
Chapter 2

Nonlinear Principal
Components Analysis:
Introduction and Application

This chapter provides a didactic treatment of nonlinear (categorical) principal
components analysis (PCA). This method is the nonlinear equivalent of stan-
dard PCA, and reduces the observed variables to a number of uncorrelated
principal components. The most important advantages of nonlinear over lin-
ear PCA are that it incorporates nominal and ordinal variables, and that it
can handle and discover nonlinear relationships between variables. Also, non-
linear PCA can deal with variables at their appropriate measurement level,
for example, it can treat Likert-type scales ordinally instead of numerically.
Every observed value of a variable can be referred to as a category. While
performing PCA, nonlinear PCA converts every category to a numeric value,
in accordance with the variable’s analysis level, using optimal quantification.
In this chapter, we discuss how optimal quantification is carried out, what
analysis levels are, which decisions have to be made when applying nonlinear
PCA, and how the results can be interpreted. The strengths and limitations
of the method are discussed. An example, applying nonlinear PCA to empir-
ical data, using the program CATPCA (Meulman, Heiser, & SPSS, 2004) is
provided.
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2.1 Introduction

In the social and behavioral sciences, researchers are often confronted with a
large number of variables, which they wish to reduce to a small number of
composites with as little loss of information as possible. Traditionally, prin-
cipal components analysis (PCA) is considered to be an appropriate way to
perform such data reduction (Fabrigar et al., 1999). This widely-used method
reduces a large number of variables to a much smaller number of uncorrelated
linear combinations of these variables, called principal components, that rep-
resent the observed data as closely as possible. However, PCA suffers from
two important limitations. First, it assumes that the relationships between
variables are linear, and second, its interpretation is only sensible if all of the
variables are assumed to be scaled at the numeric level (interval or ratio level
of measurement). In the social and behavioral sciences, these assumptions are
frequently not justified, and therefore, PCA may not always be the most ap-
propriate method of analysis. To circumvent these limitations, an alternative,
referred to as nonlinear principal components analysis, has been developed. A
first version of this method was described by Guttman (1941), and other major
contributions to the literature on this subject are from Kruskal (1965), Shep-
ard (1966), Kruskal and Shepard (1974), Young et al. (1978), and Winsberg
and Ramsay (1983) (for a historical overview, see Gifi, 1990). This alternative
method has the same objectives as traditional principal components analysis,
but is suitable for variables of mixed measurement levels (nominal, ordinal,
and numeric), which may not be linearly related to each other. In the type
of nonlinear PCA that is described in the present chapter, all variables are
viewed as categorical, and every distinct value of a variable is referred to as a
category. Accordingly, the method is also referred to as categorical PCA.

This chapter provides a didactic introduction to the method of nonlinear
PCA. In the first section, we discuss how nonlinear PCA achieves the goals
of linear PCA for variables of mixed scaling levels, by converting category
numbers into numeric values. We then describe the different analysis levels
that can be specified in nonlinear PCA, from which some practical guidelines
for choosing analysis levels can be deduced, and also discuss the similarities
between nonlinear and linear PCA. The second section starts with a discussion
of some available nonlinear PCA software, and then provides an application of
nonlinear PCA to an empirical data set (NICHD Early Child Care Research
Network, 1996) that incorporates variables of different measurement levels
and nonlinear relationships between variables. The nonlinear PCA solution is
compared to the linear PCA solution on these same data. In the final section,
we summarize the most important aspects of nonlinear PCA, focusing on its
strengths and limitations as an exploratory data analysis method.
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2.2 The Method of Nonlinear Principal
Components Analysis

The objective of linear PCA is to reduce a number of m continuous numeric
variables to a smaller number of p uncorrelated underlying variables, called
principal components, that reproduce as much variance from the variables as
possible. Since variance is a concept that applies only to continuous numeric
variables, linear PCA is not suitable for the analysis of variables with ordered
or unordered (discrete) categories. In nonlinear PCA, categories of such vari-
ables are assigned numeric values through a process called optimal quantifi-
cation (also referred to as optimal scaling, or optimal scoring). Such numeric
values are referred to as category quantifications; the category quantifications
for one variable together form that variable’s transformation. Optimal quan-
tification replaces the category labels with category quantifications in such
a way that as much as possible of the variance in the quantified variables is
accounted for. Just as continuous numeric variables, such quantified variables
possess variance in the traditional sense. Then, nonlinear PCA achieves the
very same objective as linear PCA for quantified categorical variables. If all
variables in nonlinear PCA are numeric, the nonlinear and linear PCA so-
lution are exactly equal, because in that case no optimal quantification is
required, and the variables are merely standardized.

In nonlinear PCA the optimal quantification task and the linear PCA
model estimation are performed simultaneously, which is achieved by the min-
imization of a least-squares loss function. In the actual nonlinear PCA analy-
sis, model estimation and optimal quantification are alternated through use of
an iterative algorithm that converges to a stationary point where the optimal
quantifications of the categories do not change anymore. If all variables are
treated numerically, this iterative process leads to the same solution as linear
PCA. For more details on the mathematics of nonlinear PCA, we refer to Gifi
(1990), Meulman, Van der Kooij and Heiser (2004), and Appendix A.
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2.2.1 Category quantification

In this section, we first define the concept of categorical variables. Then, we
discuss the process of category quantification in more detail, considering the
different types of analysis levels that may be specified in nonlinear PCA, and
conclude by showing how this method can be used to discover and handle
nonlinear relationships between variables.

Categorical variables

Nonlinear PCA aims at analyzing so-called “categorical” variables. Often,
the term “categorical” is used to refer to nominal variables that consist of
unordered categories. A familiar example is religion, with possible categories
being Protestant, Catholic, Jewish, Muslim, Buddhist, none, and other. Ob-
viously, when variables consist of unordered categories, it makes no sense to
compute sums or averages. As principal components are weighted sums of the
original variables, nominal variables cannot be analyzed by standard PCA.

Ordinal variables are also referred to as categorical. Such variables consist
of ordered categories, such as the values on a rating scale, for example a Likert-
type scale. Despite superficial appearance, such scale values are not truly
numeric, because intervals between consecutive categories cannot be assumed
to be equal. For instance, one cannot assume that the distance on a 7-point
scale between “fully agree” (7) and “strongly agree” (6) is equal to the distance
between “neutral” (4) and “somewhat agree” (5). On such a scale, it is even
less likely that “fully agree” (7) is 3.5 times as much as “strongly disagree”
(2), and it is not clear where categories such as “no opinion” and “don’t
know” should be placed. In summary, although ordinal variables display more
structure than nominal variables, it still makes little sense to regard ordinal
scales as possessing traditional numeric qualities.

Finally, even true numeric variables can be viewed as categorical variables
with c categories, where c indicates the number of different observed values.
Both ratio and interval variables are considered numeric in nonlinear PCA.
The variable “Reaction time” is a prime example of a ratio variable, familiar
to most in the social and behavioral sciences: if experimental participants
respond to a stimulus in either 2.0, 3.0, 3.8, 4.0, or 4.2 seconds, the resulting
variable has five different categories. The distance between 2.0 and 3.0 is
equal to the distance between 3.0 and 4.0, and those who react in 2.0 seconds,
react twice as fast as the individuals with a 4.0 second reaction time. Within
nonlinear PCA, no distinction is made between the interval and ratio levels
of measurement; both levels of measurement are treated as numeric (metric)
variables.
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Given that the data contain only variables measured on a numeric level,
linear PCA is obviously an appropriate analysis method. Even among such
true numeric variables, however, nonlinear relationships may exist. For ex-
ample, one might wish to examine the relationship between age and income,
both of which can be measured on numeric scales. The relationship between
age and income may be nonlinear, as both young and elderly persons tend to
have smaller incomes than those between age 30 and 60. If we were to graph
“Income” on the vertical axis versus “Age” on the horizontal axis, we would
see a function that is certainly not linear, nor even monotonic (where values of
income increase with values of age), but rather an inverted U-shape, ∩, which
is distinctly nonlinear. Nonlinear PCA can assign values to the categories
of such numeric variables that will maximize the association (Pearson corre-
lation) between the quantified variables, as we discuss in the section below.
Thus, nonlinear PCA can deal with all types of variables – nominal, ordinal
and (possibly nonlinearly related) numeric – simultaneously.

The objective of optimal quantification

So far, we have seen that nonlinear PCA converts categories into numeric val-
ues, because variance can only be established for numeric values. Similarly,
quantification is required, because Pearson correlations are used in the linear
PCA solution. For instance, in linear PCA, the overall summary diagnostic
is the proportion of variance-accounted-for (VAF) by the principal compo-
nents, which equals the sum of the eigenvalues of the principal components,
divided by the total number of variables. Although it could be argued that
Pearson correlations may be computed between ordinal variables (comparable
to Spearman rank correlations), it does not make sense to compute correla-
tions between nominal variables. Therefore, in nonlinear PCA, correlations
are not computed between the observed variables, but between the quantified
variables. Consequently, as opposed to the correlation matrix in linear PCA,
the correlation matrix in nonlinear PCA is not fixed; rather, it is dependent
on the type of quantification, called an analysis level, that is chosen for each
of the variables.

In contrast to the linear PCA solution, the nonlinear PCA solution is not
derived from the correlation matrix, but iteratively computed from the data
itself, using the optimal scaling process to quantify the variables according
to their analysis level. The objective of optimal scaling is to optimize the
properties of the correlation matrix of the quantified variables. Specifically,
the method maximizes the first p eigenvalues of the correlation matrix of the
quantified variables, where p indicates the number of components that are
chosen in the analysis. This criterion is equivalent to the previous statement
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that the aim of optimal quantification is to maximize the VAF in the quantified
variables.

Nominal, ordinal, and numeric analysis levels

Analyzing data by nonlinear PCA involves dynamic decision making, as de-
cisions originally made by the researcher may need to be revised during the
analysis process; indeed, trying out various analysis levels and comparing
their results is part of the data-analytic task. It is important to note that
the insight of the researcher – and not the measurement levels of the vari-
able – determines the analysis level of a variable. To enable the researcher to
choose an appropriate analysis level for each of the variables in the analysis,
a description of the properties of each level is given below.

In general, it should be kept in mind that different analysis levels im-
ply different requirements. In the case of a nominal analysis level, the only
requirement is that persons who scored the same category on the original
variable (self-evidently) should also obtain the same quantified value. This
requirement is the weakest one in nonlinear PCA. In the case of an ordinal
analysis level, the quantification of the categories should additionally respect
the ordering of the original categories: A category quantification should al-
ways be less than or equal to the quantification for the category that has a
higher rank number in the original data. When a nominal or ordinal analy-
sis level is specified, a plot of the category quantifications versus the original
category numbers (or labels), will display a nonlinear function, as shown in
the so-called transformation plots in Figure 2.1. This ability to discover and
handle nonlinear relations is the reason for using the term “nonlinear” for this
type of analysis. A numeric analysis level requires quantified categories not
only to be in the right order, but to also maintain the original relative spacing
of the categories in the optimal quantifications, which is achieved by standard-
izing the variable. If all variables are at a numeric analysis level, no optimal
quantification is needed, and variables are simply standardized, in which case
potential nonlinear relationships among variables are not accounted for. If one
wishes to account for nonlinear relations between numeric variables, a nonnu-
meric analysis level should be chosen. In the following paragraphs, examples
of different analysis levels are discussed.

To show the effect of using each analysis level, nonlinear PCA has been
applied five times to an example data set. One of the variables (V1) has
been assigned a different analysis level in each of these analyses, while the
other variables were treated numerically. Figures 2.1a, 2.1b, and 2.1c display
the results of these analyses. (Figures 2.1d and 2.1e will be discussed in the
next subsection.) The horizontal axis (x) of the plots in Figure 2.1 displays
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c.  Numeric

d.  Nonmonotonic spline

e.  Monotonic spline

Figure 2.1: Transformation plots for different types of quantification. The
same variable (V1) has been assigned five different analysis levels, while the
other variables were treated numerically. Observed category scores are on
the x-axis, and the numeric values (standard scores) obtained after optimal
quantification (category quantifications) are on the y-axis. The line connecting
category quantifications indicates the variable’s transformation. The gaps in
the transformation indicate that some category values were not observed.
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the categories of V1, which range between 1 and 60; on the vertical axis (y),
the category quantifications are shown. These quantifications are standard
scores. The connecting line between the category quantifications indicates
the variable’s transformation. Because V1 has many categories, only every
6th category is displayed. A dot appearing as a label on the x-axis denotes
that the corresponding value did not occur as a category in the data set. For
example, instead of the value of 55, a dot appears on the x-axis, because the
category 55 did not occur in the data. Consequently, that value obtains no
quantification, indicated by a gap in the transformation.

For a nominal analysis level (shown in Figure 2.1a), the optimal category
quantifications may have any value, as long as persons in the same category
obtain the same score on the quantified variable. In this plot, we see that,
although the overall trend of the nominal transformation is increasing, the
quantifications are not in the exact same order as the original category labels.
For example, between the categories 43 and 49, a considerable decrease in the
quantifications occurs. In contrast to the order of the original category labels,
the order of the nominal category quantifications is meaningful, reflecting the
nature of the relationship of the variable to the principal components (and the
other variables). If a nominal analysis level is specified, and the quantifications
are perfectly in the same order as the original categories, an ordinal analysis
level would give exactly the same transformation.

It can be clearly seen in Figure 2.1b, that the ordinal category quantifi-
cations are (non-strictly) increasing with the original category labels (i.e.,
the transformation is monotonically nondecreasing). The original spacing be-
tween the categories is not necessarily maintained in the quantifications. In
this example, some consecutive categories obtain the same quantification, also
referred to as ties. For example, between the categories 25 and 37, we see a
plateau of tied quantifications. Such ties may have two possible reasons. The
first is that persons scoring in the tied categories do not structurally differ
from each other considering their scores on the other variables, and there-
fore the categories cannot be distinguished from each other. This can occur
with ordinal, but also with nominal quantifications. Ties can also occur be-
cause ordinal quantifications are obtained by placing an order restriction on
nominal quantifications. If the nominal quantifications for a number of con-
secutive categories are in the wrong order, the ordinal restriction results in the
same quantified value for these categories (the weighted mean of the nominal
quantifications).
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Finally, with a numeric (or linear) analysis level, the category quantifi-
cations are restricted to be linearly related to the original category labels,
that is, the difference between the quantification of, for example, categories 1
and 2 equals the difference between, for example, categories 4 and 5. Then,
the quantified values are simply standard scores of the original values and
the transformation plot will show a straight line (see Figure 2.1c). This type
of quantification is used when it is assumed that the relationship between a
variable and the other variables is linear.

Nonlinear PCA has the most freedom in quantifying a variable when a
nominal analysis level is specified, and is the most restricted when a numeric
analysis level is specified. Therefore, the method will obtain the highest VAF
when all variables are analyzed nominally, and the lowest VAF when all vari-
ables are analyzed numerically.

Smooth transformations

The nominal and ordinal analysis levels described above use stepfunctions,
which can be quite irregular. As an alternative, it is possible to use smooth
functions – here, we use splines – to obtain a nonlinear transformation. A
monotonic spline transformation is less restrictive than a linear transforma-
tion, but more restrictive than an ordinal one, as it not only requires that
the categories be in the same order, but also that the transformation show
a smooth curve. The simplest form of a spline is a function – usually a sec-
ond degree polynomial (quadratic function) or third degree polynomial (cubic
function) of the original data – specified for the entire range of a variable.
Because it is often impossible to describe the whole range of data with one
such simple function, separate functions can be specified for various intervals
within the range of a variable. Because these functions are polynomials, the
smoothness of the function within each interval is guaranteed. The interval
endpoints where two functions are joined together are called interior knots.
The number of interior knots and the degree of the polynomials specify the
shape of the spline, and therefore the smoothness of the transformation. (Note
that a first degree spline with zero interior knots equals a linear transforma-
tion; and a first degree spline with the number of interior knots equal to the
number of categories minus two results in an ordinal transformation.)1

Nonmonotonic as well as monotonic splines can be used. Nonmonotonic
splines yield smooth nonmonotonic transformations instead of the possibly
very irregular transformations that result from applying a nominal analysis
level. In Figure 2.1d, such a nonmonotonic spline transformation for V1 is

1For more details about the use of splines in nonlinear data analysis, we refer to Winsberg
and Ramsay (1983) and Ramsay (1988).
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displayed. A nonmonotonic spline analysis level is appropriate for variables
with many categories that either have a nominal analysis level, or an ordinal
or numeric level combined with a nonmonotonic relationship with the other
variables (and thus with a principal component).

In the example in Figure 2.1e, a monotonic spline transformation for
V1 is shown, using a second degree spline with two interior knots, so that
quadratic functions of the original values within three data intervals are ob-
tained. The spline transformation resembles the ordinal transformation but
follows a smooth curve instead of a step function. In general, it is advis-
able to use an ordinal analysis level when the number of categories is small
and a monotonic spline analysis level when the number of categories is large
compared to the number of persons. This monotonic spline transformation
is identical to the nonmonotonic spline transformation in Figure 2.1d for this
specific variable (V1) because the overall trend of the transformation is in-
creasing and the number of knots (two) is small. For other variables and a
larger number of knots, this equality will mostly not hold.

Analysis levels and nonlinear relationships between variables

To demonstrate the possible impact of choosing a particular analysis level,
we assigned the same five analysis levels to another variable in the example
data set (V2) that is nonmonotonically related to the other variables. The
five panels in Figure 2.2 display transformation plots revealing that different
analysis levels may lead to rather different transformations. The nominal
transformation in Figure 2.2a and the nonmonotonic spline transformation
in Figure 2.2d both show an increasing function followed by a decreasing
function describing the relationship between the original category labels and
the quantifications. The ordinal and monotonic spline transformations in
Figures 2.2b and 2.2e show an increase of the quantifications for the categories
1 to approximately 20, but all the quantifications for the higher category labels
(except the last) are tied, because the nominal quantifications did not increase
with the category labels as required by the ordinal analysis level. The numeric
quantification in Figure 2.2c shows (by definition) a straight line.

Evidently, it is possible to treat V2 ordinally, or even numerically, but,
in this example, because of the nonmonotonic relationship between V2 and
the other variables, such treatment has a detrimental effect on the fit of the
variable. Table 2.1 gives the fit measures for variables V1 and V2 obtained
from the different analyses. The component loadings are correlations between
the quantified variables and the principal components, and the sum of squared
component loadings indicates the variance-accounted-for (VAF) by the princi-
pal components. (For instance, when ordinally treated, V1 obtains a loading
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Figure 2.2: Transformation plots for different types of quantification. The
same variable (V2) has been assigned five different analysis levels, while the
other variables were treated numerically. V2 is nonmonotonically related to
the other variables. Observed category scores are on the x-axis, and the nu-
meric values obtained after optimal quantification (category quantifications)
are on the y-axis. The line connecting category quantifications indicates the
variable’s transformation. The gaps in the transformation indicate that some
category values were not observed.
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Table 2.1: Component loadings and total variance-accounted-for (VAF) for
two exemplary variables analyzed on five different levels, with the other vari-
ables treated numerically. One variable (V1) is monotonically related to the
other variables, and the second variable (V2) is nonmonotonically related to
the other variables.

V1 (monotonic) V2 (nonmonotonic)
Analysis level Load.1 Load.2 VAF Load.1 Load.2 VAF
Nominal .655 -.087 .437 -.655 .087 .437
Nonmonotonic spline .598 -.053 .360 -.499 .058 .252
Ordinal .615 -.062 .382 -.282 .150 .102
Monotonic spline .598 -.053 .360 -.263 .140 .089
Numeric .557 -.041 .312 -.055 .106 .014

of .615 on the first component, and a loading of -.062 on the second com-
ponent. Then, the VAF of V1 equals .6152 + (−.062)2 = .382.) Variable
V1 is monotonically related to the other variables, and therefore the VAF
merely increases from .312 for the numeric treatment to .382 for the ordi-
nal transformation, and to .437 for a nominal transformation. Variable V2
is nonmonotonically related to the other variables, and for this variable, the
VAF is .437 for the nominal transformation and .252 for the nonmonotonic
spline transformation. When this variable is treated numerically, the VAF
essentially reduces to zero (.014). This difference between a numeric and a
nominal analysis level for V2 makes clear that when nonlinear relationships
between variables exist, nonlinear transformations are crucial to the outcome
and the interpretation of the analysis: When a variable (like V2) has a clearly
nonlinear relationship to the other variables, applying an inappropriate (nu-
meric) analysis level not only has a detrimental effect on the VAF, but more
importantly, leaves the nonlinear relationship between the variable and the
other variables unknown and uninterpreted.

Representation of variables as vectors

The plots in Figures 2.1 and 2.2 show the transformations of variables, which
represent the relationship between the original category labels and the cate-
gory quantifications. Next, we will focus on the representation of the quan-
tified variables themselves. For all of the analysis levels described so far, one
way to represent a quantified variable is by displaying its category points in
the principal component space, where the axes are given by the principal com-
ponents. In this type of plot, a variable is represented by a vector (an arrow).
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A variable vector is a straight line, going through the origin (0,0) and the
point with as coordinates the component loadings for the variable. The cat-
egory points are also positioned on the variable vector, and their coordinates
are found by multiplying the category quantifications by the corresponding
component loadings on the first (for the x-coordinate) and the second (for
the y-coordinate) component. The order of the category points on the vari-
able vector is in accordance with the quantifications: the origin represents the
mean of the quantified variable, categories with quantifications above that
mean lie on the side of the origin on which the component loadings point is
positioned, and categories with quantifications below that mean lie in the op-
posite direction, on the other side of the origin. Figure 2.3, explained below,
shows an example.

Returning to the example of the inverted U-shaped relationship between
age and income, we assume that age has been divided into three categories
(“young,” “intermediate,” and “old”) and has been analyzed nominally, where-
as income is treated ordinally. Then, the starting point of the vector repre-
senting income indicates the lowest income and the end point signifies the
highest income. The vector representing age is displayed in Figure 2.3. The
fact that the categories “young” and “old” lie close together on the low side of
the origin and “intermediate” lies far away in the direction of the component
loading point (indicated by the black circle) reflects the U-shaped relation be-
tween income and age: Younger and older people have a relatively low income
and people with intermediate age have a relatively high income. For nominal
variables, the order of the category quantifications on the vector may differ
greatly from the order of the category labels.

The total length of the variable vector in Figure 2.3 does not indicate
the importance of a variable. However, the length of the variable vector
from the origin up to the component loading point (loading vector) is an
indication of the variable’s total VAF. (In fact, the squared length of the
loading vector equals the VAF.) In component loading plots, only the loadings
vectors are displayed (for an example, see Figure 2.4; we will consider this
figure in more detail in the section on component loadings below). In such
a plot, variables with relatively long vectors fit well into the solution and
variables with relatively short vectors fit badly. When vectors are long, the
cosines of the angles between the vectors indicate the correlations between the
quantified variables.
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Figure 2.3: Category plot of the variable “Age” from the fictional age-income
example. The category points are positioned on a vector through the origin and
the black point (labeled ‘loading’) with as coordinates the component loadings
on the first (x-axis) and second (y-axis) component.

Thus, the VAF can be interpreted as the amount of information retained
when variables are represented in a low, say, two-dimensional space. Non-
linear transformations reduce the dimensionality necessary to represent the
variables satisfactorily. For example, when the original variables may only be
displayed satisfactorily in a three-dimensional space, it may turn out that the
transformed variables only need a two-dimensional space. In the latter case,
nonlinear transformations enhance the interpretability of the graphical repre-
sentation, since it is much easier to interpret a two-dimensional space instead
of a three-dimensional one, let alone a four-dimensional one. Of course, by al-
lowing transformations, we replace the need of interpreting a high-dimensional
space by an interpretation of the transformations. The latter is usually eas-
ier; if this is not the case, another approach to represent variables is to be
preferred (see the next paragraph).

Representation of variables as sets of points: Multiple nominal
analysis level

In the quantification process discussed so far, each category obtained a single
quantification, that is, one optimal quantification that is the same across all
the components. The quantified variable can be represented as a straight line
through the origin, as has been described above. However, the representation
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Figure 2.4: Component loadings of the 21 ORCE behavior scales and ratings.
Two nominal variables (type of care and caregiver education) are not depicted.
The square of the length of the vectors equals the VAF. Cosines of the angles
between vectors approximate Pearson correlations between variables.

of the category quantifications of a nominal variable (or a variable treated as
nominal) on a straight line may not always be the most appropriate one. Only
when the transformation shows a specific form (for instance, an (inverted)
U-shape as in the income versus age example) or particular ordering (as in
Figure 2.1b), is this type of representation useful. In other words, we should
be able to interpret the transformation.

When the transformation is irregular, or when the original categories can-
not be put in any meaningful order, there is an alternative way of quantifying
nominal variables, called multiple nominal quantification. The objective of
multiple nominal quantification is not to represent one variable as a whole,
but rather to optimally reveal the nature of the relationship between the cat-
egories of that variable and the other variables at hand. This objective is
achieved by assigning a quantification for each component separately. For
example, imagine that we have a data set including a variable religion, with
categories Protestant, Catholic, and Jewish, to which we assign a multiple
nominal analysis level. Now suppose we find two principal components: the
first indicates liberalism, and the second indicates membership of the religious
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denomination. Then, we may find that the order of the category quantifica-
tions for religion on the first component is Catholic (1), Protestant (2), Jewish
(3) on which higher quantifications reflect greater liberalism. In contrast, the
order of the category quantifications for religion on the second component
may be Jewish (1), Catholic (2), Protestant (3) on which higher values reflect
a larger number of members. For each component, the order of the quantifi-
cations reflects the nature of the relationship of religion to that component.

Multiple category quantifications are obtained by averaging, per compo-
nent, the principal component scores for all individuals in the same category
of a particular variable. Consequently, such quantifications will differ for each
component (hence the term multiple quantification). Graphically, the mul-
tiple quantifications are the coordinates of category points in the principal
component space. Because a categorical variable classifies the individuals in
mutually exclusive groups or classes (the categories), these points can be re-
garded as representing a group of individuals. In contrast to variables with
other measurement levels, multiple nominal variables do not obtain compo-
nent loadings. The fit of a multiple nominal variable in a component is in-
dicated by the variance of the category quantifications in that component.
So, if all quantifications are close to the origin, the variable fits badly in the
solution. It is important to realize that we only define multiple quantifica-
tions for variables with a nominal analysis level. Ordinal, numeric, and spline
transformations are always obtained by a single quantification and can be
represented as a vector. In the application discussed in the next section, two
actual examples of multiple nominal grouping variables are shown.

Representation of individuals as points

Thus far, we have described the representation of the variables in the prin-
cipal components space, either by vectors or by a set of category points. In
this paragraph, we will address the representation of individuals in nonlinear
PCA. Each individual obtains a component score on each of the principal
components. These component scores are standard scores that can be used
to display the individuals as person points in the same space as the variables,
revealing relationships between individuals and variables. This representation
is called a biplot in the statistical literature (Gabriel, 1971, 1981; Gifi, 1990;
Gower & Hand, 1996). Multiple nominal variables can be represented as a
set of category points in the principal components space, and these can be
combined with the points for the individuals and the vectors for the other
variables in a so-called triplot (Meulman, Van der Kooij, & Heiser, 2004).
When individuals and category points for multiple nominal variables are plot-
ted together, a particular category point will be exactly in the center of the
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individuals that have scored in that category. For example, for the variable
religion mentioned above, we can label the person points with three different
labels: ‘j’ for Jewish, ‘p’ for Protestant, and ‘c’ for Catholic persons. The cat-
egory point labeled ‘J’ for the category Jewish of the variable religion will be
located exactly in the center of all the person points labeled ‘j’, the category
point labeled ‘P’ for the category Protestant will be exactly in the center of
all the person points labeled ‘p’, and the category point labeled ‘C’ for the
category Catholic will be exactly in the center of all the person points labeled
‘c’.

2.2.2 Nonlinear and linear PCA: Similarities and differences

Nonlinear PCA has been developed as an alternative to linear PCA for han-
dling categorical variables and nonlinear relationships. Comparing the two
methods reveals both similarities and differences. To begin with the former,
it can be seen that both methods provide eigenvalues, component loadings,
and component scores. In both, the eigenvalues are overall summary measures
that indicate the VAF by each component; that is, each principal component
can be viewed as a composite variable summarizing the original variables,
and the eigenvalue indicates how successful this summary is. The sum of the
eigenvalues over all possible components equals the number of variables m. If
all variables are highly correlated, one single principal component is sufficient
to describe the data. If the variables form two or more sets, and correlations
are high within sets and low between sets, a second or third principal compo-
nent is needed to summarize the variables. PCA solutions with more than one
principal component are referred to as multi-dimensional solutions. In such
multi-dimensional solutions, the principal components are ordered according
to their eigenvalues. The first component is associated with the largest eigen-
value, and accounts for most of the variance, the second accounts for as much
as possible of the remaining variance, and so on. This is true for both linear
and nonlinear PCA.

Component loadings are measures obtained for the variables, and in both
linear and nonlinear PCA, are equal to a Pearson correlation between the
principal component and either an observed variable (linear PCA) or a quan-
tified variable (nonlinear PCA). Similarly, the sum of squares of the compo-
nent loadings over components gives the VAF for an observed variable (linear
PCA) or a quantified variable (nonlinear PCA). If nonlinear relationships be-
tween variables exist, and nominal or ordinal analysis levels are specified,
nonlinear PCA leads to a higher VAF than linear PCA, because it allows for
nonlinear transformations. For both methods, before any rotation, the sum
of squared component loadings of all variables on a single component equals
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the eigenvalue associated with that component.
The principal components in linear PCA are weighted sums (linear combi-

nations) of the original variables, whereas in nonlinear PCA they are weighted
sums of the quantified variables. In both methods the components consist of
standardized scores. In summary, nonlinear and linear PCA are very simi-
lar in objective, method, results, and interpretation. The crucial difference
is that in linear PCA the measured variables are directly analyzed, while in
nonlinear PCA the measured variables are quantified during the analysis (ex-
cept when all variables are treated numerically). Another difference concerns
the nestedness of the solution, which will be discussed separately in the next
paragraph.2

Nestedness of the components

One way to view linear PCA is that it maximizes the VAF of the first com-
ponent over linear transformations of the variables, and then maximizes the
VAF of the second component that is orthogonal to the first, and so on. This
is sometimes called consecutive maximization. The success of the maximiza-
tion of the VAF is summarized by the eigenvalues and their sum in the first
p components. The eigenvalues amount to quantities that are equal to the
eigenvalues of the correlation matrix. Another way to view linear PCA is
that it maximizes the total VAF in p dimensions simultaneously by project-
ing the original variables from an m-dimensional space onto a p-dimensional
component space (also see the section on graphical representation). In linear
PCA, consecutive maximization of the VAF in p components is identical to
simultaneous maximization, and we say that linear PCA solutions are nested
for different values of p (for example, corresponding components in p and p+1
dimensions are equal).

In nonlinear PCA, consecutive and simultaneous maximization will give
different results. In our version of nonlinear PCA, we maximize the VAF of
the first p components simultaneously over nonlinear transformations of the
variables. The eigenvalues are obtained from the correlation matrix among
the quantified variables, and the sum of the first p eigenvalues is maximized.
In this case, the solutions are usually not nested for different values of p.
In practice, the differences between the components of a p-dimensional solu-
tion and the first p components of a p+1-dimensional solution are often very
small. They can be dramatic however, for example, if we try to represent a
two or three-dimensional structure in only one dimension. When one doubts

2When multiple nominal variables are included, the relations between linear and nonlinear
PCA are somewhat different. For more details we refer to Gifi (1990).



2.2. THE METHOD OF NONLINEAR PRINCIPAL COMPONENTS ANALYSIS 29

whether p is the most appropriate dimensionality, it is advisable to look also
at solutions with p − 1 and p + 1 components.

Choosing the appropriate number of components

In both types of PCA, the researcher must decide the adequate number of
components to be retained in the solution. One of the most well-known criteria
for this decision is the scree criterion (Fabrigar et al., 1999), which involves a
scree plot with the components identified on the x-axis and their associated
eigenvalues on the y-axis. Hopefully, such a plot shows a break, or an “elbow,”
identifying the last component that accounts for a considerable amount of
variance in the data. The location of this elbow indicates the appropriate
number of components to be included in the solution.

Unfortunately, such elbows are not always easily discernible in the linear
PCA scree plot. In nonlinear PCA, on the other hand, the fact that the sum
of the first p eigenvalues is maximized automatically implies that the sum of
the m− p residual eigenvalues is minimized (because the sum of the eigenval-
ues over all possible components in nonlinear PCA remains equal to m, the
number of variables in the analysis). Thus, the elbow in the nonlinear PCA
screeplot (which is based on the eigenvalues of the correlation matrix of the
quantified variables) may be clearer than in linear PCA. Because nonlinear
PCA solutions are not nested, scree plots differ for different dimensionalities,
and the screeplots of the p-, the p− 1- and p+1-dimensional solutions should
be compared. When the elbow is consistently at component p or p + 1, the
p-dimensional solution may be chosen. There is some discussion in the liter-
ature as to whether or not the component where the elbow is located should
be included in the solution (see Jolliffe, 2002). A reason for not including
it is that it contributes only little to the total variance-accounted-for. If a
different number of components than p is chosen, the nonlinear PCA should
be rerun with the chosen number of components, because the components are
not nested.

Although the scree criterion may be convenient and is preferred to the
“eigenvalue greater than 1 criterion” (Fabrigar et al., 1999), it is not an op-
timal criterion. More sophisticated methods, such as parallel analysis (Buja
& Eyuboglu, 1992; Horn, 1965) are described by Zwick and Velicer (1986).
Peres-Neto, Jackson, and Somers (2005) conducted an extensive simulation
study in which they compared 20 stopping rules for determining the number
of non-trivial components, and developed a new approach. Such alternative
methods are applicable to nonlinear PCA as well.
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Rotation

PCA solutions may be rotated freely, without changing their fit (Cliff, 1966;
Jolliffe, 2002). A familiar example is that of orthogonally rotating the so-
lution so that each variable loads as highly as possible on only one of the
two components, thus simplifying the structure (VARIMAX). In a simple
structure, similar patterns of component loadings may be more easily dis-
cerned. Variables with comparable patterns of component loadings can be
regarded as a (sub)set. For example, a test designed to measure the concept
“intelligence” may contain items measuring verbal abilities as well as oth-
ers measuring quantitative abilities. Suppose that the verbal items correlate
highly with each other, the quantitative items intercorrelate highly as well,
and there is no (strong) relation between verbal and quantitative items, then
the component loadings from PCA will show two sets of variables that may
be taken as respectively verbal and quantitative components of “intelligence.”
In a simplified structure, these two groups will concur with the components
as closely as possible, allowing for a more straightforward interpretation. In
nonlinear PCA, orthogonal rotation may be applied in exactly the same way.
Note however, that after rotation the VAF ordering of the components may
be lost.

2.3 Nonlinear PCA in Action

Having reviewed the elements and rationale for nonlinear PCA analysis, we
are now ready to see how it performs on empirical data, and compare the
results to a linear PCA solution. Before turning to the actual application,
however, we discuss the software used.

2.3.1 Software

Programs that perform nonlinear PCA can be found in the two major com-
mercially available statistical packages: The SAS package includes the pro-
gram PRINQUAL (SAS, 1992), and the SPSS Categories module contains the
program CATPCA (Meulman, Heiser, & SPSS, 2004).3

In the following example, we apply the program CATPCA. The data-
theoretical philosophy on which this program is based is defined on categorical
variables with integer values.4 Variables that do not have integer values must
be made discrete before they can be handled by CATPCA. Discretization

3Leiden University holds the copyright of the procedures in the SPSS Package Categories,
and the Department of Data Theory receives the royalties.

4This is not a property of the method nonlinear PCA, but only of the CATPCA program.
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may take place outside of the program, but CATPCA also provides various
discretizing options. If the original variables are continuous, and we wish to
retain as much of the numeric information as possible, we may use a linear
transformation before rounding the result. This CATPCA discretizing op-
tion is referred to as multiplying. CATPCA contains a number of alternative
discretizing options; for an elaborate description, we refer to Meulman, Van
der Kooij, and Heiser (2004), and to the SPSS Categories manual (Meulman,
Heiser, & SPSS, 2004). One of the main advantages of CATPCA is that it
has standard provisions for the graphical representation of the nonlinear PCA
output, including the biplots and triplots discussed in the previous paragraph
on the representation of individuals. Another feature of the program is its
flexible handling of missing data (see Appendix B). For further details on the
geometry of CATPCA, we refer to Meulman, Van der Kooij, and Babinec
(2002) and Meulman, Van der Kooij, and Heiser (2004).

2.3.2 The ORCE data

We analyzed a mixed categorical data set collected by the National Institute
of Child Health and Human Development during their Early Child Care Study
(NICHD Early Child Care Research Network, 1996). The sub-sample we used
contains 574 6-month olds who were observed in their primary non-maternal
caregiving environment (child care center, care provided in caregiver’s home,
care provided in child’s home, grandparent care, or father care). The Obser-
vational Record of the Caregiving Environment (ORCE) (NICHD Early Child
Care Research Network, 1996) was used to assess quality of day care through
observations of the caregiver’s interactions with a specific child. The ORCE
provides two types of variables: ratings of overall caregiver behavior, ranging
from “not at all characteristic” (1) to “highly characteristic” (4), and behavior
scales that indicate the total number of times each of 13 specific behaviors
occurred during thirty 30-second observation periods. Typically, each child
was observed four times, and the scores on the ratings and behavior scales
were averaged over these four observation cycles. Descriptions of the ORCE
variables used in this application appear in Tables 2.2 and 2.3. Note that all
ratings range from 1 to 4, except “Negative regard” (variable number 7), for
which no 4 occurred. The maximum frequency for the behavior scales dif-
fers per variable, the overall maximum being 76 for “Restriction in a physical
container” (19). For “Other talk” (14) no frequency of zero was observed.
Histograms for the ORCE variables are in Figure 2.5. Because score ranges
differ, the plots have been scaled differently on the x-axis. The majority of
the distributions are quite skewed, with more extreme scores (e.g., high scores
for negative behaviors) displaying relatively small marginal frequencies.
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Table 2.2: Descriptions of 8 ORCE Ratings.

Variable Description Range Mean SD
1 Distress Is responsive to child’s distress 1–4 3.15 0.77
2 Nondistress Is responsive to child’s nondistressed communication 1–4 2.89 0.70
3 Intrusiveness Is controlling; shows adult-centered interactions 1–4 1.19 0.38
4 Detachment Is emotionally uninvolved, disengaged 1–4 1.66 0.74
5 Stimulation Stimulates cognitive development (learning) 1–4 1.94 0.68
6 Positive regard Expresses positive regard toward child 1–4 3.08 0.74
7 Negative regard Expresses negative regard toward child 1–3 1.03 0.12
8 Flatness Expresses no emotion or animation 1–4 1.38 0.60
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Table 2.3: Descriptions of 13 ORCE Behavior Scales (counts).

Variable Description Range Mean SD
9 Positive affect Shared positive affect (laughing, smiling, cooing) 0–32 4.72 4.34

10 Positive physical Positive physical contact (holding, touching) 0–55 19.89 10.45
11 Vocalization Responds to child’s nondistressed vocalization 0–26 4.70 4.59
12 Reads aloud Reads aloud to child 0–11 0.37 1.16
13 Asks question Directs a question to child 0–46 12.27 8.08
14 Other talk Declarative statement to child 1–59 24.25 12.07
15 Stimulates cognitive Stimulates child’s cognitive development 0–34 2.99 3.85
16 Stimulates social Stimulates child’s social development 0–9 0.73 1.28
17 Facilitates behavior Provides help or entertainment for child 0–55 18.80 9.68
18 Restricts activity Restricts child’s activities physically or verbally 0–21 1.26 1.96
19 Restricts physical Restricts child in physical container (playpen) 0–76 20.87 14.35
20 Negative speech Speaks to child in a negative tone 0–3 0.05 0.24
21 Negative physical Uses negative physical actions (slap, yank, push) 0–2 0.01 0.11
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Figure 2.5: Histograms for the ORCE variables. The black histograms repre-
sent ratings, and the grey histograms represent behavior scales. Note that the
plots are scaled differently on the x-axis, because the variables had different
ranges. N=574.
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2.3.3 Choice of analysis method and options

One of the goals of the NICHD was to construct composite variables from
the ORCE data that captured the information in the original variables as
closely as possible. PCA fits this goal exactly. Because it makes no distri-
butional assumptions (e.g., multivariate normality), the skewed distributions
are not a problem. It could be argued that linear PCA is appropriate for the
ORCE data, although the ratings were actually measured on an ordinal scale.
However, it does not seem realistic to assume linear relationships among the
variables a priori. In addition, the NICHD wished to identify relationships
between the ORCE variables and relevant background characteristics, such as
the caregiver’s education and “Type of care.” Neither of these variables are
numeric and might well have nonlinear relationships with the ORCE variables.
Therefore, we decided to apply nonlinear rather than linear PCA. Before be-
ginning the analysis, however, the appropriate analysis options have to be
chosen. To aid researchers in such decisions, we discuss the decisions we made
for the ORCE example below.

Analysis options

In the present data set, all behavior scales and ratings have a definite order,
and we wished to retain this. As we did not wish to presume linearity, we
treated all ORCE variables ordinally. As some of the behavior scales have
numerous categories, it might have been useful to assign a monotonic spline
analysis level to those variables; however, a spline analysis level is more restric-
tive and thus can lead to lower VAF. Because for the ORCE data, the solution
with monotonic spline quantifications differed only slightly from the solution
with ordinal quantifications (which is most likely due to the large size of the
sample), we decided that the latter was appropriate. In addition to the behav-
ior scales and ratings, we included two background variables: “Type of care”
and “Caregiver education.” Type of care is represented via six categories: “fa-
ther care,” “care by a grandparent,” “in-home sitter,” “family care,” “center
care,” and “other.” The caregiver’s education was measured using six cate-
gories as well: “less than high school,” “high school diploma,” “some college,”
“college degree,” “some graduate,” and “graduate degree.” Because the types
of care were nominal (i.e., unordered), and we did not know whether the cat-
egory quantifications of type of care and caregiver education would show an
irregular pattern, we analyzed both background variables multiple nominally
(as grouping variables). In summary, we specified an ordinal analysis level for
the 21 ORCE variables, and a multiple nominal level for the two background
variables.
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Second, all of the ratings and behavior scales had noninteger values, so
we had to discretize them for analysis by CATPCA. As we wanted the option
of handling the ORCE variables numerically for a possible comparison be-
tween ordinal and numeric treatment, we wished to retain their measurement
properties to the degree possible. As the multiplying option (see the Software
section) is designed for this purpose, we chose it for the behavior scales as
well as the ratings.

Finally, we treated the missing values passively (see Appendix B), delet-
ing persons with missing values only for those variables on which they had
missing values. The number of missing values in the ORCE data is relatively
small: Two children had missing values on all eight ratings, 94 children had a
missing value on “Responsiveness to distress,” and 16 had missing values on
“Caregiver education.”

Number of components

Finally, we had to determine the adequate number of components to retain in
the analysis. Because the ORCE instrument measures positive and negative
interactions between caregivers and children, it seemed reasonable to assume
that two components were called for. We generated a scree plot to check
this assumption, using the eigenvalues of the correlation matrix of the quan-
tified variables from a two-dimensional solution. From this plot, presented in
Figure 2.6b, we concluded that the elbow is located at the third component.
Remember that nonlinear PCA solutions are not nested, so a scree plot for
a three-dimensional solution – in which the sum of the three largest eigen-
values is optimized – can be different from a scree plot for a two-dimensional
solution, with the position of the elbow moving from the third to the second
component. In the present analysis, different dimensionalities consistently
place the elbow at the third component, as shown in Figure 2.6. Inspection
of the three-dimensional solution revealed that the third component was diffi-
cult to interpret, suggesting that this solution is not theoretically sensible and
therefore has little value (Fabrigar et al., 1999). This lack of interpretability
of the third component, combined with the information from the scree plot,
suggests that the two-dimensional solution is most appropriate.

After deciding on the number of components, we checked whether we could
simplify the structure of the solution by rotating the results. As rotation is
not yet a standard provision in CATPCA, we used VARIMAX rotation within
standard PCA in SPSS to rotate the transformed variables. For the nonlinear
PCA solution on the ORCE data, rotation was not called for, as most variables
already loaded highly on only one component.
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Figure 2.6: Scree plot from a one-, two-, and three-dimensional nonlinear
PCA on the ORCE data. On the y-axis are the eigenvalues of the correlation
matrix of the quantified variables.

2.3.4 The nonlinear PCA solution for the ORCE data

As we believe that the nonlinear PCA solution can best be represented graph-
ically, the next part of this section will mainly focus on interpreting the plots
from the CATPCA output.

Variance-accounted-for

The two-dimensional nonlinear PCA on the ORCE data yields an eigenvalue
of 7.71 for the first component, indicating that approximately 34% (= 7.71/23,
with 23 being the number of variables) of the variance in the transformed vari-
ables is accounted for by this first component. The eigenvalue of the second
component is 2.41, indicating that its proportion of VAF is approximately
10%. Thus, the first and second components together account for a consider-
able proportion (44%) of the variance in the transformed variables.



38 CHAPTER 2. INTRODUCTION TO NONLINEAR PCA

Categories

27.00
25.00

23.16
.19.50-19.67

17.50-17.70

16.00
14.00

11.91-12.00

10.14-10.50

8.35-8.63

6.45-6.83

4.59-5.00

2.80-3.14

1.00

Q
u

an
ti

fic
at

io
n

s

4

3

2

1

0

-1

-2

Responds to vocalization

Figure 2.7: Ordinal transformation of the behavior scale “Responds to vocal-
ization.” The categories indicated on the x-axis are the result of discretizing
using the “multiplying” option. To enhance legibility, only every fourth cate-
gory is depicted. Numeric values obtained after optimal quantification (cate-
gory quantifications) are on the y-axis.

Transformation plots

Figure 2.7 shows the optimal quantifications for the behavior scale “Responds
to vocalization” (with the quantifications on the y-axis versus the original
category labels on the x-axis). The labels on the x-axis are the ranges, in terms
of the original category labels, of the categories that were constructed using
the discretization option multiplying (see the Software section). Because this
discretized variable had many categories, only one out of four category labels
is displayed on the x-axis to keep the labels legible. Some possible categories
do not occur, indicated by blank areas in the plot, and dots on the x-axis. In
accordance with the variable’s ordinal analysis level, the transformation shows
a nondecreasing line. Some categories received the same quantification, as
indicated by horizontal parts in the line. Possibly, for example, children in the
categories “8.35–8.63” and “10.14–10.50” of “Responds to vocalization,” did
not differ structurally in their patterns on the other variables, and thus could
not be distinguished from each other by nonlinear PCA. Another possibility
is that the unrestricted nominal quantifications of consecutive categories were
incorrectly ordered, raising the possibility of a nonlinear relationship between
this variable and the others. In such a case, nominal treatment of a variable
might be considered. However, because the ties do not extend over a large
interval of categories, ordinal treatment seems quite adequate for these data.
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The transformation plots of most of the other ORCE variables are compa-
rable to that in Figure 2.7, with most variables showing one or more ties, but
never over a long sequence of categories. Variables with only a few categories
(like “Negative speech” (20) and “Negative physical action” (21)), have only
a few quantifications, and usually do not show ties.

Component loadings

Component loadings for the ordinally treated data are presented in Figure 2.4,
displayed as vectors. (To enhance clarity, the grouping (multiple nominal)
variables appear in a separate graph; see Figure 2.8.) As component loadings
indicate Pearson correlations between the quantified variables and the prin-
cipal components, they range between -1 and 1. The coordinates of the end
point of each vector are given by the loadings of each variable on the first
and second component. Because the cosines of the angles between the vectors
equal the correlations between the quantified variables and vectors are long
(indicating good fit), variables that are close together in the plot are closely
and positively related. Variables with vectors that make approximately a 180◦

angle with each other, are closely, and negatively related. Vectors making a
90◦ angle indicate that variables are not related.

The variables in Figure 2.4 form roughly three groups that seem to co-
incide with three basic orientations that are often used in the psychological
literature, and are based on the theory of Horney (1945): moving towards,
moving away from, and moving against another individual. The first group of
variables have high positive loadings on the first component and low loadings
on the second, and denote positive behaviors, or moving towards the child.
The second group, with high negative loadings on the first and low loadings
on the second component, contains variables that represent the caregiver’s
disengagement, or moving away from the child, like showing flatness of af-
fect and detachment. The orientation of the vectors for the variables in the
first and second group is roughly the same, but the vectors point in opposite
directions, indicating a strong negative relationship between these groups of
variables. The vector of a variable points to the highest category of that vari-
able; thus, for the first group, the vectors point to moving towards the child,
and for the second group the vectors point to the caregiver’s moving away
from the child. The third group of variables, representing “overtly negative
caregiver behaviors”, or moving against the child, loads highly on the second
component, and hardly on the first.
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Figure 2.8: Component loadings from CATPCA on 23 variables. 21 ORCE
variables are indicated by vectors, and the multiple nominal variables “Type
of care” and “Caregiver education” are represented by category points. Labels
of the category points are in capital letters.

Category points for multiple nominal variables

To clarify the relationship of the multiple nominal (grouping) variables “Type
of care” and “Caregiver education” to the other variables in the data set,
their category points are shown in Figure 2.8, along with the vectors for the
ORCE variables from Figure 2.4. As can be seen, the ordinal variables’ names
have been replaced in the figure with summary labels derived from Figure 2.4.
The group points are widely spread, indicating good fit. The locations of the
group points reflect the relationship of each category to the ORCE variables:
Orthogonal projection of a multiple nominal category point onto a vector for
an ordinal variable reflects to what score on that ordinal variable the category
is most related.

In Figure 2.8, orthogonal projection of the category point for center care
on the variable vectors, shows that children in center care experience relatively
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much disengagement from their caregivers; along with relatively little positive
or overtly negative behavior. Caregivers in family day-care show a bit more
positive engagement with the children, but still less than in other types of
care. Fathers, grandparents and “other” caregivers display a relatively high
degree of positive behavior, along with few negative or disengaging behaviors.
Finally, in-home sitters display about as many positive behaviors as fathers
and grandparents. The fact that the point for the sitters falls close to the
highest categories of overt negative behavior demonstrates such behaviors
are more likely with sitters than with other types of caregivers. However,
we cannot conclude that such negative behaviors are characteristic for sitters,
because the high categories of the negative behaviors have very small marginal
frequencies; that is, these behaviors occurred only rarely.

Examining group points for “Caregiver education” in Figure 2.8, we see
that caregivers with less than high school education (displayed at the upper
left side of the plot) show a relatively high degree of overtly negative behavior
and relatively little positive behavior towards their charges. The categories
“high school,” “some college,” and “some graduate” lie close to the center of
the plot, indicating that caregivers at these levels of education show moderate
levels of both positive and negative behaviors. Caregivers with a college or
graduate degree show the most positive and least overtly negative behavior.
The categories of education are almost perfectly ordered from lower to higher
education, and (except for “< high school”) on a virtually straight line; thus,
ordinal treatment would also have been appropriate for this variable. With
respect to the relationship between “Type of care” and “Caregiver education,”
the most notable conclusion is that in-home sitters are more likely to have less
than a high school education than other types of caregivers.

Person scores

Figure 2.9 displays the points for the children in a so-called object scores
plot. (In CATPCA, person scores are referred to as object scores, because
individuals or other entities in a study are neutrally referred to as objects.)
If a solution is dominated by outliers, all of the points in an object scores
plot are positioned very closely to the origin of the plot, whereas one or a
few points lie(s) very far away. In this example, we see that some points
lie far away from the other points, but the child points are spread out in
both components, indicating that our solution is not dominated by outliers.
The points lying far outside the center of the plot correspond to children
with extreme scoring patterns. For example, the points labeled 1 and 2 are
exceptional on the second component. Other points with uncommon scoring
patterns are indicated by the labels 3 to 7.
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Figure 2.9: Object (component) scores from CATPCA on 23 variables: 21
ORCE variables, type of care, and caregiver education.

A child point is located as closely as possible to the categories the child has
scored in, given the restrictions placed by the analysis level of the variables,
the fact that the component scores are standardized, and that the components
themselves are uncorrelated. To display children’s scores on the quantified
ORCE variables, the child points can be displayed in the same space as the
variables (represented by vectors). Such a joint plot, also called a biplot, is
shown in Figure 2.10. We adjusted the scale of this figure to the range of
the person scores. As person scores are standard scores, their range is usually
larger than the range of the component loadings (between -1 and 1). As
in this data set, the range of the object scores is substantially larger than
that of the loadings, the loadings would appear as very short vectors in the
biplot. For reasons of clarity, we elongated the variable vectors by a factor of
4. Consequently, the scales of Figures 2.10 and 2.4 differ from each other.

To display a child’s score on a particular variable, its point should be
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Figure 2.10: Biplot of the object scores (indicated by points) and component
loadings (indicated by vectors) from CATPCA on the 23 variables. To show
the relation between the object scores and component loadings more clearly,
the vectors for the component loadings have been adjusted to the scale of the
objects by elongating them by a factor 4. Note that the scale is equal to that
of Figure 2.9, and changes from Figure 2.4.

projected orthogonally onto the appropriate variable vector. In general, the
children can be sorted into two groups, based on their object scores on the
second component: those with an object score of 1 or higher on this component
experienced, on average, a higher degree of intrusiveness, negative regard,
flatness, negative speech, negative physical actions, and especially restriction
of activity. T -tests for the comparison of means between these two groups were
significant at the 0.01 level for all of these variables, prior to quantification.
To show more detailed examples, the points for four of the children (those
labeled 1, 2, 6, and 7) can be projected onto the elongated variable vectors. It
can be seen that children 1 and 2 experienced a relatively high degree of overt
negative caregiving behaviors. Child number 6 experienced a relatively high
degree of overt negativity, but also a good many positive caregiving behaviors
(and a relatively low degree of disengagement). On the left side of the plot,
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child number 7 encountered a relatively high degree of disengagement (and
relatively little positivity), in combination with some overt negative behaviors.
As can be seen, such a biplot provides a clear and comprehensive view of the
relationships between persons and variables. It is possible to enrich this view
even further, as CATPCA can label persons by the categories of a particular
(background) variable (rather than simply an anonymous case number), to
help determine how well groups of persons can be distinguished on the basis
of that particular variable.

2.3.5 Comparison of the nonlinear and linear PCA solution

As a comparison, we also conducted a linear PCA on the ORCE data. In
the current example, the most important advantage of nonlinear PCA is that
the variables “Type of care” and “Caregiver education” could be included in
the analysis. In standard linear PCA, it is not possible to include nominal
variables, and the information potentially yielded by these variables is lost.
A second advantage of nonlinear PCA is that nominal or ordinal treatment
may provide a greater proportion of VAF, because the analysis allows more
freedom in the quantifications of the data. The loadings and VAF of the two
principal components appear in Table 2.4, for both types of solutions.5

As consecutive category points for “Caregiver education” are not equidis-
tant from each other (see Figure 2.8), numeric treatment (implying equal
distances between the categories) of this variable by linear PCA would not be
the best choice. We therefore excluded this variable, as well as the nominal
variable “Type of care,” from the linear PCA. To provide a fair comparison,
the results from nonlinear PCA in Table 2.4 involve only the ordinally treated
ORCE variables. Neither solution was rotated, to keep the comparison as
straightforward as possible. Furthermore, the PCA solution with VARIMAX
rotation was very similar to the unrotated solution.

Table 2.4 shows, that for 18 out of the 21 ORCE variables, more variance is
accounted for in the nonlinear PCA solution than in the linear PCA solution,
whereas only two variables (numbers 1 and 5) have less VAF in the nonlinear
PCA solution, and one variable (number 3) has the same. Only “Responds
to distress” (1) showed a decrease in VAF of more than 5% by analyzing it
ordinally, whereas eight variables (7, 9, 10, 11, 13, 15, 19, and 20) showed
an increase in VAF of 5% or more. The sum of VAF over variables is equal
to the sum of the eigenvalues. In the linear PCA solution, the percentage of
VAF by the components for all variables (the eigenvalue divided by the num-
ber of variables) was 32.7% for the first component and 9.9% for the second

5The VAF of a variable is the sum of squared component loadings across all components.
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Table 2.4: Component loadings and VAF for linear and nonlinear PCA with
two components.

Linear PCA Nonlinear PCA
Variable Load.1 Load.2 VAF Load.1 Load.2 VAF
1 Distress .608 -.257 .435 .570 -.228 .377
2 Nondistress .853 -.190 .764 .861 -.155 .766
3 Intrusiveness .010 .671 .450 .009 .671 .450
4 Detachment -.787 .155 .643 -.807 .140 .672
5 Stimulation .785 .024 .616 .773 .048 .600
6 Positive regard .830 -.136 .708 .841 -.091 .716
7 Negative regard -.095 .643 .422 -.094 .705 .505
8 Flatness -.558 .275 .387 -.555 .352 .432
9 Positive affect .564 .065 .322 .603 .132 .381

10 Positive physical .538 -.049 .292 .635 -.046 .406
11 vocalization .660 .097 .445 .704 .124 .511
12 Reads aloud .273 .134 .092 .337 -.009 .113
13 Asks question .727 .148 .551 .770 .090 .601
14 Other talk .828 .186 .719 .858 .129 .753
15 Stimulates cognitive .630 .181 .429 .723 .146 .544
16 Stimulates social .376 .110 .153 .373 .198 .179
17 Facilitates behavior .729 .182 .565 .749 .154 .584
18 Restricts activity .169 .657 .461 .184 .679 .496
19 Restricts physical -.283 -.050 .083 -.420 .040 .178
20 Negative speech -.074 .604 .370 -.070 .691 .483
21 Negative psysical .015 .179 .032 .019 .213 .046

Total (sum eig) 8.941 9.793

component. In the nonlinear PCA solution, the first component accounted
for approximately 35.7% of the variance in the variables, and the second for
approximately 11.0%, indicating that there is a small increase of VAF on both
components. In the present analysis, we see only a small increase in the total
VAF, because variables turned out to be only slightly nonlinearly related. In
cases when strongly nonlinear relationships between variables occur, the in-
crease in VAF will be much larger than in the present case. For the current
data, the increase in VAF is secondary to the major advantage of being able
to deal with nominal variables. (Note that the inclusion of nominal variables
could also increase the total VAF of the solution.)
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2.4 Discussion

In this chapter, we provided an elaborate explanation of the method of non-
linear PCA. We discussed how, by using optimal quantification, the method
achieves the same objectives as linear PCA for nominal, ordinal and numeric
variables. We then described an extensive example of a nonlinear PCA analy-
sis, explaining the different analysis options we chose, and interpreting the
results. Hopefully, this chapter will provide a didactic and practical guide
for researchers interested in applying nonlinear PCA to their own data. For
further applications of nonlinear PCA we refer to Vlek and Stallen (1981);
Eurelings-Bontekoe, Duijsens, and Verschuur (1996); Beishuizen, Van Putten,
and Van Mulken (1997); De Haas, Algera, Van Tuijl, and Meulman (2000);
Huyse et al. (2000); Hopman-Rock, Tak, and Staats (2001); Zeijl, Te Poel,
Du Bois-Reymond, Ravesloot, and Meulman (2000); Arsenault, Tremblay,
Boulerice, and Saucier (2002); De Schipper, Tavecchio, Van IJzendoorn, and
Linting (2003); and Theunissen et al. (2004).

Comparing the nonlinear PCA results from the application section to the
linear PCA results, we found that, for the data we used, the most important
advantage of nonlinear PCA over linear PCA is its ability to deal with nominal
variables. Another important advantage that was not as evident for the ORCE
example is the ability of nonlinear PCA to discover and handle nonlinear
relationships between variables (as shown in Figures 2.1 and 2.2). Nonlinear
PCA enables the researcher to deal with variables in accordance with their
measurement level, as well as to explore whether using analysis levels other
than the measurement level provides more insight into the relationship of
a variable with the other variables in the data set. In addition, nonlinear
PCA can help demonstrate whether numeric (linear) treatment of variables is
justified.

A secondary advantage of nonlinear PCA is that it may be able to account
for more of the variance in the data than linear PCA, if nominal or ordinal
analysis levels are used. For nonnumeric analysis levels, the method is less
restrictive, and can therefore reach a higher proportion of VAF. Comparing
the nonlinear to the linear PCA solution, we indeed found that for some of the
variables in our example data set, the VAF increased considerably. Usually,
in scale construction, variables that are closely related are simply summed
(each variable with weight 1) to obtain a composite variable. If that strategy
is followed, no advantage is taken of the increased VAF for variables in non-
linear PCA. Alternatively, the advantage of increased VAF can be used by the
researcher by using the component loadings as variable weights in the compu-
tation of composite variables. This approach may be especially advantageous
when a data set is heterogeneous, that is, contains variables that measure dif-
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ferent types of characteristics and do not all have the same range. However,
when applying this strategy, it is important that the nonlinear PCA results
are stable (thus, there is little sampling error in estimating the component
loadings). Stability can be determined by performing a bootstrap study on
the nonlinear PCA results (see below). If sampling error is of considerable
influence, a coarser weighting strategy than using the component loadings
directly as weights could be applied. For example, assign a weight of 1 to
variables with high positive loadings, a weight of -1 to variables with high
negative loadings, and a weight of 0 to variables with low loadings on a par-
ticular component. Somewhat more complex weighting alternatives (weights
of -2, -1, 0, 1, and 2) may also be considered (Grice, 2001).

Although increasing VAF seems profitable, in cases in which variables have
only slightly nonlinear relationships with each other (which is often the case
when only Likert-type scales are measured), a nonlinear PCA will not add
a great deal to the linear solution. For any data set, we recommend first
checking whether nonlinear treatment is warranted by trying out nominal
or ordinal analysis levels for the variables at hand and looking at the VAF
compared to numeric treatment. Also, alternative measures of fit may be
considered: For example, Gower and Blasius (2005) propose a fit measure
based on the multivariate predictability of the data from the nonlinear PCA
solution. In addition, transformation plots should be considered. If all plots
show a regularly ascending line, numeric treatment may be just as satisfactory
as ordinal or nominal treatment, in terms of both VAF and interpretability.

We should also consider whether the gain in VAF outweighs any possible
increase in complexity of the solution. If the solution becomes much more
difficult to interpret, for example because of very irregular quantifications, we
might want to use linear PCA regardless of any gain in VAF. In addition,
the risk that the results are too much dependent on the data and cannot be
generalized to the population increases when less restrictive analysis levels are
used (with a nominal analysis level being the least restrictive). However, if
a variable is strongly nonlinearly related to the other variables, we will fail
to recognize and interpret that relationship when using linear PCA. Conse-
quently, VAF should always be considered in the light of interpretability of
the solution, and it might be useful to try different analysis levels for the vari-
ables at hand, and compare solutions before deciding which gives the clearest
representation of the data.
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Because applying nonlinear PCA involves trying out different options to
find the best possible results, users may feel that the method is not very
straightforward. In addition, all of this “exploration” may lead to searching
for structure that could be dependent on the sample at hand. According
to Diaconis (1985), in general, using exploratory analyses may easily lead to
“magical thinking,” that is, seeing structure that is not generalizable to a
larger population. Researchers using methods incorporating optimal quantifi-
cation have also been accused of capitalizing on chance. As an exploratory
method, neither linear nor nonlinear PCA provides standard options for as-
sessing whether the solution depends too heavily on sample characteristics,
and thus it is important to develop methods for assessing measures of sta-
bility and statistical significance for such exploratory techniques. Procedures
like the nonparametric bootstrap (Efron, 1982; Efron & Tibshirani, 1993) and
permutation tests (for example, see Good, 2000) may be useful for overcom-
ing this limitation. Chapter 3 is focused on the use of the bootstrap to assess
stability in the nonlinear PCA context. Such studies will further increase the
usefulness of this method.

In conclusion, nonlinear PCA can be a useful alternative to the more
familiar linear method. As Buja (1990) pointed out, this methodology is
“one of the most powerful and universal tools for the analysis of multivariate
data due to its ability to recover frequent types of nonlinear structure and
its applicability to categorical data” (p. 1034). For researchers dealing with
(large) data sets including different types of categorical variables that are
possibly nonlinearly related, nonlinear PCA can be a valuable addition to
their methodological toolbox.




