REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

1. Espaço dos estados

- Representação da dinâmica de um sistema de ordem *n* usando *n* equações diferenciais de primeira ordem.
- Sistema é escrito em função de:
 - 1) Um vetor de dimensão $nx1 \Rightarrow$ chamado vetor de estados;
 - 2) Um vetor de dimensão $mx1 \Rightarrow$ chamado vetor de entradas;
 - 3) Um vetor de dimensão $px1 \Rightarrow$ chamado vetor de saídas.
- \triangleright Precisa converter a equação diferencial de ordem n para n equações diferenciais de 1^a ordem.

Exemplo: Sistema massa-mola-amortecedor:

Equação diferencial de 2ª ordem:

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = f(t)$$

Estados:

$$\begin{cases} x(t) & \text{(posição da massa)} \\ v(t) = \dot{x}(t) & \text{(velocidade da massa)} \end{cases}$$

Substituindo:

$$m\dot{v}(t) + bv(t) + kx(t) = f(t)$$

• Equações de estado:

$$\begin{cases} \dot{v}(t) = \frac{1}{m} \left[f(t) - bv(t) - kx(t) \right] \\ \dot{x}(t) = v(t) \end{cases}$$

- Definindo o vetor de estados $\Rightarrow \mathbf{x}(t) = \begin{bmatrix} x(t) \\ v(t) \end{bmatrix}$ (dimensão 2x1, n = 2).
- Definindo a entrada $\Rightarrow f(t)$ (no caso a entrada é um escalar e não um vetor, m = 1).

• Equações de estado na forma matricial:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{v}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \begin{bmatrix} x(t) \\ v(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} f(t)$$

• Definido uma saída para o sistema (valor medido por um sensor) $\Rightarrow x(t)$ (no caso a saída é um escalar e não um vetor, p = 1).

Equação da saída na forma matricial
$$\Rightarrow x(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ v(t) \end{bmatrix}$$

2. Forma geral do espaço dos estados

➤ Qualquer sistema dinâmico linear pode ser escrito na forma geral:

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) \rightarrow \text{equação dos estados}$$

$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t) \rightarrow \text{equação da saída}$$

onde

 $\mathbf{x}(t)$ - vetor de estados R^n (dimensão $n \times 1$);

 $\mathbf{u}(t)$ - vetor de entrada R^m (dimensão $m \times 1$);

 $\mathbf{y}(t)$ - vetor de saída R^p (dimensão pX1);

 $\mathbf{A}(t)$ - matriz dos estados ($n \times n$);

 $\mathbf{B}(t)$ - matriz de entrada ($n \times m$);

 $\mathbf{C}(t)$ - matriz de saída ou matriz dos sensores $(p \times n)$;

 $\mathbf{D}(t)$ - matriz de alimentação direta ($p \times m$).

- ➤ Os estados resumem os efeitos de entradas passadas nas saídas futuras ⇒ são memórias do sistema.
 - Estados estão associados com variáveis armazenadoras de energia no sistema.
 - No sistema massa-mola-amortecedor \Rightarrow $\begin{cases} \text{armazenamento de energia potencial} \to \text{posição}, \, x(t); \\ \text{armazenamento de energia cinética} \to \text{velocidade}, \, v(t). \end{cases}$
- ➤ Saídas são variáveis associadas com sensores ⇒ são variáveis medidas.
- Entradas são variáveis que alteram as condições de energia do sistema.

- A dinâmica de um sistema pode ser variante ou invariante no tempo:
 - Sistema linear invariante no tempo ⇒ matrizes A, B, C e D são constantes;
 - Sistema linear variante no tempo \Rightarrow matrizes $\mathbf{A}(t)$, $\mathbf{B}(t)$, $\mathbf{C}(t)$ e $\mathbf{D}(t)$ variam no tempo.
- Sistemas podem ser:
 - SISO \Rightarrow single (uma) entrada, single (uma) saída;
 - MIMO \Rightarrow múltiplas entradas, múltiplas saídas.
- ▶ Usualmente lidamos com Sistemas Lineares Invariantes no tempo (LTI) \Rightarrow relação entre saída (y) e entrada (u) não depende diretamento do tempo.

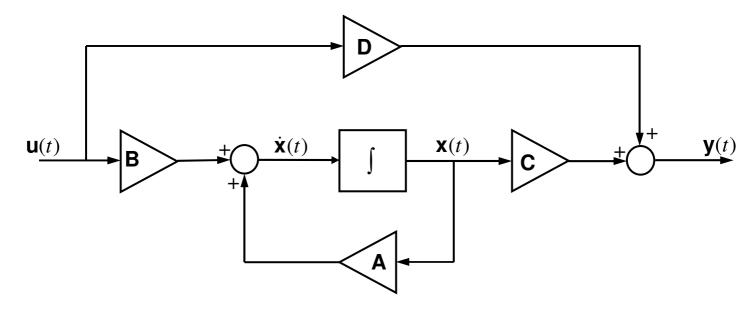
$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{cases}$$

- Nesse caso as matrizes **A**, **B**, **C** e **D** são constantes.
- Saídas futuras dependem somente do estado presente e entradas futuras.
- ➤ Não existe somente um conjunto de estados para um mesmo sistema ⇒ existem muitas possibilidades para o vetor de estados de um sistema.

3. Representação de sistemas por diagrama de blocos

➤ No domínio do tempo tem-se:

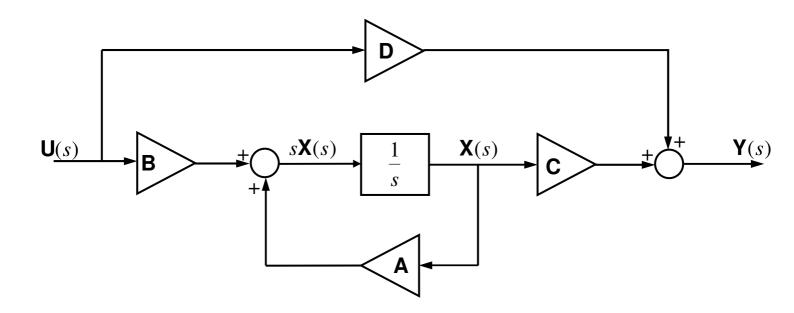
$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{cases}$$



➤ No dominio da Transformada de Laplace tem-se:

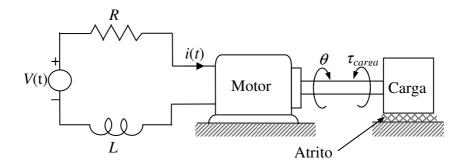
$$\dot{\mathbf{x}}(t) = \frac{d\mathbf{x}(t)}{dt} \xrightarrow{\text{Transformada de}} \mathcal{L}\{\dot{\mathbf{x}}(t)\} = s\mathbf{X}(s)$$

$$\begin{cases} s\mathbf{X}(s) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s) \\ \mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s) \end{cases}$$



4. Exercícios

 Dado um motor elétrico de corrente contínua controlado pela armadura. O circuito elétrico do motor é modelado com sendo uma fonte de tensão em serie com um resistor e um resistor indutor.

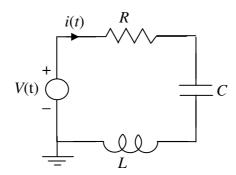


Assumindo que o eixo do motor é rígido e que existe atrito viscoso nos mancais do eixo, o modelo desse sistema é representado pelas seguintes equações diferenciais:

$$\begin{cases} J\ddot{\theta}(t) + b\dot{\theta}(t) = K_T i(t) - \tau_{c \arg a}(t) \\ L\frac{di(t)}{dt} + Ri(t) + \frac{\dot{\theta}(t)}{K_V} = V(t) \end{cases}$$

onde J é a inércia do rotor do motor e da carga fixa ao eixo do motor, b é a constante de atrito viscoso nos mancais, K_T é a constante de torque do motor, K_V é a constante de velocidade do motor. Nota-se que o termo K_T representa o torque aplicado pelo motor e o termo $\dot{\theta}/K_V$ representa a tensão induzida no circuito elétrico pelo movimento da bobina elétrica dentro de um campo magnético. Pede-se:

- a) Defina o vetor de estados, o vetor de entradas, o vetor de saídas e o vetor de perturbações do sistema.
- b) Coloque o sistema na forma do espaço dos estados.
- c) Represente o sistema na forma de diagrama de blocos.
- 2) Dado o circuito elétrico composto por uma fonte de tensão em série com um resistor, um capacitor e um indutor



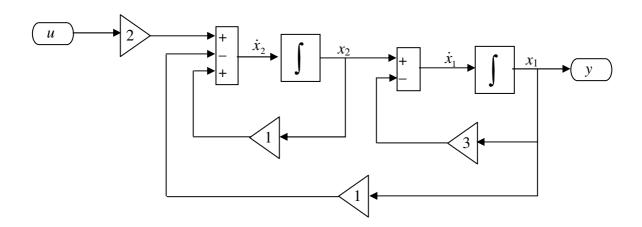
O modelo dinâmico desse circuito é representado pela seguinte equação diferencial-integral.

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\int i(t)dt = V(t)$$

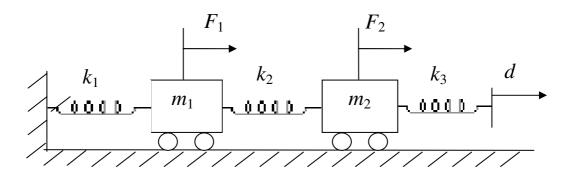
onde i é a corrente elétrica, V é a tensão imposta pela fonte, L é a indutância, R é a resistência e C é a capacitância. Pede-se:

- a) Defina o vetor de estados, o vetor de entradas, o vetor de saídas e o vetor de perturbações do sistema.
- b) Coloque o sistema na forma do espaço dos estados.
- c) Represente o sistema na forma de diagrama de blocos.

3) Considere o diagrama de blocos abaixo que representa a dinâmica linearizada de um sistema dinâmico. Sabendo que a saída do sistema é o estado x_1 , obtenha a representação do sistema no espaço dos estados.



4) Dado o sistema da figura abaixo:



O ambiente age sobre as massas com uma força de atrito que pode ser modelada por $F_j(t) = b_j v_j(t)$, j = 1, 2. Assim, as equações diferenciais que representam a dinâmica do sistema são as seguintes:

$$m_1\ddot{x}_1(t) + b_1\dot{x}_1(t) + k_1x_1(t) + k_2(x_1(t) - x_2(t)) = F_1(t)$$

$$m_2\ddot{x}_2(t) + b_2\dot{x}_2(t) + k_3(x_2(t) - d(t)) + k_2(x_2(t) - x_1(t)) = F_2(t)$$

As massas 1 e 2 são iguais a 2kg, as constantes das molas 1 e 3 são iguais a 50N/m, a constante da mola 2 é igual a 75N/m. O coeficiente de atrito viscoso entre as massas e o chão é igual a 5N/m/s.

As forças $F_1(t)$ e $F_2(t)$ podem ser controladas por um agente externo conhecido, portanto, são consideradas como entradas do sistema. A posição da ponta direita da mola 3 tem um deslocamento d(t) desconhecido e sobre o qual não se tem controle, portanto, é considerada como sendo uma perturbação. As posições das massas 1 e 2, $x_1(t)$ e $x_2(t)$ respectivamente são medidas, portanto, são consideradas as saídas do sistema.

Pede-se:

- a) Defina o vetor de estados, o vetor de entradas, o vetor de saídas e o vetor de perturbações do sistema.
- b) Coloque o sistema na forma do espaço dos estados.
- c) Desenvolva um modelo do sistema usando o Simulink.
- d) Simule o transitório gerado no sistema para uma condição inicial na qual as massas 1 e 2 estão deslocadas da posição de equilíbrio de −0,1m e 0,1m respectivamente.
- e) Simule o transitório gerado no sistema para o vetor de entrada variando na forma de degrau de forma que o valor inicial das forças antes do degrau é zero e após o degrau são $f_1 = 100$ N e $f_2 = -150$ N.
- Principais comandos do Matlab a serem utilizados:
 - ss;
 - simulink;
 - initial;
 - lsim.