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Abstract-The basic mechanical and thermal properties of engineering materials are surveyed and 
inter-related. The survey reveals the range of each property, and the sub-range associated with each 
material class. These and the relationships between properties are displayed on Material Property Charts, 
of which 10 are presented here. The diagrams have numerous applications which range from the 
identification of fundamental relationship between material properties to the selection of materials for 
engineering design. 

Rksum&Nous passons en revue et nous relions entre elles les proprietes mecaniques et thermiques 
fondamentales des materiaux technologiques. Cette revue met en evidence le domaine des valeurs possibles 
de chaque propritte, et le sous-domaine associe a chaque classe de materiaux. Nous representons ces 
domaines et les relations entre proprietts sur des cartes de proprietes des mattriaux (dix d’entre elles sont 
present&es dans cet article). Ces diagrammes ont de nombreuses applications qui vont de l’identification 
d’une relation fondamentale entre les prop&es du mat&au au choix des materiaux a vocation 
technologique. 

Zusammenfassung-Die grundlegenden mechanischen und thermischen Eigenschaften von Konstruktion- 
swerkstoffen werden zusammengestellt und miteinander verkniipft. Diese Zusammenstellung beschreibt 
die Spanne einer jeden Eigenschaft und die fiir jede Materialklasse typische (kleinere) Spanne. Diese 
Spannen und die Zusammenhinge zwischen den Eigenschaften werden in. “Karten der Materialeigen- 
schaften” dargestellt; 10 davon werden hier vorgelegt. Die Diagramme finden vielfaltige Anwendung von 
der Identifizierung fundamentaler Beziehungen zwischen Materialeigenschaften bis zu der Auswahl von 
Werkstoffen fur Konstruktionen. 

SYMBOLS, DEFINITIONS AND UNITS 

thermal diffusivity (m’/s) 
crack half-length (m) 
dimensionless constants (-) 
velocity (m/s) 
electronic specific heat (J/kg K) 
specific heat at constant pressure (J/kg K) 
specific heat at constant volume (J/kg K) 
Youngs modulus (GPa) 
adiabatic modulus (GPA) 
isothermal modulus (GPa) 
force (N) 
shear modulus (GPa) 
toughness or apparent fracture surface energy 

(Jim’) 
heat transfer coefficient (J/m’ K) 
Boltzmann’s constant (J/K) 
bulk modulus (GPa) 
fracture toughness (MPa ml;*) 
mean free path (m) 
atom size (m) 
radius of pressure vessel (m) 
bond stiffness (N/m) 
thickness of section (m) 
temperature (K) 
melting point (K) 
elastic wave velocity (m/s) 
linear expansion coefficient (Km’) 
damping coefficient (-) 
surface energy (J/m2) 
Gruneisen’s constant (-) 
thermal conductivity (WjmK) 
density (Mg/m’) 

stress (MPa) 
yield/crushing/tear strength (MPa) 
tensile yield/fracture strength (MPa) 
Poisson’s ratio (-) 

1. INTRODUCTION: MATERIAL PROPERTY 
CHARTS 

Each property of an engineering material has a 
characteristic range of values. The range is enormous: 
of the ten properties considered here-properties 
such as modulus, toughness, thermal conductivity- 
all but one ranges through roughly 5 decades, 
reflecting the diversity in the atomic mechanisms 
which determine the value of the property. 

It is conventional to classify the solids themselves 
into the six broad classes shown in Fig. l-metals, 
polymers, elastomers, ceramics, glasses and com- 
posites. Within a class the range of properties is 
narrower, and the underlying mechanisms fewer. But 
classifications of this sort have their dangers, notably 
those of narrowing vision and of obscuring relation- 
ships. Here we aim at a broad review of engineering 
materials, examining the relationships between the 
properties of all six classes. 

One way of doing this is by constructing Material 

Property Charts. The idea is illustrated by Fig. 2. One 
property (the modulus, E, in this case) is plotted 
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1274 ASHBY: OVERVIEW NO. 80 

n METALS 

Fig. 1. The menu of engineering materials. Each class has 
properties which occupy a particular part (or “field”) of the 
Materials Property Charts, which are the central feature of 

this paper. 

against another (the density, p) on logarithmic scales. 
The range of the axes is chosen to include all ma- 
terials, from the lightest, flimsiest foams to the stiffest, 
heaviest metals. It is found that data for a given class 
of materials (polymers, for example) cluster together 
on the chart; the subrange associated with one mate- 
rial class is, in all cases, much smaller than the full 
range of that property. Data for one class can be 
enclosed in a property-envelope, as shown in Fig. 2. 
The envelope is constructed to enclose all members of 
the class. 

All this is simple enough-no more than a way of 
displaying properties in a helpful way. But by choos- 
ing the axes and scales appropriately, more can be 

1000 A 

MODULUS- DENSITY 
. 

.’ 

al 1.0 IO 

DENSITY, p (Mg/m3) 

Fig. 2. The idea of a Materials Property Chart: Young’s 
modulus, E, is plotted against the density, p, on log scales. 
Each class of material occupies a characteristic part of the 
chart. The log scales allow the longitudinal elastic wave 
velocity u = (E/p)“’ to be plotted as a set of parallel 

added. The speed of sound in a solid depends on the 
modulus, E, and the density, p; the longitudinal wave 
speed u, for instance, is 

or (taking logs) 

logE=logp f2logo. (lb) 

For a fixed value of u, this equation plots as a straight 
line of slope 1 on Fig. 2. This allows us to add 
contours of constant sound velocity to the chart: they 
are the family of parallel diagonal lines, linking 
materials in which sound travels with the same 
velocity. All the charts allow additional fundamental 
relationships of this sort to be displayed. 

At the more applied end of the spectrum, the charts 
help in materials selection in engineering design. The 
performance, in an engineering sense, of load-bearing 
components is seldom limited by a single property but 
by one or more combinations of them. The lightest tie 
rod which will carry a given tensile load without 
exceeding a given deflection is that with the greatest 
value of E/p. The I’ghtest column which will support 
a given compressive load without buckling is that 
with the greatest value of E’12/p. The lightest panel 

which will support a given pressure with minimum 
deflection is that with the greatest value of El/‘/p. 
Figure 3 shows how the chart can be used to select 
materials which maximise any one of these com- 
binations (1). The condition 

E 
-= C (2a) 
P 

or. taking logs 

I 1.0 IO 

DENSITY, p (Mg/r+) 

logE=logp +logC (2b) 

MODULUS- DENSITY 

Fig. 3. The same diagram as Fig. 2 but showing guide lines 
for selecting materials for minimum weight design. Because 
of the log scales the lines are straight even though they . 

contours. describe non-linear relationships between the properties. 
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is a family of straight lines of slope 1, one line for each 
value of the constant C. The condition 

E’ :/p = C 

gives a family with slope 2; and 

(3) 

El 3 
-xc (4) 

P 

gives another set with slope 3. One member of each 
family is shown on Fig. 3, labelled “Guide Lines for 
Material Selection”. The others are found by trans- 
lating the appropriate guide line sideways. 

It is now easy to read off the subset of materials 
which are optimal for each loading geometry. If a 
straight-edge is laid parallel to the E’,‘/p = C line, all 
the materials which lie on the line will perform 
equally well as a light column loaded in compression; 
those above the line arc better (they can withstand 
grcatcr loads), those below, worse. If the straight- 
edge is translated towards the top left corner of the 

diagram while retaining the same slope, the choice 
narrows. At any given position of the edge, two 
materials which lie on it are equally good, and only 
those which remain above are better. The same 
procedure, applied to the tie (E/p) or plate in bending 
(E’ ‘!p). lead to different equivalences and optimal 
subsets of materials. There are numerous such criteria 

for optimal muteria1.s selection, some of which are 
summarised in Fig. 4. All of these appear on one or 
another of the charts described below. 

Among the mechanical and thermal properties, 

there are 10 which are of primary importance, both 
in characterising the material, and in engineering 
design. They are listed in Table 1: they include 
density, modulus, strength, toughness, thermal con- 
ductivity, diffusivity and expansion. The charts dis- 
play data for these properties for the 9 classes of 
materials listed in Table 2. The class-list is expanded 
from the original 6 by distinguishing engineering 

composites from ,fi)ams and from woods though all, in 
the most general sense, are composites; and by dis- 
tinguishing the high-strength engineering ceramics 
(like silicon carbide) from the low strength, porous 

ceramics (like brick). Within each class, data are 

plotted for a representative set of materials, chosen 
both to span the full range of behaviour for the class, 

and to include the most common and most widely 
used members of it. In this way the envelope for a 
class encloses data not only for the materials listed in 
Table 2, but for virtually all other members of the 
class as well. 

2. DATA AND DATA SOURCES 

The data plotted on the charts shown below have 
been assembled over several years from a wide variety 
of sources. As far as possible, the data have been 
validated: cross-checked by comparing values from 
more than one source, and they have been examined 
for consistency with physical rules. The charts show 

a range of values for each property of each material. 
Sometimes the range is narrow: the modulus of a 
metal. for instance, varies by only a few percent about 

its mean value. Sometimes it is wide: the strength of 
a ceramic can vary by a factor of 100 or more. The 
reasons for the range of values vary: heat treatment 
and mechanical working have a profound effect on 
yield strength, damping and toughness of metals, 
Crystallinity and degree of cross-linking greatly 
influence the modulus of polymers. Grain size and 
porosity change considerably the fracture strength of 
ceramics. And so on. These structure-.sensitire prop- 
erties appear as elongated balloons within the en- 
velopes on the charts. A balloon encloses a typical 
range for the value of the property for a single 
material. Envelopes (heavier lines) enclose the ‘bal- 
loons for a class. 

The framework of this study is one of maximum 
breadth at relatively low precision. In this context, a 

number of approximations are possible: that the 
shear modulus is roughly 3/8 E; that the hardness is 
roughly 3r~, (where 0) is the yield strength); that the 
two specific heats C, and C, are (for solids) equal; and 
so forth. This allows us to deal with one modulus 
(Young’s), one wave velocity (the longitudinal), and 
so on; the others are proportional to the one dis- 
cussed here, and relationships, ranges and physical 
origins are the same. 

Now to the data sources themselves. First, there 
are the standard handbooks: The American Institute 

of Physics Handbook [2]; the Handbook of Physics and 

Chemistry [3]; the Landolt-Bornstein Tables [4]; the 
Materials Engineering “Materials Selector” [5] and 
the Fulmer Materials Optimiser [6]. More specialised 
data can be found in the compilations by Simmons 
and Wang [7] for moduli, Lazan [8] for damping, 
Frost and Ashby [9] and the Atlus of Creep and 

Stress Rupture Curces [IO] for strength at tempera- 
ture, and in the major reference texts on specific 
materials such as the ASM Metals Handbooks [I I] 
and Smithells [I21 for metals, the Handbook of Gluss 

Properties by Bansal and Doremus [13] for glasses, 
the Handbook of Plastics und Elastomers [ 141, the 
International Plastics Selector [ 151. the Plastics Tech - 

nology Handbook of Chanda and Roy [l6]. and the 
Handbook of Elastomers of Bhowmick and Stephens, 
[I71 for polymers, the Handbook of’ Physical Con- 

stants [18] for rocks and minerals, Creyke et al. [19] 
and Morrell [20] for ceramics, Composites [21] and 
the Engineering Guide to Composite Materials [22] for 
composites, Dinwoodie [23] for wood and wood 
products and Gibson and Ashby [24] for foams. 
Much of the data (particularly those for moduli, 
strength, toughness and thermal conductivity) are 
derived from scientific journals and conference pro- 
ceedings, and from manufacturers data sheets for 
their products. 

We now introduce charts which display the IO 
properties and allow useful relationships between 
them to be explored. 
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Table I. Basic subset of material properties 3. THE MATERIAL-PROPERTY DIAGRAMS 

Property Units 

Density, p 
Youngs modulus, E i%‘) 

3.1. The modulus-density chart (Chart 1, Fig. 5) 

Strength, try (MP$ Modulus and density are among the most self- 
Fracture toughness, K,, (MPa ml’*) 
Toughness, G,, (J/m2 1 

evident of material properties. Steel is used for stiff 

Damping coefficient, 9 (-) 
beams; rubber for compliant cushions. The density of 

Thermal conductivity, 1 
Thermal diffusivity, a ‘cI&K) 

lead makes it good for sinkers; that of cork makes it 

good for floats. Figure 5 shows the full range of 
Volume specific heat, C,p 
Thermal expansion coefficient, G( I% K, 

Young’s modulus, E, and density, p, for engineering 
materials. 

Table 2. Material classes and members of each class 

Engineering alloys 
(The metals and alloys of engineering) 

Engineering polymers 
(The thermoplastics and thermosets of 
engineering) 

Engineering ceramics 
(Fine ceramics capable of load-bearing 
application) 

Engineering composites 
(The composites of engineering practice. 
A distinction is drawn between the properties 
of a ply-“Uniply”-and of a laminate- 
“Laminates”) 

Porous ceramics 
(Traditional ceramics, cements, rocks and 
minerals) 

GlUS.WS 
(Ordinary silicate glass) 

Woods 
(Separate envelopes describe properties parallel to 
the grain and normal to it, and wood products) 

Elastomers 
(Natural and artificial rubbers) 

Aluminium alloys 
Lead alloys 
Magnesium alloys 
Nickel alloys 
Steels 
Tin alloys 
Titanium alloys 
Zinc alloys 

Epoxies 
Melamines 
Polycarbonate 
Polyesters 
Polyethylene, high density 
Polyethylene, low density 
Polyformaldehyde 
Polymethylmethacrylate 
Polypropylene 
Polytetrafluorethylene 
Polyvinylchloride 

Alumina 
Diamond 
Sialons 
Silicon carbide 
Silicon nitride 
Zirconia 

Carbon fibre reinforced polymer 
Glass fibre reinforced polymer 
Kevlar fibre reinforced polymer 

Brick 
Cement 
Common rocks 
Concrete 
Porcelain 
Pottery 

Borosilicate glass 
Soda glass 
Silica 

Ash 
Balsa 
Fir 
Oak 
Pine 
Wood products (ply, etc) 

Natural rubber 
Hard butyl rubber 
Polyurethanes 
Silicone rubber 
Soft butyl rubber 

Polymer _foams 
(Foamed polymers of engineering) 

These include: 
Cork 
Polyester 
Polystyrene 
Polyurethane 

Al alloys 
Lead alloys 
Mg alloys 
Ni alloys 
Steels 
Tin alloys 
Ti alloys 
Zn alloys 

EP 
MEL 
PC 
PEST 
HDPE 
LDPE 
PF 
PMMA 
PP 
PTFE 
PVC 

Al,O, 
C 
Sialons 
Sic 
S&N., 
ZrO, 

CFRP 
GFRP 
KFRP 

Brick 
Cement 
Rocks 
Concrete 
Pcln 
Pot 

B-glass 
Na-glass 
SiO, 

Ash 
Balsa 
Fir 
Oak 
Pine 
Wood products 

Rubber 
Hard butyl 
PU 
Silicone 
Soft butyl 

Cork 
PEST 
PS 
PU 
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1. MODULUS- DENSITY 
YOUNGS MODULUS E 
( G = 3E/ 8 ; K = E.) MFA,88 

/ 
I 

0 / 
/ 

I ‘ENGINEERING, 
,’ COMPOSITES 

/ ’ woobs/“- 
0 - h wNYLoN \/- 1 ,‘,+‘- 

DENSITY, P (Mgh3) 

Fig. 5. Chart 1: Youngs moduIus, E, piotted against density, p. The heavy envelopes enclose data for 
a given class of material. The diagonal contours show the longitudinal wave velocity. The guide lines 
of constant E/p, E"*/p and El/)/p allow selection of materials for minimum weight, deflection-limited, 

design. 

Data for members of a particular class of material 
cluster together and can be enclosed by an envelope 
(heavy line). The same class-envelopes appear on all 
the diagrams: they correspond to the main headings 
in Table 2. The members of a class were chosen to 
span the full property-range of that class, so the 
class-envelopes enclose data not only for the mem- 
bers listed in Table 2, but for other unlisted members 
also. 

What determines the density of a solid? At its 
simplest, it depends on three factors: the (mean) 
atomic weight of its atoms or ions, their (mean) 
size, and the way they are packed. The size of 
atoms does not vary much: most have a volume 
within a factor of two of 2 x 1O-29 m3. Packing 
fractions do not vary much either-a factor of 
two, more or less: close-packing gives a packing 

fraction of 0.74; open networks, typified by the 
diamond-cubic structure, give about 0.34. The spread 
of density comes from that of atomic weight, from 1 
for hydrogen to 207 for lead. Metals are dense 
because they are made of heavy atoms, packed more 
or less closely; polymers have low densities because 
they are made of light atoms in a linear, 2 or 
3-dimensional network. Ceramics, for the most part, 
have lower densities than metals because they contain 
light 0, N or C atoms. Even the lightest atoms, 
packed in the most open way, give solids with a 
density of around 1 Mg/m’. Materials with lower 
densities than this are foams, containing substantial 
pore space. 

The moduli of most materials depend on two 
factors: bond stiffness, and the density of bonds 
per unit area. A bond is like a spring: it can be 



characterised by a spring constant, S (units: N/m). 
Young’s modulus. E, is roughly 

50 m/s (soft elastomers) to a little more than IO4 m/s 
(fine ceramics). We note that aluminium and glass, 

E2 
rcl 

because of their low densities, transmit waves quickly 

(1) despite their low moduli. One might have expected 

the sound velocity in foams to be low because of the 
low modulus; but the low density almost compen- 
sates. That in wood, across the grain, is low; but 
along the grain, it is high-roughly the same as 
steel-a fact made use of in the design of musical 
instruments. 

where r,, is the atom size [ri is the (mean) atomic or 
ionic volume]. The wide range of moduli is largely 
caused by the range of value of S. The covalent bond 
is stiff (S = 20-200 N/m); the metallic and the ionic 
a little less so (S = 15-100 N/m). Diamond has a very 
high modulus because the carbon atom is small 
(giving a high bond density) and its atoms are linked 
by very strong bonds (S = 200 N/m). Metals have 
high moduli because close-packing gives a high bond 

density and the bonds are strong. Polymers contain 
both strong covalent bonds and weak hydrogen or 
Van-der-Waals bonds (S = 0.5-2 N/m); it is the weak 
bonds which stretch when the polymer is deformed, 
giving low moduli. 

The diagram helps in the common problem of 

material selection for applications in which weight 
must be minimised. Guide lines corresponding to 
three common geometries of loading are drawn on 
the diagram. They are used in the way described in 
Section 1 to select materials for elastic design at 
minimum weight. 

3.2. The strength-density chart (Chart 2, Fig. 6) 

But even large atoms (rO = 3 x lo-” m) bonded 

with weak bonds (S = 0.5 N/m) have a modulus of 
roughly 

This is the lower limit for true solids. The chart shows 
that many materials have moduli that are lower than 
this: they are either elastomers, or foams-materials 
made up of cells with a large fraction of pore space. 
Elastomers have a low E because the weak secondary 

bonds have melted (their glass temperature is below 
room temperature) leaving only the very weak 
“entropic” restoring force associated with tangled, 
long-chain molecules; and foams have low moduli 
because the cell walls bend (allowing large displace- 

ments) when the material is loaded. 

0.5 
E=p 3 x 10~‘“=‘GPa 

The modulus of a solid is a well-defined quantity 

with a sharp value. The strength is not. 
The word “strength” needs definition. For metals 

and polymers it is the yield strength, but since the 
range of materials includes those which have been 
worked, the range spans initial yield to ultimate 
strength; for most practical purposes it is the same in 

tension and compression. For brittle ceramics, it is 
the crushing strength in compression, not that in 
tension which is about 15 times smaller; the envelopes 
for brittle materials are shown as broken lines as 
a reminder of this. For elastomers, strength means 
the tear-strength. For composites, it is the tensile 

failure strength (the compressive strength can be less, 
because of fibre buckling). 

The chart shows that the modulus of engineering 
materials spans 5 decades,? from 0.01 GPa (low 
density foams) to 1000 GPa (diamond); the density 
spans a factor of 2000, from less than 0.1 to 
20 Mg/m’. At the level of approximation of interest 

here (that required to reveal the relationship between 
the properties of materials classes) we may approxi- 
mate the shear modulus, G, by 3E/8 and the bulk 
modulus, K, by E, for all materials except elastomers 
(for which G = E/3 and K $ E). 

The log-scales allow more information to be dis- 
played. The velocity of elastic waves in a material, 
and the natural vibration frequencies of a component 
made of it, are proportional to (E/p)“‘; the quantity 
(E/p)“’ itself is the velocity of longitudinal waves in 
a thin rod of the material. Contours of constant 
(E/p )’ ’ are plotted on the Chart, labelled with the 
longitudinal wave speed: it varies from less than 

The range of strength for engineering materials, 

like that of the modulus, spans about 5 decades: from 
less than 0.1 MPa (foams, used in packaging and 
energy-absorbing systems) to lo4 MPa (the strength 
of diamond, exploited in the diamond-anvil press). 
The single most important concept in understanding 
this wide range is that of the lattice resistunce or 
Peierls stress: the intrinsic resistance of the structure 
to plastic shear. Metals are soft and ceramics hard 
because the non-localised metallic bond does little to tVery low density foams and gels (which can be thought of 

as molecular-scale fluid filled foams) can have moduli far 
lower than this._As an example, gelatin (as in Jello) has 

prevent dislocation motion, whereas the more lo- 

a modulus of about 5 x 10-5GPa. Their strengths and 
calised covalent and ionic bonds of the ceramic 

fracture toughness too. can be below the lower limit of (which must be broken and reformed when the 

the charts. structure is sheared) lock the dislocations in place. In 
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Figure 6 shows these strengths, for which we will 

use the symbol oy (despite the different failure 
mechanisms involved), plotted against density, p. 
The considerable vertical extension of the strength- 
balloon for an individual material reflects its wide 

range, caused by degree of alloying, work hardening, 
grain size, porosity and so forth. As before. members 
of a class group together and can be enclosed in an 
envelope (heavy line). Each occupies a characteristic 

area of the chart, and, broadly speaking, encom- 
passes not only the materials listed in Table 2, but 
most other members of the class also. 
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2. STRENGTH-DENSITY 
METAL AND POLYMERS: YIELD STRENGTH 
CERAMICS AND GLASSES: COMPRESSIVE STRENGTH 
ELASTOMERS: TENSILE TEAR STRENGTH 
COMPOSITES: TENSILE FAILURE 

3 

DENSITY p (Mg/m31 

Fig. 6. Chart 2: Strength, 5, plotted against density, p (yield strength for metals and polymers, 
compressive strength for ceramics, tear strength for elastomers and tensile strength for composites). The 

guide lines of constant a,/~, u:j3/p and ~ri’~/p are used in minimum weight, yield-limited, design. 

non-crystalline solids we think instead of the energy 
associated with the unit step of the flow process: the 
relative slippage of two segments of a polymer chain, 
or the shear of a small molecular cluster in a glass 
network. Their strength has the same origin as that 
underlying the lattice resistance: if the unit step 
involves breaking strong bonds (as in an inorganic 
glass), the material will be strong; if it only involves 
the rupture of weak bonds (the Van-der-Waals bonds 
in polymers for example), it will be weak. 

When the lattice resistance is low, the material can 
be strengthened by introducing obstaces to slip: in 
metals, by adding alloying elements, particles, grain 
boundaries and even other dislocations (“work 
hardening”) and in polymers by cross-linking or 
orientation of chains so that strong covalent as well 
as weak Van-der-Waals bonds are broken. When 
the lattice resistance is high, further hardening is 

super~uous-the problem becomes that of suppress- 
ing fracture (next section). 

An important use of the chart is in materials 
selection in plastic design. Figure 4 lists the combi- 
nations (such as ~,/p, oy/p and cry/p) which enter 
the equations for minimum-weight design of ties, 
columns, beams and plates, and for yield-limited 
design of moving components in which inertial forces 
are important (for details and examples see Refs [I], 
[6] and 1241). Guide lines with slopes of 1, f and $, 
corresponding to these combinations are shown in 
Fig. 6. They are used to identify an optimal subset of 
materials as described in Section 1. 

3.3. The fracture toughness-density chart (Chart 3, 
Fig. 7) 

Increasing the plastic strength of a material is 
useful only as long as it remains plastic and does not 
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Fig. 7. Chart 3: Fracture toughness, K,,, plotted against density, p. The guide lines of constant K,,/p. Kfc!p 
and Kii2/p help in minimum weight, fracture-limited, design. 

fail by fast fracture. The resistance to the propagation 
of a crack is measured by the fracture toughness, K,, 
It is plotted against density in Fig. 7. The range is 
large: from 0.01 to over 100 MPa m’/*. At the lower 
end of this range are brittle materials which, when 
loaded, remain elastic until they fracture. For these, 
linear-elastic fracture mechanics works well, and the 
fracture toughness itself is a well-defined property. 
At the upper end lie the super-tough materials, most 
of which show substantial plasticity before they 
break. For these the values of K,, are approximate, 
derived from critical J-integral (.I,) and critical crack- 
opening displacement (6,) measurements [by writing 
K,, = (EJ,)’ ‘, for instance]. They are helpful in 
providing a ranking of materials. The figure shows 
one reason for the dominance of metals in engineer- 
ing: they almost all have values of K,, above 
20 MPa ml.“, a value often quoted as a minimum for 
conventional design. 

There are a number of fundamental points to be 

made about the fracture toughness, but they are best 
demonstrated with Charts 5 and 6, coming later. Here 
we simply note that minimum-weight design, when 
the design criterion is that of preventing brittle 
fracture from a flaw of given size, requires that K,,/p, 
Kfi3]p or Kf,‘/p (depending on loading geometry) be 
maximised (see Fig. 4). Guide-lines corresponding to 
constant values of these parameters are plotted on the 
diagram. They are used as described in Section I. 

3.4. The modulus-strength chart (Chart 4, Fig” 8) 

High-tensile steel makes good springs. But so does 

rubber. How is it that two such different materials 
are both suited for the same task? This and other 
questions are answered by Fig. 8, the most useful of 
all the charts. 

It shows Young’s modulus, E, plotted against 
strength, (T?. The qualifications on “strength” are 
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Fig. 8. Chart 4: Youngs modulus, E, plotted against strength (TV. The guide line of constant B$/E helps 
with the selection of materials for springs, pivots and knife-edges; those of constant cry/E with choosing 

materials for elastic hinges. 

the same as before: it means yield strength for 
metals and polymers, compressive crushing strength 
for ceramics, tear strength for elastomers and 
tensile strength for composites and woods; the 
symbol oy is used for them all. The ranges of the 
variables, too, are the same. Contours of normalised 

strength, a,/E, appear as a family of straight parallel 
lines. 

Examine these first. Engineering polymers have 
normalised strengths between 0.01 and 0.1. In this 
sense they are remarkably strong: the value for metals 
are at least a factor of 10 smaller. Even ceramics, in 
compression, are not as strong, and in tension they 
are weaker (by a further factor of 15 or so). Com- 
posites and woods lie on the 0.01 contour, as good as 
the best metals. Elastomers, because of their excep- 
tionally low moduli, have values of a,/E larger than 
any other class of material: 0.1 to 10. 

The ideal strength of a solid is set by the range of 
interatomic forces. It is small-a bond is broken if it 
is stretched by more than 10% or so. So the force 
needed to break a bond is roughly 

Sro 
F=10 

where S is the bond stiffness (Section 3.1). If shear 
breaks bonds, the strength of a solid should be 
roughly 

F S E 
QY - ‘v-c-=_. 

4 lOr, 10 
(4) 

The chart shows that, for some polymers, it is. Most 
solids are weaker, for two reasons. 

First, non-localised bonds (those in which the 
cohesive energy derives from the interaction of one 
atom with large number of others, not just with its 
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nearest neighbours) are not broken when the struc- 
ture is sheared. The metallic bond, and the ionic bond 

for certain directions of shear, are like this; very pure 

metals, for example, yield at stresses as low as 
E/10,000, and strengthening mechanisms (Section 
3.2) are needed to raise the strength. The covalent 
bond is localised; and covalent solids do, for 
this reason, have yield strength which, at low 

temperatures, are as high as E/10. It is hard to 
measure them (though it can sometimes be done by 
indentation) because of the second reason for weak- 
ness: they generally contain defects-concentrators of 
stress-from which shear or fracture can propagate, 
often at stresses well below the “ideal” E/10. Elas- 
tomers are anomalous (they have strengths of about 
E) because the modulus does not derive from bond- 
stretching, but from the change in entropy of the 
tangled molecular chains when the material is 
deformed. 

In the design of columns and beams, the ratio g) /E 

often appears. Structures which have a high value of 
o,/E will deflect or buckle before they yield; those 
with low rr,/E do the opposite. The best materials for 
an elastic hinge (a thin web or ligament that bends 
elastically, forming the hinge of a box or container, 
for example) are those with the maximum value of 
0,/E: the diagram immediately identifies them as 
elastomers and certain polymers (the polyethylenes, 
for example). 

Finally, to return to springs. The best material for 

a spring is that with the greatest value of of/E 

(because it stores the most elastic energy per unit 
volume , fa’!‘E, before it yields). A guide-line cor- 
responding to the condition 

is plotted on the diagram; it, or any line parallel to it, 
links materials that are equally good by this criterion. 
If such a line is drawn through the middle of the 
elastomers, it just touches spring steeel. Ceramics 
must be rejected because they are weaker, by the 
factor of 15, in tension, but glass, which can be made 
defect-free, makes good springs. Slightly further to 
the right he CFRP and GFRP. All are good for 
springs. 

3.5. The fracture toughness-modulus chart (Chart 5, 

Fig. 9) 

The fracture toughnesses of most polymers are less 
than those of most ceramics. Yet polymers are widely 
used in engineering structures; ceramics, because they 
are “brittle”, are treated with much more caution. 
Figure 9 helps resolve this apparent anomaly. It 
shows the fracture toughness, K,,, plotted against 
Young’s modulus, E. The restrictions described in 
Section 3.3 apply to the values of K,,: when small, 
they are well defined; when large, they are useful only 
as a ranking for material selection. 

Consider first the question of the necessar~~ con- 

dz’tion,for fracture. It is that sufficient external work 

be done, or elastic energy released, to supply the true 
surface energy (27 per unit area) of the two new 
surfaces which are created. We write this as 

G > 2) (5) 

where G is the energy release-rate. Using the standard 
relation K =Z (EC)‘:’ between G and stress intensity K, 

we find 

K > (2Ey)’ ‘. (6) 

Now the surface energies. ;‘, of solid materials scale 
as their moduli; to an adequate approximation 
y = Er,/20, where r,, is the atom size. giving 

_ _.- 
I L 

We identify the right-hand side of this equation with 
a lower-limiting value of K,,, when, taking Y,) as 
2 x 10 “‘m, 

(K,,min= ‘0 “-,3x 10~hrn12 

E 11 20 

This criterion is plotted on the chart as a shaded, 
diagonal band near the lower right corner (the width 
of the band reflects a realistic range of r,, and of the 
constant C in y = Er,/C). It defines a lower limit on 
values of K,,: it cannot be less then this unless some 

other source of energy (such as a chemical reaction, 
or the release of elastic energy stored in the special 

dislocation structures caused by fatigue loading) is 
available, when it is given a new symbol such as 

(K,,),,. We note that the most brittle ceramics lie 
close to the threshold: when they fracture, the energy 
absorbed is only slightly more than the surface 

energy. With metals and polymers the energy ab- 
sorbed by fracture is vastly greater, almost always 
because of plasticity associated with crack propa- 
gation. We come to this in a moment, with the next 
chart. 

Plotted on Fig. 9 are contours of toughness, G,,. a 

measure of the apparent fracture surface-energy 
(G,, z Kfc/E). The true surface energies, 7, of solids 
lie in the range IO-” to 10 -‘kJ/m’. The diagram 
shows that the values of the toughness start at 
10-j kJ/m’ and range through almost six decades 
to lo2 kJ/m’. On this scale, ceramics are low 
(10 mi-lOm ’ kJ/m*), much lower than polymers 
(IO-‘-10 kJ/m’tand this is part of the reason that 
design with polymers is easier than with ceramics. 
This is not to say that engineering design relies purely 
on G,,: it is more complicated than that. When the 
modulus is high, deflections are small. Then designers 
are concerned about the loads the structure can 
support. In load-limited design, the fracture tough- 
ness, K,,, is what matters: it determines, for a given 
crack length, the stress the structure can support. 
Experience shows that a value of K,, above about 
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Fig. 9. Chart 5: Fracture toughtness, K,,, plotted against Youngs modulus, E. The family of lines are of 
constant KfJE (roughly, of G,,, the fracture energy). These, and the guide-line of constant K,,/E, help 
in design against fracture. The shaded band shows the “necessary condition” for fracture. Fracture can, 

in fact, occur below this limit under conditions of corrosion, or cyclic loading. 

20 MPa”’ is necessary for conventional load-limited 
design methods to be viable. Only metals and com- 
posites meet this requirement. 

Polymers, woods and foams have low moduli. 
Design with low-modulus materials focusses on limit- 
ing the displacement, requiring a high value of K,,/E, 
(or, equivalently, (G,c/E)1’2). Polymers, woods and 
foams meet these requirements better than metals, as 
the guide-line of K,/E = C on the chart shows. 
The problem with ceramics is that they are poor 
by either criterion. The solution-since ceramics 
have other properties too good to ignore-lies in 
further progress in toughening them, and in new 
design methods which allow for their brittleness in 
tension. 

That, of course, is still too simple. The next section 
adds further refinements. 

3.6. The fracture toughness-strength chart (Chart 6, 
Fig. 10) 

The stress concentration at the tip of a crack 

generates a process-zone: a plastic zone in ductile 
solids, a zone of microcracking in ceramics, a zone 
of delamination, debonding and fibre pull-out in 
composites. Within the process zone, work is done 
against plastic and frictional forces; it is this which 
accounts for the difference between the measured 
fracture energy G,, and the true surface energy 2~. 
The amount of energy dissipated must scale roughly 
with the size of the zone d,, given (by equating the 
stress field of the crack at r = d, to the strength rsy of 
the material) by 

d..=K:, 
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Fig. IO. Chart 6: Fracture-toughness, K,,, plotted against strength, oy. The contours show the value of 
Kk/rr cr:-roughly, the diameter of the process-zone at a crack tip (units: mm). The guide lines of constant 

K,,/cr, and Kt/n, are used in yield-before-break and leak-before-break design. 

and with the strength fly of the material within it. 
Figure IO-fracture toughness against strength- 
shows that the size of the zone, d, (broken lines), 
varies enormously, from atomic dimensions for very 
brittle ceramics and glasses to almost I metre for the 
most ductile of metals. At a constant zone size, 
fracture toughness tends to increase with strength (as 
expected): it is this that causes the data plotted in 
Fig. 10 to be clustered around the diagonal of the 
chart. 

The diagram has application in selecting materials 
for the safe design of load bearing structures. First 
some obvious points. Fast fracture occurs when 

where 2~2, is the length of the longest crack in the 
structure, and C is a constant near unity (we assume, 
below, that C = I). The crack which will just propa- 
gate when the stress equals the yield strength has a 
length 

Kf’, 
a. = 7 (11) 

xaf 

that is, the critical crack length is the same as the 
process zone size: the contours on the diagram. A 
valid fracture toughness test (one that gives a reliable 
value of the plane-strain fracture toughness K,,) 
requires a specimen with all dimensions larger than 10 
times &,; the contours, when multiplied by 10, give a 
quick idea of this. 

There are two criteria for materials selection in- 
volving K,, and a?. First. safe design at a given ioad 
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requires that the structure will yield before it breaks. 
If the minimum detectable crack size is 2a,, then this 
condition can be expressed as 

(12) 

The safest material is the one with the greatest value 
of K&J,: it will tolerate the longest crack. But, 
though safe, it may not be efficient. The section 
required to carry the load decreases as oY increases. 
We want high K,,/a, and high ey. The reader may 
wish to plot two lines onto the figure, isolating the 
material which best satisfies both criteria at once: it 
is steel. It is this which gives steel its pre-eminence as 
the material for highly stressed structures when 
weight is not important. 

One such structure is the pressure vessel. Here 
safe design requires that the vessel leaks before 
it breaks: leakage is not catastrophic, fast fracture 
is. To ensure this, the vessel must tolerate a crack of 
length, 2a,, equal to the wall thickness t, and this 
leads to a different criterion for materials selection. 
From the last equation, the leak-before-break 
criterion is 

But the pressure, p, that the vessel can support is 
limited by yield, so that, for a thin walled cylindrical 
vessel of radius R, 

PR 
-<a,. 

t 
Substituting for t gives 

The greatest pressure is carried by the vessel with the 
largest value of Kf,/o,. A guide line of KE/a, is 
shown on the chart. It, and the yield-before-break 
line, are used in the way described in Section 1. 
Again, steel and copper are optimal. 

3.7. The loss coejicient-modulus chart (Chart 7, 
Fig. 11) 

Bells, traditionally, are made of bronze. They can 
be (and sometimes are) made of glass; and they could 
(if you could afford it) be made of silicon carbide. 
Metals, glasses and ceramics all, under the right 
circumstances, have low intrinsic damping, or “in- 
ternal friction”, an important material property when 
structures vibrate. We measure intrinsic damping by 
the loss coefficient, 1, which is plotted in Fig. 11. 
Other measures include the spec$c damping capacity 
D/U (the energy D dissipated per cycle of vibrational 
energy U), the log decrement, A (the log of the ratio 
of successive amplitudes), the phase Zag, 6, between 
stress and strain and the resonance factor, Q. When 
the damping is small (q < 0.01) these measures are 
related by 

(13) 

but when the damping is large, the definitions are no 
longer equivalent. Large q’s are best measured by 
recording a symmetric load cycle and dividing the 
area of the stress-strain loop by 2 n times the peak 
energy stored. 

There are many mechanisms of intrinsic damping 
and hysteresis. Some (the “damping” mechanisms) 
are associated with a process that has a specific time 
constant; then the energy loss is centred about a 
characteristic frequency. Others (the “hysteresis” 
mechanisms) are associated with time-independent 
mechanisms, and absorb energy at all frequencies. 

One damping mechanism, common to all ma- 
terials, is a thermoelastic effect. A suddenly-applied 
tensile stress causes a true solid to cool slightly as it 
expands (elastomers are not true solids, and show the 
opposite effect). As it warms back to its initial 
temperature it expands further, giving additional 
strain that lags behind the stress. The anisotropy of 
moduli means that a polycrystal, even when uni- 
formly loaded, shows a thermoelastic damping be- 
cause neighbouring grains distort-and thus 
cool-by differing amounts. The damping is propor- 
tional to the difference between the adiabatic mod- 
ulus, EA and that measured at constant temperature, 
ET. A thermodynamic analysis (e.g. [24]) shows that 

q=c 
EA - ET CTcr’E, -=___ 

ET PC, 
(14) 

where CI is the coefficient of linear thermal expansion, 
C, the specific heat, T the temperature and C a 
constant. This leads to the shaded line on the Chart 
marked “thermal damping”. Single crystals and 
glasses lie below the line, because, when loaded 
uniformly, no temperature gradients exist. 

The loss coefficient of most materials is far higher 
than this. In metals a large part of the loss is 
hysteretic, caused by dislocation movement: it is 
high in soft metals like lead and aluminium, but 
heavily alloyed metals like bronze, and high-carbon 
steels have low loss because the solute pins the 
dislocations. Exceptionally high loss is found in the 
Mu-Cu alloys, because of a strain-induced martensite 
transformation, and in magnesium, perhaps because 
of reversible twinning. The elongated balloons for 
metals span the large range accessible by alloying and 
working. Engineering ceramics have low damping 
because the enormous lattice resistance (Section 3.2) 
pins dislocations in place at room temperature. 
Porous ceramics, on the other hand, are filled with 
cracks, the surfaces of which rub, dissipating energy, 
when the material is loaded; the high damping of 
some cast irons has a similar origin. In polymers, 
chain segments slide against each other when loaded; 
the relative motion lowers the compliance and dissi- 
pates energy. The ease with which they slide depends 
on the ratio of the temperature (in this case, room 
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Fig. 1 I. Chart 7: The loss coefficient, q, plotted against Youngs modulus, E. the guide-line corresponds 
to the condition q = C/E. 

temperature) to the glass temperature, T,, of the 
polymer. When T/T, < 1, the secondary bonds are 
“frozen”, the modulus is high and the damping is 
relatively low. When T/T, > 1, the secondary bonds 
have melted, allowing easy chain slippage: the modu- 
lus is low and the damping is high. This accounts for 
the obvious inverse dependence of rl on E for poly- 
mers in Fig. 11; indeed, to a first approximation 

4 x 10-2 
?= 

E 
(15) 

with E in GPa. 

3.8. The thermal conductivity-thermal difsuvity chart 
(Chart 8, Fig. 12) 

The material property governing the flow of heat 
through a material at steady state is the thermal 
conductivity, I. (units: J/mK); that governing transient 
heat flow is the thermal disfuusiuity, a (units: m2/s). 
They are related by 

AM 17 5 -” 

a=L 
PC, 

(16) 

where p is the density and C,, the specific heat, 
measured in J/kg.K; the quantity pCP is the volu- 
metric speciJic heat. Figure 12 relates conductivity, 
diffusivity and volumetric specific heat, at room 
temperature. 

The data span almost 5 decades in i and a. Solid 
materials are strung out along the line 

PC, z 3 x lo6 J/m’ K (17) 

This can be understood by noting that a solid con- 
taining N atoms has 3N vibrational modes. Each 
(in the classical approximation) absorbs thermal 
energy kT at the absolute temperature T, and the 
vibrational specific heat is C, zz C, = 3Nk (J/K) where 
k is Bolzmann’s constant. The volume per atom, Q, 
for almost all solids lies within a factor of two of 
2 x 10~29m3, so the volume of N atoms is 
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2 x 1O-29 N. The volume specific heat is then (as the 
Chart shows) 

pC, = 3Nk/NCl= 3k/R = 3 x lo6 J/m3 K. (18) 

For solids, C, and C, differ very little; at the level of 
approximation of this paper we assume them to be 
equal. As a general rule, then 

1= 3 x 106a 

(1 in J/mK and a in m2/s). Some materials deviate 
from this rule: they have lower-than-average volu- 
metric specific heat. A few, like diamond, are low 
because their Debye temperatures lie well above room 
temperature; then heat absorption is not classical, 
some modes do not absorb kT and the specific heat 
is less than 3Nk. The largest deviations are shown by 
porous solids: foams, low density firebrick, woods 
and so on. Their low density means that they contain 

fewer atoms per unit volume and, averaged over the 
volume of the structure, pC, is low. The result is that, 
although foams have low conductivities (and are 
widely used for insulation because of this) their 
thermal dzjhivities are not low: they may not trans- 
mit much heat, but they reach a steady state quickly. 

The range of i and of a reflect the mechanisms of 
heat transfer in each class of solid. Electrons conduct 
the heat in pure metals such as copper, silver and 
aluminium (top right of chart). The conductivity is 
described by 

1 =&a (19) 

where C, is the electron specific heat per unit volume, 
E is the electron velocity (2 x lO’m/s) and 1 the 
electron mean free path, typically lO_‘m in pure 
metals. In solid solution (steels, nickel-based and 
titanium alloys) the foreign atoms scatter electrons, 
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Fig. 13. Chart 9: The linear expansion coefficient, a, plotted against Young’s modulus, E. The contours 
show the thermal stress created by a temperature change of I C if the sample is axially constrained. A 

correction factor C is applied for biaxial or triaxial constraint (see text). 

reducing the mean free path to atomic dimensions 
(z IO ‘“m), much reducing 2 and a. 

Electrons do not contribute to conduction in cer- 
amics and polymers. Heat is carried by phonons- 
lattice vibrations of short wavelength. They are 
scattered by each other (through an anharmonic 
interaction) and by impurities, lattice defects and 
surfaces; it is these which determine the phonon mean 
free path, 1. The conductivity is still given by equation 
(19) which we write as 

i, = f&F1 (20) 

but now F is the elastic wave speed (around IO3 m/s- 
see Chart 1) and pCr, is the volumetric specific heat. 
If the crystal is particularly perfect, and the tempera- 
ture is well below the Debye temperature, as in 
diamond at room temperature, the phonon conduc- 
tivity is high: it is for this reason that single crystal 

diamond, silicon carbide, and even alumina have 
conductivities almost as high as copper. The low 
conductivity of glass is caused by its irregular amor- 

phous structure: the characteristic length of the mol- 
ecular linkages (about 10e9m) determines the mean 
free path. Polymers have low conductivities because 
the elastic wave speed C is low (Chart l), and the 
mean free path in the disordered structure is small. 

The best insulators are highly porous materials 
like firebrick, cork and foams. Their conductivity is 
limited by that of the gas in their cells, and (in very 
low density polymer foams) by heat transfer by 
radiation though the transparent cell walls. 

3.9. The thcwnul expansion-modulus chart (Chart 9, 

Fig. 13) 

Almost all solids expand on heating. The bond 
between a pair of atoms behaves like a linear-elastic 
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spring when the relative displacement of the atoms is 
small; but when it is large, the spring is non-linear. 
Most bonds become stiffer when the atoms are 
pushed together, and less stiff when they are pulled 
apart. The thermal vibration of atoms, even at room 
temperature, involves large displacements; as the 
temperature is raised, the non-linear spring constant 
of the bond pushes the atoms apart, increasing their 
mean spacing. The effect is measured by the linear 
expansion coeficient 

1 dl 

u=idT 
(21) 

where 1 is a linear dimension of the body. A quanti- 
tative development of this theory leads to the relation 

YG PC” 
a=- 

where yo is Gruneisen’s constant; its value ranges 
between about 0.4 and 4, but for most solids it is 
near 1. Since PC, is almost constant [equation (18)], 
the equation tells us that tl is proportional to l/E. 
Figure 13 shows that this is so. Diamond, with the 
highest modulus, has one of the lowest coefficients of 
expansion; elastomers with the lowest moduli expand 
the most. Some materials with a low coordination 
number (silica, and some diamond-cubic or zinc- 
blende structured materials) can absorb energy pref- 
erentially in transverse modes, leading to a very small 
(even a negative) value of ho and a low expansion 
coefficient-that is why Si02 is exceptional. Others, 
like Invar, contract as they lose their ferromagnetism 
when heated through the Curie temperature and, over 
a narrow range of temperature, show near-zero 
expansion, useful in precision equipment and in 
glass-metal seals. 

One more useful fact: the moduli of materials scale 
approximately with their melting point, T,,, (see, for 
example, Ref. [9]) 

where k is Boltzmann’s constant and R the volume- 
per-atom in the structure. Substituting this and 
equation (18) for PC, into equation (22) for CI gives 

GIL!k- 
100 T, 

-the expansion coefficient varies inversely with the 
melting point, or (equivalently stated), for all solids 
the thermal strain, just before they melt, is the same. 
The result is useful for estimating and checking 
expansion coefficients. 

Whenever the thermal expansion or contraction of 
a body is prevented, thermal stresses appear; if large 
enough, they cause yielding, fracture, or elastic col- 
lapse (buckling). It is common to distinguish between 
thermal stress caused by external constraint (a rod, 
rigidly clamped at both ends, for example) and that 
which appears without external constraint because of 

temperature gradients in the body. All scale as the 
quantity uE, shown as a set of diagonal contours on 
Fig. 13. More precisely: the stress Au produced by a 
temperature change of 1°C in a constrained system, 
or the stress per “C caused by a sudden change of 
surface temperature in one which is not constrained, 
is given by 

CAa = aE (25) 

where C = 1 for axial constraint (1 - v), for biaxial 
constraint or normal quenching, and (1 - 2 v) for 
triaxial constraint, where v is Poisson’s ratio. These 
stresses are large: typically 1 MPa/K; they can cause 
a material to yield, or crack, or spall, or buckle, when 
it is suddenly heated or cooled. The resistance of 
materials to such damage is the subject of the next 
section. 

3.10. The normalised strength-thermal expansion 
chart (Chart JO, Fig. 14) 

When a cold ice-cube is dropped into a glass of gin, 
it cracks audibly. The ice is failing by thermal shock. 
The ability of a material to withstand such stresses is 
measured by its thermal shock resistance. It depends 
on its thermal expansion coefficient, CI, and its nor- 
malised strength, 0,/E. They are the axes of Fig. 14, 
on which contours of constant a,/clE are plotted. The 
tensile strength, bt, requires definition, just as gY did. 
For brittle solids, it is the tensile fracture strength 
(roughly equal to the modulus of rupture, or MOR). 
For ductile metals and polymers, it is the tensile 
yield strength; and for composites it is the stress 
which first causes permanent damage in the form of 
delamination, matrix cracking of fibre debonding. 

To use the chart, we note that a temperature 
change of AT, applied to a constrained body--or a 
sudden change AT of the surface temperature of a 
body which is unconstrained-induces a stress 

EuAT 
c=- 

C 
(26) 

where C was defined in the last section. If this stress 
exceeds the local strength Q, of the material, yielding 
or cracking results. Even if it does not cause the 
component to fail, it weakens it. Then a measure of 
the thermal shock resistance is given by 

AT u, 
-=-. 
C aE 

This is not quite the whole story. When the con- 
straint is internal, the thermal conductivity of the 
material becomes important. Instant cooling requires 
an infinite heat transfer coefficient, h, when the body 
is quenched. Water quenching gives a high h, and 
then the values of AT calculated from equation (27) 
give an approximate ranking of thermal shock resist- 
ance. But when heat transfer at the surface is poor 
and the thermal conductivity of the solid is high 
(thereby reducing thermal gradients) the thermal 
stress is less than that given by equation (26) by a 
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Fig. 14. Chart 10: The normalised tensile strength, a,/E. plotted against linear coefficient of expansion, a. 
The contours show a measure of the thermal shock resistance, AT. Corrections must be applied for 

constraint, and to allow for thermal conduction during quenching. 

factor A which, to an adequate approximation, is called the Biot modulus. Table 3 gives typical values 
given by of A, for each class, using a section size of IOmm. 

th ii. 
The equation defining the thermal shock resistance, 

A=- 
1 + th//l 

(28) AT, now becomes 

where z is a typical dimension of the sample in the BAT=? 
direction of heat flow; the quantity th/L is usually ZE 

(29) 

Table 3. Values of the factor A (Section f = IO mm) 

Conditions Foams Polymers Ceramics Metals 

Air flow, slow (h = IO W/m2 K) 0.75 0.5 3x10 2 3x10 3 
Black body radiation 500 to 0 C 
(/I = 40 W/m’ K) 0.93 0.6 0.12 1.3 x IO 2 

AIT flow, fast (h = IO' W/m’ K) 
Water quench, slow 
(h = IO’ W/m2 K) 
Water quench, fast 
(h = IO4 W/m’ K) 

I 0.75 0.25 3x10 2 

I 1 0.75 0.23 

I I I O.lLO.9 
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where B = C/A. The contours on the diagram are of B 

AT. The table shows that, for rapid quenching, A is 
unity for all materials except the high conductivity 
metals: then the thermal shock resistance is simply 
read from the contours, with appropriate correction 
for the constraint (the factor C). For slower quenches, 
AT is larger by the factor l/A, read from the table. 

4. CONCLUSIONS AND APPLICATIONS 

Most research on materials concerns itself, quite 
properly, with precision and detail. But it is occasion- 
ally helpful to stand back and view, as it were, the 
general lie of the land; to seek a framework into 
which the parts can be fitted; and when they do not 
fit, to examine the interesting exceptions. These 
charts are an attempt to do this for the mechanical 
and thermal properties of materials. There is nothing 
new in them except the mode of presentation, which 
summarises information in a compact, accessible 

way. The logarithmic scales are wide-wide enough 
to include materials as diverse as polymer foams and 
high performance ceramics-allowing a comparison 

between the properties of all classes of solid. And 
by choosing the axes in a sensible way, more infor- 

mation can be displayed: a chart of modulus E 

against density p reveals the longitudinal wave 
velocity (E/p)“*; a plot of fracture toughness K,, 

against modulus E shows the fracture surface energy 
G,,: a diagram of thermal conductivity 1 against 
diffusivity, a, also gives the volume specific heat PC,; 
expansion, TV, against normalised strength, cr,/E, gives 
thermal shock resistance AT. 

The most striking feature of the charts is the way 
in which members of a material class cluster together. 
Despite the wide range of modulus and density 
associated with metals (as an example), they occupy 
a field which is distinct from that of polymers, or that 
of ceramics, or that of composites. The same is true 
of strength, toughness, thermal conductivity and the 
rest: the fields sometimes overlap, but they always 
have a characteristic place within the whole picture. 
The position of the fields and their relationship can 
be understood in simple physical terms: the nature of 

the bonding, the packing density, the lattice resist- 
ance and the vibrational modes of the structure 
(themselves a function of bonding and packing), and 
so forth. It may seem odd that so little mention has 
been made of microstructure in determining proper- 
ties. But the charts clearly show that the first-order 
difference between the properties of materials has its 
origins in the mass of the atoms, the nature of the 
interatomic forces and the geometry of packing. 
Alloying, heat treatment and mechanical working all 
influence microstructure, and through this, proper- 
ties, giving the elongated balloons shown on many of 
the charts; but the magnitude of their effect is less, by 
factors of 10, than that of bonding and structure. 

The charts have other applications. One is the 
checking of data. Computers consume data; their 

output is no better than their input; garbage in (it 
is often said), garbage out. That creates a need for 
data ualition; ways of checking that the value assigned 
to a material property is reasonable, that it lies 
within an expected field of values. The charts define 
the limits of the fields. A value, if it lies within the 
field, is reasonable; if it lies outside it may not be 
wrong, but it is exceptional and should, perhaps, be 
questioned. 

Another concerns the nature of data. The charts 
(this is not meant to sound profound) are a section 

through a multi-dimensional property-space. Each 
material occupies a small volume in this space; classes 
of material occupy a somewhat larger volume. If data 
for a material (a new polymer, for instance) lie 
outside its characteristic volume, then the material is, 
in some sense, novel. The physical basis of the 
property deserves investigation and explanation. 

There is another facet to this: that of “the new 

material looking for an application”. Established 
materials have applications; they are known. The 
first-order approach to identifying applications for a 
new material is to plot its position on charts and 
examine its environment: is it lighter, or stiffer, or 
stronger than its neighbours? Does it have a better 
value of a design-limiting combination like cr:/E than 

they? Then it may compete in the applications they 
currently enjoy. 

Finally, the charts help in problems of materials 
selection. In the early stages of the design of a 
component or structure, all materials should be con- 
sidered; failure to do so may mean a missed oppor- 

tunity for innovation or improvement. The number 
of materials available to the engineer is enormous 
(estimates range from 50,000 to 80,000). But any 
design is limited by certain material properties-by 
stiffness E or strength uy for instance, or by combi- 
nations such as E’/*/p or Kf,/o,. These design-limit- 

ing properties are precisely those used as the axes of 
the charts, or the “guide lines” plotted on them. By 
following the procedures of Section 1, a subset of 
materials is isolated which best satisfies the primary 

demands made by the design; secondary constraints 
then narrow the choice to one or a few possibilities 
(examples in Refs [l] and [24]). 

A final word. Every effort has been made to include 
in the charts a truly representative range of materials; 
to find reliable data for them; and to draw the 
envelopes to enclose all reasonably common members 
of a class to which they belong (not just those 
specifically listed). I am aware that the charts must 
still be imperfect, and hope that anyone with better 
information will extend them. 
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