Numerical methods Roots finding

Ricardo Afonso Angélico

August 21, 2018

Ricardo Afonso Angélico

Numerical methods

August 21, 2018 1 / 33

э

- 1 Incremental search method
 - Bisection method
 - Stopping inequalities
- 3 Fixed point method
- 4 Newton Raphson method
- 5 Error analysis for iterative methods
- 6 Newton Raphson (single variable)
- 🕖 Newton Raphson (multivariate)

Incremental search method

Figure: Incremental search method.

The choice of the increment size can influence the results.

Ricardo Afonso Angélico

Bisection method

Bisection method is based on the Intermediate Value Theorem.

Intermediate Value Theorem

If f is continuous of a closed interval [a, b], and u is any number between f(a) and f(b) inclusive, there is at least one number $c \in [a, b]$ so that f(c) = u.

Figure: Intermediate value theorem representation.

See: Intermediate Value Theorem - Khan Academy

Ricardo Afonso Angélico

Numerical methods

Bisection method

To begin, let p be the middle point of the interval [a, b]:

$$p_1 = \frac{a+b}{2} \tag{1}$$

If $f(p_1) = 0$, $p = p_0$, and "That's all folks!" If $f(p_1) \neq 0$: If $sign(f(p_1)) = sign(f(a))$, $a = p_1$ If $sign(f(p_1)) = sign(f(b))$, $b = p_1$ Then reapply the process to the new interval [a, b].

Bracketing methods

Bracketing methods are based on two initial guesses that "bracket" the root. If f(x) is a real and continuous in the interval $[x_l, x_u]$ and

$$f(x_l)f(x_u) < 0 \tag{2}$$

then there is at least one real root between x_l and x_u

Ricardo Afonso Angélico

Bisection method

Figure: Representation of bisection method.

Ricardo Afonso Angélico

Numerical methods

э

(日) (同) (目) (日)

Stopping inequalities

Typical stopping inequalities:

$$|p_n - p_{n-1}| < \varepsilon \tag{3}$$

$$\frac{|p_n - p_{n-1}|}{|p_n|} < \varepsilon, \quad p_n \neq 0$$

$$|f(p_n)| < \varepsilon$$
(4)

Ricardo Afonso Angélico

- 31

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Fixed-point method

The number p is a fixed point for a given function g if g(p) = p.

Theorem

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has at least one fixed point on [a, b].

If, in addition, g'(x) exists on [a,b] and a positive constant k > 1 exists with |g'(x)| < k, then there is exactly one fixed point in [a,b].

Figure: Fixed point for a function.

Fixed-point method

Figure: Fixed point method representation.

→ ∃ →

< 🗗 🕨

Fixed-point method - Algorithm

- **INPUT** initial approximation p_0 ; tolerance *TOL*; maximum number of iterations N_0 .
- **OUTPUT** approximate solution *p* or message of failure.
- Step 1 Set i = 1.
- Step 2 While $i \leq N_0$ do Steps 3–6.
 - Step 3 Set $p = g(p_0)$. (Compute p_i .)
 - Step 4 If $|p p_0| < TOL$ then OUTPUT (p); (The procedure was successful.) STOP.
 - *Step 5* Set i = i + 1.
 - Step 6 Set $p_0 = p$. (Update p_0 .)
- Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (*The procedure was unsuccessful.*) STOP.

Figure: Fixed point algorithm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Newton Raphson method

Taylor polynomial for f(x) expanded about p_0 and evaluated at x = p

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi)$$
(6)

where $\xi \in [p_0, p]$. Taking a first order approximation:

$$0 \approx f(p_0) + (p - p_0)f'(p_0) \tag{7}$$

$$p \approx p_0 - \frac{f(p_0)}{f'(p_0)}$$
 (8)

For an iterative process, we have:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \quad n \ge 1$$
 (9)

э

Newton Raphson

Figure: Representation of Newton Raphson method.

D .	 c ,	• •	
RICOR	toneo /	\n ce	lico
I VIC ALL		- 1 I P C	

Image: A matrix and a matrix

э

Newton Raphson - Algorithm

- **INPUT** initial approximation p_0 ; tolerance *TOL*; maximum number of iterations N_0 .
- OUTPUT approximate solution p or message of failure.
- Step 1 Set i = 1.
- Step 2 While $i \leq N_0$ do Steps 3–6.
 - **Step 3** Set $p = p_0 f(p_0)/f'(p_0)$. (Compute p_i .)
 - Step 4 If $|p p_0| < TOL$ then OUTPUT (p); (The procedure was successful.) STOP.
 - *Step 5* Set i = i + 1.
 - Step 6 Set $p_0 = p$. (Update p_0 .)
- Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (*The procedure was unsuccessful.*) STOP.

Figure: Newton Raphson algorithm.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Secant method

To circumvent the problem of derivative evaluation at each approximation in Newton's method, the Secant method gives an alternative. By definition:

$$f'(p_{n-1}) = \lim \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$
(10)

Considering p_{n-2} is close to p_{n-1} , so:

$$f'(p_{n-1}) \approx \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$
(11)

Using the Newton formula with this new derivative approximation, we obtain:

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$
(12)

イロト 不得下 イヨト イヨト

Secant method

Figure: Secant method representation.

Ricardo Afonso Angélico

Numerical methods

August 21, 2018 15 / 33

3

イロト イポト イヨト イヨト

Secant method - Algorithm

- **INPUT** initial approximations p_0, p_1 ; tolerance *TOL*; maximum number of iterations N_0 .
- OUTPUT approximate solution p or message of failure.
- Step 1 Set i = 2; $q_0 = f(p_0)$; $q_1 = f(p_1)$. Step 2 While $i \le N_0$ do Steps 3–6. Step 3 Set $p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$. (Compute $p_{i\cdot}$) Step 4 If $|p - p_1| < TOL$ then OUTPUT (p); (The procedure was successful.) STOP. Step 5 Set i = i + 1. Step 6 Set $p_0 = p_1$; (Update p_0, q_0, p_1, q_1 .) $q_0 = q_1$; $p_1 = p$; $q_1 = f(p)$.
- Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

Figure: Secant method algorithm.

Ricardo Afonso Angélico

Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p, with $p_n \neq p$ for all n. If positive constants λ and α exists with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p_n|}{|p_n - p|^{\alpha}} = \lambda$$
(13)

then $\{p_n\}_{n=0}^{\infty}$ converges to p of order α , with asymptotic error constant λ .

Newton Raphson (single variable)

Taylor polynomial for f(x) expanded about p_0 and evaluated at x = p

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi)$$
(14)

where $\xi \in [p_0, p]$. Taking a first order approximation:

$$0 \approx f(p_0) + (p - p_0)f'(p_0)$$
(15)

$$p \approx p_0 - \frac{f(p_0)}{f'(p_0)}$$
 (16)

For an iterative process, we have:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \quad n \ge 1$$
(17)

Newton Raphson (single variable)

Figure: Representation of Newton Raphson method.

<u> </u>			
Ricard	oneo /	\nge	100
		- 1 I P C I	

< AP

э

The method described for 1D functions can be generalized for a system of non-linear equations:

$$f_1(\mathbf{x}) = 0$$
$$f_2(\mathbf{x}) = 0$$
$$\dots$$
$$f_N(\mathbf{x}) = 0$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix}^T \tag{18}$$

Defining a function vector:

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_N(\mathbf{x}) \end{bmatrix}$$
(19)

The system can be rewritten as:

$$f(\mathbf{x}) = 0 \tag{20}$$
Numerical methods August 21, 2018 20 / 33

Considering N = 2 (2D problem), the multidimensional equation can be geometrically interpreted as:

Figure: Visualization of the root finding problem in 2D.

Ricardo Afonso Angélico

A B A A B A

The Taylor expansion for each function f_i can be written as:

$$f_i(\mathbf{x} + \delta \mathbf{x}) = f_i(\mathbf{x}) + \sum_{j=1}^N \frac{\partial f_i(x_j)}{\partial x_j} + O(\delta \mathbf{x}^2) \approx f_i(\mathbf{x}) + \sum_{j=1}^N \frac{\partial f_i(x_j)}{\partial x_j} \delta \mathbf{x}$$
(21)

In the vector form, the above equation can be written as:

$$\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{f}(\mathbf{x}) + \mathbf{J}(\mathbf{x}) \,\delta \mathbf{x}$$
(22)

where $\mathbf{J}(\mathbf{x})$ is the Jacobian matrix, which is defined as:

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_N} \end{bmatrix}$$
(23)

Assuming $f(x + \delta x) = 0$, the roots are $x + \delta x$, where δx can be obtained from:

$$\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{f}(\mathbf{x}) + \mathbf{J}(\mathbf{x}) \,\delta \mathbf{x} \implies (24)$$

$$\delta \mathbf{x} = \mathbf{J}(\mathbf{x})^{-1}[\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})] = -\mathbf{J}(\mathbf{x})^{-1}\mathbf{f}(\mathbf{x})$$
(25)

And, from an starting point x:

$$\mathbf{x} + \delta \mathbf{x} = \mathbf{x} - \mathbf{J}(\mathbf{x})^{-1} \mathbf{f}(\mathbf{x})$$
(26)

For nonlinear equations, the result above is only an approximation:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \delta \mathbf{x}_k = \mathbf{x}_k - \mathbf{J}(\mathbf{x}_k)^{-1} \mathbf{f}(\mathbf{x}_k)$$
(27)

Example 1

Computes the roots of:

$$\begin{cases} x_1^2 - 2x_1 + x_2 + 7 = 0\\ 3x_1 - x_2 + 1 = 0 \end{cases}$$

Starting point: $\mathbf{x} = \begin{bmatrix} 1.00 & 1.00 \end{bmatrix}^T$

Ricardo Afonso Angélico

3

・ 伺 ト ・ ヨ ト ・ ヨ ト

(28)

Example 2

Determine the points of intersection between the circle $x^2 + y^2 = 3$ and the hyperbola xy = 1Starting point: x = 0.5; y = 1.5

Solution: $\pm (0.618, 1.618)$ and $\pm (1.618, 0.618)$

3

く得た くほた くほん

Example 3

Computes the roots of:

$$\begin{cases} 3x_1 - \cos(x_2x_3) - 3/2 = 0\\ 4x_1^2 - 625x_2^2 + 2x_3 - 1 = 0\\ 20x_3 + \exp(-x_1x_2) + 9 \end{cases}$$

Starting point: $\mathbf{x} = [1.00 \ 1.00 \ 1.00]^T$

Solution: $x = [0.833282 \quad 0.035335 \quad -0.498549]^T$

3

(日) (同) (日) (日) (日)

(29)

Exercise 1

The natural frequencies of a uniform cantilever beam are related to the roots β_i of the frequency equation $f(\beta) = \cosh \beta \cos \beta + 1 = 0$, where

$$\beta_i^4 = (2\pi f_i)^2 \frac{mL^3}{EI}$$

 $f_i = i$ th natural frequency (cps)

m = mass of the beam

$$L =$$
length of the beam

E =modulus of elasticity

I =moment of inertia of the cross section

Determine the lowest two frequencies of a steel beam 0.9 m. long, with a rectangular cross section 25 mm wide and 2.5 mm in. high. The mass density of steel is 7850 kg/m³ and E = 200 GPa.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Exercises Exercise 2

$\frac{\frac{L}{2}}{\text{Length} = s} = \frac{L}{0}$

$$\sigma_{\rm max} = \sigma_0 \cosh \beta$$

where

 $\beta = \frac{\gamma L}{2\sigma_0}$ $\sigma_0 = \text{tensile stress in the cable at } O$ $\gamma = \text{weight of the cable per unit volume}$ L = horizontal span of the cable

The length to span ratio of the cable is related to β by

$$\frac{s}{L} = \frac{1}{\beta} \sinh \beta$$

Find σ_{max} if $\gamma = 77 \times 10^3 \text{ N/m}^3$ (steel), L = 1000 m and s = 1100 m.

5 N 🛪 🖼 🕨

Exercise 3

Bernoulli's equation for fluid flow in an open channel with a small bump is

$$\frac{Q^2}{2gb^2h_0^2} + h_0 = \frac{Q^2}{2gb^2h^2} + h + H$$

where

 $Q = 1.2 \text{ m}^3/\text{s} = \text{volume rate of flow}$ $g = 9.81 \text{ m/s}^2 = \text{gravitational acceleration}$ b = 1.8 m = width of channel $h_0 = 0.6 \text{ m} = \text{upstream water level}$ H = 0.075 m = height of bumph = water level above the bump

Determine h.

Ricardo Afonso Angélico

Exercise 4

The figure shows the thermodynamic cycle of an engine. The efficiency of this engine for monoatomic gas is

$$\eta = \frac{\ln(T_2/T_1) - (1 - T_1/T_2)}{\ln(T_2/T_1) + (1 - T_1/T_2)/(\gamma - 1)}$$

where *T* is the absolute temperature and $\gamma = 5/3$. Find T_2/T_1 that results in 30% efficiency ($\eta = 0.3$).

э

(日) (周) (日) (日)

Exercise 5

■ The equations

 $\sin x + 3\cos x - 2 = 0$ $\cos x - \sin y + 0.2 = 0$

have a solution in the vicinity of the point (1, 1). Use the Newton–Raphson method to refine the solution.

э

イロト イポト イヨト イヨト

Exercise 6

A projectile is launched at *O* with the velocity *v* at the angle θ to the horizontal. The parametric equations of the trajectory are

$$x = (v\cos\theta)t$$
$$y = -\frac{1}{2}gt^{2} + (v\sin\theta)t$$

where *t* is the time measured from the instant of launch, and $g = 9.81 \text{ m/s}^2$ represents the gravitational acceleration. If the projectile is to hit the target at the 45° angle shown in the figure, determine v, θ and the time of flight.

Exercise 7

■ The equation of a circle is

$$(x-a)^2 + (y-b)^2 = R^2$$

where R is the radius and (a, b) are the coordinates of the center. If the coordinates of three points on the circle are

x	8.21	0.34	5.96
y	0.00	6.62	-1.12

determine R, a and b.

э

イロト イポト イヨト イヨト