

than the market portfolio and therefore has a lower 

expected excess return than the market portfolio. In 

contrast, a stock with a b 7 1 is riskier than the mar-

ket portfolio and thus commands a higher expected 

excess return.

The “beta” of a stock has become a workhorse 

of the investment industry, and you can obtain esti-

mated betas for hundreds of stocks on investment 

firm websites. Those betas typically are estimated 

by OLS regression of the actual excess return on 

the stock against the actual excess return on a broad 

market index.

The table below gives estimated betas for seven 

U.S. stocks. Low-risk producers of consumer sta-

ples like Kellogg have stocks with low betas; riskier 

stocks have high betas.

The “Beta” of a Stock

1The return on an investment is the change in its price plus 
any payout (dividend) from the investment as a percentage 
of its initial price. For example, a stock bought on January 
1 for $100, which then paid a $2.50 dividend during the year 
and sold on December 31 for $105, would have a return of 
R = 3($105 - $100) + $2.504 >  $100 = 7.5%.

Company Estimated B

Verizon (telecommunications) 0.0

Wal-Mart (discount retailer) 0.3

Kellogg (breakfast cereal) 0.5

Waste Management (waste disposal) 0.6

Google (information technology) 1.0

Ford Motor Company (auto producer) 1.3

Bank of America (bank) 2.2

Source: finance.yahoo.com.
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The OLS estimators also have desirable theoretical properties. They are anal-
ogous to the desirable properties, studied in Section 3.1, of Y as an estimator of 
the population mean. Under the assumptions introduced in Section 4.4, the OLS 
estimator is unbiased and consistent. The OLS estimator is also efficient among a 
certain class of unbiased estimators; however, this efficiency result holds under 
some additional special conditions, and further discussion of this result is deferred 
until Section 5.5.

	 4.3	 Measures of Fit

Having estimated a linear regression, you might wonder how well that regression 
line describes the data. Does the regressor account for much or for little of the 
variation in the dependent variable? Are the observations tightly clustered around 
the regression line, or are they spread out?

The R2 and the standard error of the regression measure how well the OLS 
regression line fits the data. The R2 ranges between 0 and 1 and measures the 
fraction of the variance of Yi that is explained by Xi. The standard error of the 
regression measures how far Yi typically is from its predicted value.

The R2

The regression R2 is the fraction of the sample variance of Yi explained by (or 
predicted by) Xi. The definitions of the predicted value and the residual (see Key 
Concept 4.2) allow us to write the dependent variable Yi as the sum of the pre-
dicted value, Yn i, plus the residual un i:

	 Yi = Yn i + un i.	 (4.13)

In this notation, the R2 is the ratio of the sample variance of Yn i to the sample vari-
ance of Yi.

Mathematically, the R2 can be written as the ratio of the explained sum of 
squares to the total sum of squares. The explained sum of squares (ESS) is the 
sum of squared deviations of the predicted value,Yn i, from its average, and the 
total sum of squares (TSS) is the sum of squared deviations of Yi from its average:

	 ESS = a
n

i= 1
(Yn i - Y)2	 (4.14)

	 TSS = a
n

i= 1
(Yi - Y)2.	 (4.15)
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Equation (4.14) uses the fact that the sample average OLS predicted value equals 
Y (proven in Appendix 4.3).

The R2 is the ratio of the explained sum of squares to the total sum of squares:

	 R2 =
ESS
TSS

.	 (4.16)

Alternatively, the R2 can be written in terms of the fraction of the variance of Yi 
not explained by Xi. The sum of squared residuals, or SSR, is the sum of the 
squared OLS residuals:

	 SSR = a
n

i= 1
un2

i .	 (4.17)

It is shown in Appendix 4.3 that TSS = ESS + SSR. Thus the R2 also can be 
expressed as 1 minus the ratio of the sum of squared residuals to the total sum of 
squares:

	 R2 = 1 -
SSR
TSS

.	 (4.18)

Finally, the R2 of the regression of Y on the single regressor X is the square of the 
correlation coefficient between Y and X (Exercise 4.12).

The R2 ranges between 0 and 1. If bn1 = 0, then Xi explains none of the varia-
tion of Yi and the predicted value of Yi is Yn i = bn0 = Y [from Equation (4.8)]. In 
this case, the explained sum of squares is zero and the sum of squared residuals 
equals the total sum of squares; thus the R2 is zero. In contrast, if Xi explains all 
of the variation of Yi, then Yi = Yn i for all i and every residual is zero (that is, 
un i =  0), so that ESS = TSS and R2 = 1. In general, the R2 does not take on the 
extreme values of 0 or 1 but falls somewhere in between. An R2 near 1 indicates 
that the regressor is good at predicting Yi, while an R2 near 0 indicates that the 
regressor is not very good at predicting Yi.

The Standard Error of the Regression
The standard error of the regression (SER) is an estimator of the standard devia-
tion of the regression error ui. The units of ui and Yi are the same, so the SER is 
a measure of the spread of the observations around the regression line, measured 
in the units of the dependent variable. For example, if the units of the dependent 
variable are dollars, then the SER measures the magnitude of a typical deviation 
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from the regression line—that is, the magnitude of a typical regression error—in 
dollars.

Because the regression errors u1, c, un are unobserved, the SER is com-
puted using their sample counterparts, the OLS residuals un1, c, unn. The formula 
for the SER is

	 SER = su = 2su
2, where su

2 =
1

n - 2
 a

n

i= 1
un2

i =
SSR

n - 2
,	 (4.19)

where the formula for su
2 uses the fact (proven in Appendix 4.3) that the sample 

average of the OLS residuals is zero.
The formula for the SER in Equation (4.19) is similar to the formula for the 

sample standard deviation of Y given in Equation (3.7) in Section 3.2, except that 
Yi - Y in Equation (3.7) is replaced by un i and the divisor in Equation (3.7) is n - 1, 
whereas here it is n - 2. The reason for using the divisor n - 2 here (instead of n) 
is the same as the reason for using the divisor n - 1 in Equation (3.7): It corrects 
for a slight downward bias introduced because two regression coefficients were 
estimated. This is called a “degrees of freedom” correction because two coefficients 
were estimated (b0 and b1), two “degrees of freedom” of the data were lost, so the 
divisor in this factor is n - 2. (The mathematics behind this is discussed in Section 
5.6.) When n is large, the difference between dividing by n, by n - 1, or by n - 2 
is negligible.

Application to the Test Score Data
Equation (4.11) reports the regression line, estimated using the California test 
score data, relating the standardized test score (TestScore) to the student–teacher 
ratio (STR). The R2 of this regression is 0.051, or 5.1%, and the SER is 18.6.

The R2 of 0.051 means that the regressor STR explains 5.1% of the variance 
of the dependent variable TestScore. Figure 4.3 superimposes this regression line 
on the scatterplot of the TestScore and STR data. As the scatterplot shows, the 
student–teacher ratio explains some of the variation in test scores, but much vari-
ation remains unaccounted for.

The SER of 18.6 means that standard deviation of the regression residuals is 
18.6, where the units are points on the standardized test. Because the standard 
deviation is a measure of spread, the SER of 18.6 means that there is a large spread 
of the scatterplot in Figure 4.3 around the regression line as measured in points on 
the test. This large spread means that predictions of test scores made using only 
the student–teacher ratio for that district will often be wrong by a large amount.

N N N

N
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What should we make of this low R2 and large SER? The fact that the R2 of 
this regression is low (and the SER is large) does not, by itself, imply that this 
regression is either “good” or “bad.” What the low R2 does tell us is that other 
important factors influence test scores. These factors could include differences in 
the student body across districts, differences in school quality unrelated to the 
student–teacher ratio, or luck on the test. The low R2 and high SER do not tell us 
what these factors are, but they do indicate that the student–teacher ratio alone 
explains only a small part of the variation in test scores in these data.

	 4.4	 The Least Squares Assumptions

This section presents a set of three assumptions on the linear regression model 
and the sampling scheme under which OLS provides an appropriate estimator of 
the unknown regression coefficients, b0 and b1. Initially, these assumptions might 
appear abstract. They do, however, have natural interpretations, and understand-
ing these assumptions is essential for understanding when OLS will—and will 
not—give useful estimates of the regression coefficients.

Assumption #1: The Conditional Distribution  
of ui Given Xi Has a Mean of Zero
The first of the three least squares assumptions is that the conditional distribution 
of ui given Xi has a mean of zero. This assumption is a formal mathematical state-
ment about the “other factors” contained in ui and asserts that these other factors 
are unrelated to Xi in the sense that, given a value of Xi, the mean of the distribu-
tion of these other factors is zero.

This assumption is illustrated in Figure 4.4. The population regression is the 
relationship that holds on average between class size and test scores in the popu-
lation, and the error term ui represents the other factors that lead test scores at a 
given district to differ from the prediction based on the population regression line. 
As shown in Figure 4.4, at a given value of class size, say 20 students per class, 
sometimes these other factors lead to better performance than predicted (ui 7 0) 
and sometimes to worse performance (ui 6 0), but on average over the popula-
tion the prediction is right. In other words, given Xi = 20, the mean of the distri-
bution of ui is zero. In Figure 4.4, this is shown as the distribution of ui being 
centered on the population regression line at Xi = 20 and, more generally, at 
other values x of Xi as well. Said differently, the distribution of ui, conditional on 
Xi = x, has a mean of zero; stated mathematically, E(ui � Xi = x) = 0, or, in 
somewhat simpler notation, E(ui � Xi) = 0.
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As shown in Figure 4.4, the assumption that E(ui � Xi) = 0 is equivalent to 
assuming that the population regression line is the conditional mean of Yi given 
Xi (a mathematical proof of this is left as Exercise 4.6).

The conditional mean of u in a randomized controlled experiment.  In a random-
ized controlled experiment, subjects are randomly assigned to the treatment 
group (X = 1) or to the control group (X = 0). The random assignment typically 
is done using a computer program that uses no information about the subject, 
ensuring that X is distributed independently of all personal characteristics of the 
subject. Random assignment makes X and u independent, which in turn implies 
that the conditional mean of u given X is zero.

In observational data, X is not randomly assigned in an experiment. Instead, 
the best that can be hoped for is that X is as if randomly assigned, in the precise 
sense that E(ui � Xi) = 0. Whether this assumption holds in a given empirical 
application with observational data requires careful thought and judgment, and 
we return to this issue repeatedly.

Figure 4.4 		T he Conditional Probability Distributions and the Population 
Regression Line

The figure shows the conditional probability of test scores for districts with class sizes of 15, 20, 
and 25 students. The mean of the conditional distribution of test scores, given the student–
teacher ratio, E(Y � X), is the population regression line. At a given value of X, Y is distributed 
around the regression line and the error, u = Y - (b0 + b1X), has a conditional mean of zero 
for all values of X.

Distribution of Y when X = 15
Distribution of Y when X = 20

Distribution of Y when X = 25
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E(Y ΩX = 20)

E(Y ΩX = 25) b0 +b1X 
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Correlation and conditional mean.  Recall from Section 2.3 that if the conditional 
mean of one random variable given another is zero, then the two random variables 
have zero covariance and thus are uncorrelated [Equation (2.27)]. Thus the condi-
tional mean assumption E(ui � Xi) = 0 implies that Xi and ui are uncorrelated, or 
corr(Xi, ui) = 0. Because correlation is a measure of linear association, this impli-
cation does not go the other way; even if Xi and ui are uncorrelated, the conditional 
mean of ui given Xi might be nonzero. However, if Xi and ui are correlated, then it 
must be the case that E(ui � Xi) is nonzero. It is therefore often convenient to discuss 
the conditional mean assumption in terms of possible correlation between Xi and 
ui. If Xi and ui are correlated, then the conditional mean assumption is violated.

Assumption #2: (Xi, Yi), i = 1, . . . , n, Are 
Independently and Identically Distributed
The second least squares assumption is that (Xi, Yi ), i = 1, c, n, are indepen-
dently and identically distributed (i.i.d.) across observations. As discussed in Sec-
tion 2.5 (Key Concept 2.5), this assumption is a statement about how the sample 
is drawn. If the observations are drawn by simple random sampling from a single 
large population, then (Xi, Yi ), i = 1, c, n, are i.i.d. For example, let X be the 
age of a worker and Y be his or her earnings, and imagine drawing a person at 
random from the population of workers. That randomly drawn person will have 
a certain age and earnings (that is, X and Y will take on some values). If a sample 
of n workers is drawn from this population, then (Xi, Yi ), i = 1, c, n, necessar-
ily have the same distribution. If they are drawn at random they are also distrib-
uted independently from one observation to the next; that is, they are i.i.d.

The i.i.d. assumption is a reasonable one for many data collection schemes. 
For example, survey data from a randomly chosen subset of the population typi-
cally can be treated as i.i.d.

Not all sampling schemes produce i.i.d. observations on (Xi, Yi), however. One 
example is when the values of X are not drawn from a random sample of the popu-
lation but rather are set by a researcher as part of an experiment. For example, 
suppose a horticulturalist wants to study the effects of different organic weeding 
methods (X) on tomato production (Y) and accordingly grows different plots of 
tomatoes using different organic weeding techniques. If she picks the techniques 
(the level of X) to be used on the ith plot and applies the same technique to the ith 
plot in all repetitions of the experiment, then the value of Xi does not change from 
one sample to the next. Thus Xi is nonrandom (although the outcome Yi is random), 
so the sampling scheme is not i.i.d. The results presented in this chapter developed 
for i.i.d. regressors are also true if the regressors are nonrandom. The case of a 
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nonrandom regressor is, however, quite special. For example, modern experimen-
tal protocols would have the horticulturalist assign the level of X to the different 
plots using a computerized random number generator, thereby circumventing any 
possible bias by the horticulturalist (she might use her favorite weeding method 
for the tomatoes in the sunniest plot). When this modern experimental protocol 
is used, the level of X is random and (Xi, Yi) are i.i.d.

Another example of non-i.i.d. sampling is when observations refer to the 
same unit of observation over time. For example, we might have data on inven-
tory levels (Y) at a firm and the interest rate at which the firm can borrow (X), 
where these data are collected over time from a specific firm; for example, they 
might be recorded four times a year (quarterly) for 30 years. This is an example 
of time series data, and a key feature of time series data is that observations falling 
close to each other in time are not independent but rather tend to be correlated 
with each other; if interest rates are low now, they are likely to be low next quar-
ter. This pattern of correlation violates the “independence” part of the i.i.d. 
assumption. Time series data introduce a set of complications that are best han-
dled after developing the basic tools of regression analysis, so we postpone discus-
sion of time series data until Chapter 14.

Assumption #3: Large Outliers Are Unlikely
The third least squares assumption is that large outliers—that is, observations with 
values of Xi, Yi, or both that are far outside the usual range of the data—are unlikely. 
Large outliers can make OLS regression results misleading. This potential sensitivity 
of OLS to extreme outliers is illustrated in Figure 4.5 using hypothetical data.

In this book, the assumption that large outliers are unlikely is made mathe-
matically precise by assuming that X and Y have nonzero finite fourth moments: 
0 6 E(X 4i ) 6  ∞  and 0 6 E(Y4

i ) 6  ∞ . Another way to state this assumption is 
that X and Y have finite kurtosis.

The assumption of finite kurtosis is used in the mathematics that justify the 
large-sample approximations to the distributions of the OLS test statistics. For 
example, we encountered this assumption in Chapter 3 when discussing the con-
sistency of the sample variance. Specifically, Equation (3.9) states that the sample 
variance is a consistent estimator of the population variance s2

Y (s2
Y ¡p

s2
Y). If 

Y1, c, Yn are i.i.d. and the fourth moment of Yi is finite, then the law of large 
numbers in Key Concept 2.6 applies to the average, 1

ngn
i= 1Y 2i , a key step in the 

proof in Appendix 3.3 showing that s2
Y is consistent.

One source of large outliers is data entry errors, such as a typographical error 
or incorrectly using different units for different observations. Imagine collecting 
data on the height of students in meters, but inadvertently recording one student’s 

1
ngn

i= 1(Yi - mY)2
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height in centimeters instead. This would create a large outlier in the sample. One 
way to find outliers is to plot your data. If you decide that an outlier is due to a 
data entry error, then you can either correct the error or, if that is impossible, 
drop the observation from your data set.

Data entry errors aside, the assumption of finite kurtosis is a plausible one in 
many applications with economic data. Class size is capped by the physical capac-
ity of a classroom; the best you can do on a standardized test is to get all the ques-
tions right and the worst you can do is to get all the questions wrong. Because class 
size and test scores have a finite range, they necessarily have finite kurtosis. More 
generally, commonly used distributions such as the normal distribution have four 
moments. Still, as a mathematical matter, some distributions have infinite fourth 
moments, and this assumption rules out those distributions. If the assumption of 
finite fourth moments holds, then it is unlikely that statistical inferences using 
OLS will be dominated by a few observations.

Use of the Least Squares Assumptions
The three least squares assumptions for the linear regression model are summa-
rized in Key Concept 4.3. The least squares assumptions play twin roles, and we 
return to them repeatedly throughout this textbook.

Figure 4.5 	 	The Sensitivity of OLS to Large Outliers

This hypothetical data set has one  
outlier. The OLS regression line  
estimated with the outlier shows  
a strong positive relationship between  
X and Y, but the OLS regression line  
estimated without the outlier shows  
no relationship.
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Their first role is mathematical: If these assumptions hold, then, as is shown 
in the next section, in large samples the OLS estimators have sampling distribu-
tions that are normal. In turn, this large-sample normal distribution lets us develop 
methods for hypothesis testing and constructing confidence intervals using the 
OLS estimators.

Their second role is to organize the circumstances that pose difficulties for 
OLS regression. As we will see, the first least squares assumption is the most 
important to consider in practice. One reason why the first least squares assump-
tion might not hold in practice is discussed in Chapter 6, and additional reasons 
are discussed in Section 9.2.

It is also important to consider whether the second assumption holds in an applica-
tion. Although it plausibly holds in many cross-sectional data sets, the independence 
assumption is inappropriate for panel and time series data. Therefore, the regression 
methods developed under assumption 2 require modification for some applications 
with time series data. These modifications are developed in Chapters 10 and 14–16.

The third assumption serves as a reminder that OLS, just like the sample 
mean, can be sensitive to large outliers. If your data set contains large outliers, 
you should examine those outliers carefully to make sure those observations are 
correctly recorded and belong in the data set.

	 4.5	 Sampling Distribution of the OLS 
Estimators

Because the OLS estimators bn0 and bn1 are computed from a randomly drawn sam-
ple, the estimators themselves are random variables with a probability distribution—
the sampling distribution—that describes the values they could take over different 
possible random samples. This section presents these sampling distributions.  

The Least Squares Assumptions

Yi = b0 + b1Xi + ui, i = 1, c, n, where

	 1.	 The error term ui has conditional mean zero given Xi: E(ui � Xi) = 0;

	 2.	 (Xi, Yi ), i = 1, c, n, are independent and identically distributed (i.i.d.) 
draws from their joint distribution; and

	 3.	 Large outliers are unlikely: Xi and Yi have nonzero finite fourth moments.

Key Concept

4.3
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In small samples, these distributions are complicated, but in large samples, they 
are approximately normal because of the central limit theorem.

The Sampling Distribution of the OLS Estimators
Review of the sampling distribution of  Y.  Recall the discussion in Sections 2.5 and 
2.6 about the sampling distribution of the sample average, Y, an estimator of the 
unknown population mean of Y, mY. Because Y is calculated using a randomly 
drawn sample, Y is a random variable that takes on different values from one 
sample to the next; the probability of these different values is summarized in its 
sampling distribution. Although the sampling distribution of Y can be complicated 
when the sample size is small, it is possible to make certain statements about it that 
hold for all n. In particular, the mean of the sampling distribution is mY, that is, 
E(Y) = mY, so Y is an unbiased estimator of mY. If n is large, then more can be said 
about the sampling distribution. In particular, the central limit theorem (Section 2.6) 
states that this distribution is approximately normal.

The sampling distribution of bn0 and bn1.  These ideas carry over to the OLS estima-
tors bn0 and bn1 of the unknown intercept b0 and slope b1 of the population regres-
sion line. Because the OLS estimators are calculated using a random sample, bn0 
and bn1 are random variables that take on different values from one sample to the 
next; the probability of these different values is summarized in their sampling 
distributions.

Although the sampling distribution of bn0 and bn1 can be complicated when the 
sample size is small, it is possible to make certain statements about it that hold for 
all n. In particular, the mean of the sampling distributions of bn0 and bn1 are b0 and 
b1. In other words, under the least squares assumptions in Key Concept 4.3,

	 E(bn0) = b0 and E(bn1) = b1;	 (4.20)

that is, bn0 and bn1 are unbiased estimators of b0 and b1. The proof that bn1 is unbiased 
is given in Appendix 4.3, and the proof that bn0 is unbiased is left as Exercise 4.7.

If the sample is sufficiently large, by the central limit theorem the sampling 
distribution of bn0 and bn1 is well approximated by the bivariate normal distribution 
(Section 2.4). This implies that the marginal distributions of bn0 and bn1 are normal in 
large samples.

This argument invokes the central limit theorem. Technically, the central limit 
theorem concerns the distribution of averages (like Y). If you examine the numerator 
in Equation (4.7) for bn1, you will see that it, too, is a type of average—not a simple 
average, like Y, but an average of the product, (Yi - Y)(Xi - X). As discussed 
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further in Appendix 4.3, the central limit theorem applies to this average so that, 
like the simpler average Y, it is normally distributed in large samples.

The normal approximation to the distribution of the OLS estimators in large 
samples is summarized in Key Concept 4.4. (Appendix 4.3 summarizes the deriva-
tion of these formulas.) A relevant question in practice is how large n must be for 
these approximations to be reliable. In Section 2.6, we suggested that n = 100 is 
sufficiently large for the sampling distribution of Y to be well approximated by a 
normal distribution, and sometimes smaller n suffices. This criterion carries over 
to the more complicated averages appearing in regression analysis. In virtually all 
modern econometric applications, n 7 100, so we will treat the normal approxi-
mations to the distributions of the OLS estimators as reliable unless there are 
good reasons to think otherwise.

The results in Key Concept 4.4 imply that the OLS estimators are consistent—
that is, when the sample size is large, bn0 and bn1 will be close to the true population 
coefficients b0 and b1 with high probability. This is because the variances s2

b0
 and  

s
2
b1

 of the estimators decrease to zero as n increases (n appears in the denominator 
of the formulas for the variances), so the distribution of the OLS estimators will be 
tightly concentrated around their means, b0 and b1, when n is large.

Another implication of the distributions in Key Concept 4.4 is that, in general, 
the larger is the variance of Xi, the smaller is the variance s2

b1
 of bn1. Mathemati-

cally, this implication arises because the variance of bn1 in Equation (4.21) is 
inversely proportional to the square of the variance of Xi: the larger is var(Xi), the 
larger is the denominator in Equation (4.21) so the smaller is s2

b1
. To get a better sense 

N

N

N

N

Large-Sample Distributions of bn0 and bn1

If the least squares assumptions in Key Concept 4.3 hold, then in large samples 
bn0 and bn1 have a jointly normal sampling distribution. The large-sample normal 
distribution of bn1 is N(b1, s2

b1
), where the variance of this distribution, s2

b1
, is

	 s
2
b1

=
1
n

 
var3(Xi - mX)ui4

3var(Xi)42 .	 (4.21)

The large-sample normal distribution of bn0 is N(b0, s2
b0

), where

	 s
2
b0

=
1
n

 
var(Hiui)

3E(H2
i )42, where Hi = 1 - c mX

E(X2
i )
dXi.	 (4.22)

N N

N

N

N

Key Concept

4.4
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of why this is so, look at Figure 4.6, which presents a scatterplot of 150 artificial data 
points on X and Y. The data points indicated by the colored dots are the 75 observa-
tions closest to X. Suppose you were asked to draw a line as accurately as possible 
through either the colored or the black dots—which would you choose? It would be 
easier to draw a precise line through the black dots, which have a larger variance than 
the colored dots. Similarly, the larger the variance of X, the more precise is bn1.

The distributions in Key Concept 4.4 also imply that the smaller is the vari-
ance of the error ui, the smaller is the variance of bn1. This can be seen mathemat-
ically in Equation (4.21) because ui enters the numerator, but not denominator, 
of s2

b1
: If all ui were smaller by a factor of one-half but the X’s did not change, then 

sb1
 would be smaller by a factor of one-half and s2

b1
 would be smaller by a factor 

of one-fourth (Exercise 4.13). Stated less mathematically, if the errors are smaller 
(holding the X’s fixed), then the data will have a tighter scatter around the popu-
lation regression line so its slope will be estimated more precisely.

The normal approximation to the sampling distribution of bn0 and bn1 is a pow-
erful tool. With this approximation in hand, we are able to develop methods for 
making inferences about the true population values of the regression coefficients 
using only a sample of data.

N

N N

Figure 4.6 	 	The Variance of Bn1 and the Variance of X

The colored dots represent  
a set of Xi’s with a small  
variance. The black dots  
represent a set of Xi’s with  
a large variance. The  
regression line can be  
estimated more accurately  
with the black dots than  
with the colored dots.
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	 4.6	 Conclusion

This chapter has focused on the use of ordinary least squares to estimate the 
intercept and slope of a population regression line using a sample of n observa-
tions on a dependent variable, Y, and a single regressor, X. There are many ways 
to draw a straight line through a scatterplot, but doing so using OLS has several 
virtues. If the least squares assumptions hold, then the OLS estimators of the 
slope and intercept are unbiased, are consistent, and have a sampling distribution 
with a variance that is inversely proportional to the sample size n. Moreover, if n 
is large, then the sampling distribution of the OLS estimator is normal.

These important properties of the sampling distribution of the OLS estimator 
hold under the three least squares assumptions.

The first assumption is that the error term in the linear regression model has 
a conditional mean of zero, given the regressor X. This assumption implies that 
the OLS estimator is unbiased.

The second assumption is that (Xi, Yi) are i.i.d., as is the case if the data are col-
lected by simple random sampling. This assumption yields the formula, presented in 
Key Concept 4.4, for the variance of the sampling distribution of the OLS estimator.

The third assumption is that large outliers are unlikely. Stated more formally, 
X and Y have finite fourth moments (finite kurtosis). The reason for this assump-
tion is that OLS can be unreliable if there are large outliers. Taken together, the 
three least squares assumptions imply that the OLS estimator is normally distrib-
uted in large samples as described in Key Concept 4.4.

The results in this chapter describe the sampling distribution of the OLS esti-
mator. By themselves, however, these results are not sufficient to test a hypoth-
esis about the value of b1 or to construct a confidence interval for b1. Doing so 
requires an estimator of the standard deviation of the sampling distribution—that 
is, the standard error of the OLS estimator. This step—moving from the sam-
pling distribution of bn1 to its standard error, hypothesis tests, and confidence 
intervals—is taken in the next chapter.

Summary

	 1.	 The population regression line, b0 + b1X, is the mean of Y as a function of 
the value of X. The slope, b1, is the expected change in Y associated with 
a one-unit change in X. The intercept, b0, determines the level (or height) 
of the regression line. Key Concept 4.1 summarizes the terminology of the 
population linear regression model.
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	 2.	 The population regression line can be estimated using sample observations 
(Yi, Xi), i = 1, c, n by ordinary least squares (OLS). The OLS estimators 
of the regression intercept and slope are denoted bn0 and bn1.

	 3.	 The R2 and standard error of the regression (SER) are measures of how close the 
values of Yi are to the estimated regression line. The R2 is between 0 and 1, with 
a larger value indicating that the Yi’s are closer to the line. The standard error of 
the regression is an estimator of the standard deviation of the regression error.

	 4.	 There are three key assumptions for the linear regression model: (1) The 
regression errors, ui, have a mean of zero, conditional on the regressors Xi;  
(2) the sample observations are i.i.d. random draws from the population; and 
(3) large outliers are unlikely. If these assumptions hold, the OLS estimators 
bn0 and bn1 are (1) unbiased, (2) consistent, and (3) normally distributed when 
the sample is large.

Key Terms

linear regression model with a single 
regressor (158) 
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sample regression line (162) 
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MyEconLab Can Help You Get a Better Grade

MyEconLab  	 If your exam were tomorrow, would you be ready? For each chapter,  
	 MyEconLab Practice Tests and Study Plan help you prepare for your exams. 
You can also find similar Exercises and Review the Concepts Questions now in MyEconLab.  
To see how it works, turn to the MyEconLab spread on pages 2 and 3 of this book and then go to 
www.myeconlab.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
www.pearsonglobaleditions.com/Stock_Watson.
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Review the Concepts

	 4.1	 What is a linear regression model? What is measured by the coefficients of 
a linear regression model? What is the ordinary least squares estimator?

	 4.2	 Explain what is meant by an error term. What assumptions do we make 
about an error term when estimating an ordinary least squares regression?

	 4.3	 What is meant by the assumption that the paired sample observations of 
Yi and Xi are independently and identically distributed? Why is this an 
important assumption for ordinary least-squares estimation? When is this 
assumption likely to be violated?

	 4.4	 Distinguish between the R2 and the standard error of a regression. How do 
each of these measures describe the fit of a regression?

Exercises

	 4.1	 Suppose that a researcher, using data on class size (CS) and average test 
scores from 50 third-grade classes, estimates the OLS regression:

	     TestScore = 640.3 - 4.93 * CS, R2 = 0.11, SER = 8.7.	

	 a.	 A classroom has 25 students. What is the regression’s prediction for 
that classroom’s average test score?

	 b.	 Last year a classroom had 21 students, and this year it has 24 students. 
What is the regression’s prediction for the change in the classroom 
average test score?

	 c.	 The sample average class size across the 50 classrooms is 22.8. What is 
the sample average of the test scores across the 50 classrooms? (Hint: 
Review the formulas for the OLS estimators.)

	 d.	 What is the sample standard deviation of test scores across the  
50 classrooms? (Hint: Review the formulas for the R2 and SER.)

	 4.2	 Suppose a random sample of 100 20-year-old men is selected from a popu-
lation and that these men’s height and weight are recorded. A regression 
of weight on height yields

	      Weight = -79.24 + 4.16 * Height, R2 = 0.72, SER = 12.6,	

		  where Weight is measured in pounds and Height is measured in inches.
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	 a.	 What is the regression’s weight prediction for someone who is (i) 64 in. 
tall, (ii) 68 in. tall, (iii) 72 in. tall?

	 b.	 A man has a late growth spurt and grows 2 in. over the course of a year. 
What is the regression’s prediction for the increase in this man’s weight?

	 c.	 Suppose, that instead of measuring Weight and Height in pounds and 
inches, these variables are measured in centimeters and kilograms. 
What are the regression estimates from this new centimeter-kilogram 
regression? (Give all results, estimated coefficients, R2, and SER.)

	 4.3	 A regression of average weekly earnings (AWE, measured in dollars) on age 
(measured in years) using a random sample of college-educated full-time 
workers aged 25–65 yields the following:

	     AWE = 696.7 + 9.6 * Age, R2 = 0.023, SER = 624.1.	

	 a.	 Explain what the coefficient values 696.7 and 9.6 mean.

	 b.	 The standard error of the regression (SER) is 624.1. What are the units 
of measurement for the SER? (Dollars? Years? Or is SER unit-free?)

	 c.	 The regression R2 is 0.023. What are the units of measurement for the 
R2? (Dollars? Years? Or is R2 unit-free?)

	 d.	 What does the regression predict will be the earnings for a 25-year-old 
worker? For a 45-year-old worker?

	 e.	 Will the regression give reliable predictions for a 99-year-old worker? 
Why or why not?

	 f.	 Given what you know about the distribution of earnings, do you 
think it is plausible that the distribution of errors in the regression 
is normal? (Hint: Do you think that the distribution is symmetric or 
skewed? What is the smallest value of earnings, and is it consistent 
with a normal distribution?)

	 g.	 The average age in this sample is 41.6 years. What is the average 
value of AWE in the sample? (Hint: Review Key Concept 4.2.)

	 4.4	 Read the box “The ‘Beta’ of a Stock” in Section 4.2.

	 a.	 Suppose that the value of b is greater than 1 for a particular stock. 
Show that the variance of (R - Rf) for this stock is greater than the 
variance of (Rm - Rt).

	 b.	 Suppose that the value of b is less than 1 for a particular stock. Is it 
possible that variance of (R - Rf) for this stock is greater than the 
variance of (Rm - Rt)? (Hint: Don’t forget the regression error.)
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	 c.	 In a given year, the rate of return on 3-month Treasury bills is 2.0% 
and the rate of return on a large diversified portfolio of stocks (the 
S&P 500) is 5.3%. For each company listed in the table in the box, 
use the estimated value of b to estimate the stock’s expected rate of 
return.

	 4.5	 A researcher runs an experiment to measure the impact a short nap has 
on memory. 200 participants in the sample are allowed to take a short nap 
of either 60 minutes or 75 minutes. After waking up, each of the partici-
pants takes a short test on short-term recall. Each participant is randomly 
assigned one of the examination times, based on the flip of a coin. Let 
Yi denote the number of points scored on the test by the ith participant 
(0cYic100), let Xi denote the amount of time for which the participant 
slept prior to taking the test (Xi = 60 or 75), and consider the regression 
model Yi = b0 + b1Xi + ui.

	 a.	 Explain what the term ui represents. Why will different students have 
different values of ui?

	 b.	 What is E(ui � Xi)? Are the estimated coefficients unbiased?

	 c.	 What concerns might you have about ensuring compliance among 
participants?

	 d.	 The estimated regression is Yi = 55 + 0.17 Xi.

i. � Compute the estimated regression’s prediction for the average 
score of participants who slept for 60 minutes before taking the 
test. Repeat for 75 minutes and 90 minutes.

ii. � Compute the estimated gain in score for a participant who is given 
an additional 5 minutes on the exam.

	 4.6	 Show that the first least squares assumption, E(ui � Xi) = 0, implies that 
E(Yi � Xi) = b0 + b1Xi.

	 4.7	 Show that bn0 is an unbiased estimator of b0. (Hint: Use the fact that bn1 is 
unbiased, which is shown in Appendix 4.3.)

	 4.8	 Suppose that all of the regression assumptions in Key Concept 4.3 are satis-
fied except that the first assumption is replaced with E(ui � Xi) = 2. Which 
parts of Key Concept 4.4 continue to hold? Which change? Why? (Is bn1 
normally distributed in large samples with mean and variance given in Key  
Concept 4.4? What about bn0?)

	 4.9     a.  �A linear regression yields bn1 = 0. Show that R2 = 0.

	 b.	 A linear regression yields R2 = 0. Does this imply that bn1 = 0 ?
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	 4.10	 Suppose that Yi = b0 + b1Xi + ui, where (Xi, ui) are i.i.d., and Xi is a  
Bernoulli random variable with Pr(X = 1) = 0.20. When X = 1, ui is  
N(0, 4); when X = 0, ui is N(0, 1).

	 a.	 Show that the regression assumptions in Key Concept 4.3 are  
satisfied.

	 b.	 Derive an expression for the large-sample variance of bn1. [Hint:  
Evaluate the terms in Equation (4.21).]

	 4.11	 Consider the regression model Yi = b0 + b1Xi + ui.

	 a.	 Suppose you know that b0 = 0. Derive a formula for the least squares 
estimator of b1.

	 b.	 Suppose you know that b0 = 4. Derive a formula for the least squares 
estimator of b1.

	 4.12  a.  �Show that the regression R2 in the regression of Y on X is the squared 
value of the sample correlation between X and Y. That is, show that 
R2 = r2

XY.

	 b.	 Show that the R2 from the regression of Y on X is the same as the R2 
from the regression of X on Y.

	 c.	 Show that bn1 = rXY (sY>sX), where rXY is the sample correlation 
between X and Y, and sX and sY are the sample standard deviations 
of X and Y.

	 4.13	 Suppose that Yi = b0 + b1Xi + kui, where k is a nonzero constant and 
(Yi, Xi) satisfy the three least squares assumptions. Show that the large

		  sample variance of bn1 is given by s2
b1

= k2 1n 
var3(Xi - mX)ui4

3var(Xi)
24 . [Hint: This equa-

tion is the variance given in Equation (4.21) multiplied by k2.]

	 4.14	 Show that the sample regression line passes through the point (X, Y).

Empirical Exercises

(Only two empirical exercises for this chapter are given in the text, but you can 
find more on the text website, www.pearsonglobaleditions.com/Stock_Watson.)

	 E4.1	 On the text website, www.pearsonglobaleditions.com/Stock_Watson, you 
will find the data file Growth, which contains data on average growth 
rates from 1960 through 1995 for 65 countries, along with variables 
that are potentially related to growth. A detailed description is given in 

N
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Growth_Description, also available on the website. In this exercise, you 
will investigate the relationship between growth and trade.1

	 a.	 Construct a scatterplot of average annual growth rate (Growth) on 
the average trade share (TradeShare). Does there appear to be a  
relationship between the variables?

	 b.	 One country, Malta, has a trade share much larger than the other 
countries. Find Malta on the scatterplot. Does Malta look like an  
outlier?

	 c.	 Using all observations, run a regression of Growth on TradeShare. 
What is the estimated slope? What is the estimated intercept? Use 
the regression to predict the growth rate for a country with a trade 
share of 0.5 and with a trade share equal to 1.0.

	 d.	 Estimate the same regression, excluding the data from Malta. Answer 
the same questions in (c).

	 e.	 Plot the estimated regression functions from (c) and (d). Using the 
scatterplot in (a), explain why the regression function that includes 
Malta is steeper than the regression function that excludes Malta.

	 f.	 Where is Malta? Why is the Malta trade share so large? Should Malta 
be included or excluded from the analysis?

	 E4.2	 On the text website, www.pearsonglobaleditions.com/Stock_Watson, you 
will find the data file Earnings_and_Height, which contains data on earn-
ings, height, and other characteristics of a random sample of U.S. workers.2 
A detailed description is given in Earnings_and_Height_Description, also 
available on the website. In this exercise, you will investigate the relation-
ship between earnings and height.

	 a.	 What is the median value of height in the sample?

	 b.	   i.  �Estimate average earnings for workers whose height is at most  
67 inches.

ii.  �Estimate average earnings for workers whose height is greater 
than 67 inches.

1These data were provided by Professor Ross Levine of the University of California at Berkeley 
and were used in his paper with Thorsten Beck and Norman Loayza, “Finance and the Sources of 
Growth,” Journal of Financial Economics, 2000, 58: 261–300.
2These data were provided by Professors Anne Case (Princeton University) and Christina Paxson 
(Brown University) and were used in their paper “Stature and Status: Height, Ability, and Labor 
Market Outcomes,” Journal of Political Economy, 2008, 116(3): 499–532.
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iii.  �On average, do taller workers earn more than shorter workers? 
How much more? What is a 95% confidence interval for the  
difference in average earnings?

	 c.	 Construct a scatterplot of annual earnings (Earnings) on height 
(Height). Notice that the points on the plot fall along horizontal lines. 
(There are only 23 distinct values of Earnings). Why? (Hint: Carefully 
read the detailed data description.)

	 d.	 Run a regression of Earnings on Height.

 i.  What is the estimated slope?

ii.  �Use the estimated regression to predict earnings for a worker 
who is 67 inches tall, for a worker who is 70 inches tall, and for a 
worker who is 65 inches tall.

	 e.	 Suppose height were measured in centimeters instead of inches. 
Answer the following questions about the Earnings on Height  
(in cm) regression.

 i.  What is the estimated slope of the regression?

 ii.  What is the estimated intercept?

iii.  What is the R2?

iv.  What is the standard error of the regression?

	 f.	 Run a regression of Earnings on Height, using data for female  
workers only.

 i.  What is the estimated slope?

ii.  �A randomly selected woman is 1 inch taller than the average 
woman in the sample. Would you predict her earnings to be 
higher or lower than the average earnings for women in the sam-
ple? By how much?

	 g.	 Repeat (f) for male workers.

	 h.	 Do you think that height is uncorrelated with other factors that  
cause earning? That is, do you think that the regression error term, 
say ui, has a conditional mean of zero, given Height (Xi)? (You will 
investigate this more in the Earnings and Height exercises in later  
chapters.)
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	A  p p e n d i x

	 4.1	 The California Test Score Data Set

The California Standardized Testing and Reporting data set contains data on test per-

formance, school characteristics, and student demographic backgrounds. The data used 

here are from all 420 K–6 and K–8 districts in California with data available for 1999. 

Test scores are the average of the reading and math scores on the Stanford 9 Achieve-

ment Test, a standardized test administered to fifth-grade students. School characteris-

tics (averaged across the district) include enrollment, number of teachers (measured as 

“full-time equivalents”), number of computers per classroom, and expenditures per stu-

dent. The student–teacher ratio used here is the number of students in the district divided 

by the number of full-time equivalent teachers. Demographic variables for the students 

also are averaged across the district. The demographic variables include the percentage 

of students who are in the public assistance program CalWorks (formerly AFDC), the 

percentage of students who qualify for a reduced-price lunch, and the percentage of 

students who are English learners (that is, students for whom English is a second lan-

guage). All of these data were obtained from the California Department of Education 

(www.cde.ca.gov).

	A  p p e n d i x

	 4.2	 Derivation of the OLS Estimators

This appendix uses calculus to derive the formulas for the OLS estimators given in Key 

Concept 4.2. To minimize the sum of squared prediction mistakes gn
i= 1(Yi - b0 - b1Xi)

2 

[Equation (4.6)], first take the partial derivatives with respect to b0 and b1:

	
0

0b0
 a

n

i= 1
(Yi - b0 - b1Xi)

2 = -2a
n

i= 1
(Yi - b0 - b1Xi) and	 (4.23)

	
0

0b1
 a

n

i= 1
(Yi - b0 - b1Xi)

2 = -2a
n

i= 1
(Yi - b0 - b1Xi)Xi.	 (4.24)

The OLS estimators, bn0 and bn1, are the values of b0 and b1 that minimize 

gn
i= 1(Yi - b0 - b1Xi)

2, or, equivalently, the values of b0 and b1 for which the derivatives 

in Equations (4.23) and (4.24) equal zero. Accordingly, setting these derivatives equal to 
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zero, collecting terms, and dividing by n shows that the OLS estimators, bn0 and bn1, must 

satisfy the two equations

	 Y - bn0 - bn1X = 0 and	 (4.25)

	
1
n a

n

i= 1
XiYi - bn0X - bn1

1
n a

n

i= 1
X2

i = 0.	 (4.26)

Solving this pair of equations for bn0 and bn1 yields

	 bn1 =

1
n a

n

i= 1
XiYi - X Y

1
n a

n

i= 1
X2

i - (X)2
=

a
n

i= 1
(Xi - X)(Yi - Y)

a
n

i= 1
(Xi - X)2

 and	 (4.27)

	 bn0 = Y - bn1X.	 (4.28)

Equations (4.27) and (4.28) are the formulas for bn0 and bn1 given in Key Concept 4.2; the 

formula bn1 = sXY  >  s2
X is obtained by dividing the numerator and denominator in Equation 

(4.27) by n - 1.

	A  p p e n d i x

	 4.3	 Sampling Distribution of the OLS Estimator

In this appendix, we show that the OLS estimator bn1 is unbiased and, in large samples, has 

the normal sampling distribution given in Key Concept 4.4.

Representation of bn1 in Terms of the Regressors 
and Errors
We start by providing an expression for bn1 in terms of the regressors and errors. Because 

Yi = b0 + b1Xi + ui, Yi - Y = b1(Xi - X) + ui - u, so the numerator of the formula for 

bn1 in Equation (4.27) is

a
n

i= 1
(Xi - X)(Yi - Y) = a

n

i= 1
(Xi - X)3b1(Xi - X) + (ui - u)4

= b1a
n

i= 1
(Xi - X)2 + a

n

i= 1
(Xi - X)(ui - u).	 (4.29)
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Now gn
i= 1(Xi - X)(ui - u) = gn

i= 1(Xi - X)ui - gn
i= 1(Xi - X)u = gn

i= 1(Xi -X)ui, where 

the final equality follows from the definition of X , which implies that gn
i= 1(Xi - X)u =

3gn
i= 1Xi - nX4  u = 0. Substituting gn

i= 1(Xi - X)(ui - u) = gn
i= 1 (Xi - X)ui into the 

final expression in Equation (4.29) yields gn
i= 1(Xi - X)(Yi - Y) = b1gn

i= 1(Xi - X)2 +
gn

i= 1(Xi - X)ui. Substituting this expression in turn into the formula for bn1 in Equation 

(4.27) yields

	 bn1 = b1 +

1
n a

n

i= 1
(Xi - X)ui

1
n a

n

i= 1
(Xi - X)2

.	 (4.30)

Proof That bn1 Is Unbiased
The expectation of bn1 is obtained by taking the expectation of both sides of Equation (4.30). 

Thus,

E(bn1) = b1 + E≥
1
n a

n

i= 1
(Xi - X)ui

1
n a

n

i= 1
(Xi - X)2

¥

= b1 + E≥
1
n a

n

i= 1
(Xi - X)E(ui � Xi, c, Xn)

1
n a

n

i= 1
(Xi - X)2

¥ = b1,	 (4.31)

where the second equality in Equation (4.31) follows by using the law of iterated expecta-

tions (Section 2.3). By the second least squares assumption, ui is distributed independently 

of X for all observations other than i, so E(ui � X1, c, Xn) = E(ui � Xi). By the first least 

squares assumption, however, E(ui � Xi) = 0. It follows that the conditional expectation in 

large brackets in the second line of Equation (4.31) is zero, so that E(bn1 - b1 � X1, c
Xn) = 0. Equivalently, E(bn1 � X1, c,  Xn) = b1 ; that is, bn1  is conditionally  

unbiased, given X1, c, Xn. By the law of iterated expectations, E(bn1 - b1) =
E3E(bn1 - b1 �  X1, c, Xn)4 = 0, so that E(bn1) = b1; that is, bn1 is unbiased.

Large-Sample Normal Distribution  
of the OLS Estimator
The large-sample normal approximation to the limiting distribution of bn1 (Key Concept 4.4) 

is obtained by considering the behavior of the final term in Equation (4.30).
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First consider the numerator of this term. Because X  is consistent, if the sample size 

is large, X  is nearly equal to mX. Thus, to a close approximation, the term in the numerator 

of Equation (4.30) is the sample average n, where vi = (Xi - mX)ui. By the first least 

squares assumption, vi has a mean of zero. By the second least squares assumption, vi is 

i.i.d. The variance of vi is s2
v = 3var(Xi - mX)ui4, which, by the third least squares assump-

tion, is nonzero and finite. Therefore, v satisfies all the requirements of the central limit 

theorem (Key Concept 2.7). Thus v  >  s  v is, in large samples, distributed N(0, 1), where 

s2
v = s2

v  >  n. Thus the distribution of v is well approximated by the N(0, s2
v  >  n) distribution.

Next consider the expression in the denominator in Equation (4.30); this is the sample 

variance of X (except dividing by n rather than n - 1, which is inconsequential if n is large). 

As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the 

population variance, so in large samples it is arbitrarily close to the population variance of X.

Combining these two results, we have that, in large samples, bn1 - b1 ≅ v  >  var(Xi),  

so that the sampling distribution of bn1 is, in large samples, N(b1, s
2
b1

), where 

s
2
b1

= var(v) > 3var(Xi)42 = var3(Xi - mX)ui4  >  5n3var(Xi)426, which is the expression in 

Equation (4.21).

Some Additional Algebraic Facts About OLS
The OLS residuals and predicted values satisfy

	
1
n a

n

i= 1
un i = 0,	 (4.32)

	
1
n a

n

i= 1
Yn i = Y,	 (4.33)

	 a
n

i= 1
un iXi = 0 and suX = 0, and	 (4.34)

	 TSS = SSR + ESS.	 (4.35)

Equations (4.32) through (4.35) say that the sample average of the OLS residuals is zero; 

the sample average of the OLS predicted values equals Y ; the sample covariance suX 

between the OLS residuals and the regressors is zero; and the total sum of squares is the 

sum of squared residuals and the explained sum of squares. [The ESS, TSS, and SSR are 

defined in Equations (4.14), (4.15), and (4.17).]

To verify Equation (4.32), note that the definition of bn0 lets us write the OLS residuals 

as un i = Yi - bn0 - bn1Xi = (Yi - Y) - bn1(Xi - X); thus

a
n

i= 1
un i = a

n

i= 1
(Yi - Y) - bn1a

n

i= 1
(Xi - X).

But the definitions of Y and X  imply that gn
i= 1(Yi - Y) = 0 and gn

i= 1(Xi - X) = 0, so 

gn
i= 1 un i = 0.

 

N

N

N

N
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To verify Equation (4.33), note that Yi = Yn i + un i, so gn
i= 1Yi = gn

i= 1 Yn i +gn
i= 1 un1 = gn

i= 1 Yn i, where the second equality is a consequence of Equation (4.32).

To verify Equation (4.34), note that gn
i= 1 un i = 0 implies gn

i= 1 un iXi = gn
i= 1 un i(Xi - X), 

so

a
n

i= 1
un iXi = a

n

i= 1
3(Yi - Y) - bn1(Xi - X)4(Xi - X)

= a
n

i= 1
(Yi - Y)(Xi - X) - bn1a

n

i= 1
(Xi - X)2 = 0,	 (4.36)

where the final equality in Equation (4.36) is obtained using the formula for bn1 in Equa-

tion (4.27). This result, combined with the preceding results, implies that suX = 0.

Equation (4.35) follows from the previous results and some algebra:

TSS = a
n

i= 1
(Yi - Y)2 = a

n

i= 1
(Yi - Yn i + Yn i - Y)2

= a
n

i= 1
(Yi - Yn i)

2 + a
n

i= 1
(Yn i - Y)2 + 2a

n

i= 1
(Yi - Yn i)(Yn i - Y)

= SSR + ESS + 2a
n

i= 1
un iYn i = SSR + ESS,	 (4.37)

where the final equality follows from gn
i= 1 un iYn i = gn

i= 1 un i(bn0 + bn1Xi) = bn0gn
i= 1 un i +

bn1gn
i= 1 un iXi = 0 by the previous results.

N

M04_STOC1312_Ch04_pp155-191.indd   191 29/07/14   2:12 PM




