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Review
Plants have evolved a plethora of secondary chemicals to
protect themselves against herbivores and pathogens,
some of which have been used historically for pest man-
agement. The extraction methods used by industry ren-
der many phytochemicals ineffective as insecticides
despite their bioactivity in the natural context. In this
review, we examine how plants use their secondary che-
micals in nature and compare this with how they are used
as insecticides to understand why the efficacy of botanical
insecticides can be so variable. If the commercial produc-
tion of botanical insecticides is to become a viable pest
management option, factors such as production cost,
resource availability, and extraction and formulation
techniques need be considered alongside innovative ap-
plication technologies to ensure consistent efficacy of
botanical insecticides.

Phytochemicals
Although plants are sessile organisms and cannot escape
danger in the way that animals do, they are not completely
defenseless. Plants have different forms of defense, rang-
ing from structural traits [1] and barriers [2] to physiologi-
cal [3] and chemical defensive mechanisms [4]. For
decades, researchers have been studying the defensive
mechanisms that plants use against different enemies,
the variety of defensive responses, and the evolution and
ecological impact of those responses [5–9]. Although the
evolutionary raison d’être of those traits is to protect plants
from herbivores and pathogens in nature, humans have
also found many uses for them. Plant secondary chemicals
are of particular interest because they can be used as
medicines [10], food- and beverage-flavoring agents, fra-
grances, textile dyes, hygiene products [11], and pest and
disease management tools [12]. Plants produce a wide
spectrum of chemicals in various tissues above and below
ground that are used not only to defend themselves against
biotic or abiotic stressors [13,14], but also to communicate
with other plants [15] and organisms [16] (Box 1).
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In this review, we focus on botanical insecticides that
are inspired by plant–insect chemical interactions. We
briefly look at the phytochemicals that have been used
for pest management and compare these with conventional
(synthetic) pesticides and examine the different ways that
plants use their secondary chemicals in nature in contrast
to how we use them for pest management. We also discuss
the practical challenges of producing commercial botanical
insecticides and examine certain assumptions behind com-
mercial botanical insecticides that are available on the
market.

Botanical insecticides
All living organisms share certain chemicals and biochem-
ical reactions that constitute their basic metabolism: for
example, nucleic acids, proteins, and particular carbohy-
drates. In addition to the substances that participate in
this primary metabolism, plants have also evolved diverse
secondary metabolic pathways that produce a plethora of
novel substances. Most secondary metabolites are pro-
duced from universally present precursors and, therefore,
they are often classified based on their biosynthetic path-
ways [17]. Using a simplified classification, they can be
classified as nitrogen-containing compounds, phenolics,
polyacetates, and terpenoids (Box 1).

Pesticidal compounds exist within almost all classes of
secondary metabolite. For example, the alkaloids nicotine
[which is found in the nightshade (Solanaceae) family of
plants] and strychnine (which is found in the seeds of
Strychnos spp.) have been historically used as pesticides
[18]. However, the only new botanical pesticides that have
come on the North American market over the past 20 years
are those based on the terpenoid azadirachtin [a limonoid
found in seeds of the Indian neem tree (Azadirachta indica;
Meliaceae)], which has been used traditionally to control
pests and diseases [19], and those based on plant essential
oils [20], which are used as contact toxicants, fumigants,
attractants, and repellents to control agricultural pests (i.e.,
two-spotted spider mite, green peach aphid, and greenhouse
whitefly), urban pests (i.e., housefly, bedbug, cockroaches,
and ants), medical pests (i.e., mosquitoes, ticks, and lice) and
veterinary pests (i.e., fleas and horseflies).

Production of botanical insecticides versus synthetic

pesticides

Botanical insecticides are generally complex mixtures of
several, often closely related secondary metabolites that
may or may not have an important role in the toxicity of the
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Box 1. Major classes of secondary metabolite used in commercial botanical pest management products

Plants have evolved diverse groups of chemicals that act as major

barriers to herbivory. Some chemicals are constitutive [39], meaning

that they are always present, whereas others are induced after attack

[40]. Many compounds directly affect the herbivore, whereas others

attract organisms from other trophic levels [44]. These chemicals can

be found in, and are emitted from, all plant tissues above and below

ground: toxic terpenes and volatile infochemicals are emitted from

the foliage [73,74]; flowers have behavior-modifying floral scents [75];

phytotoxic root exudates are exuded from roots [76,77]; and toxic

latex is exuded from the stem [78].

Plants have the capacity to convey certain information

about herbivores to their natural enemies via the emission of

specific chemical signals [45,47,79]. They can even respond

chemically to herbivore oviposition before feeding damage occurs

[80,81].

The most important botanical pesticides on the market in

commercial terms are pyrethrum, neem, and essential oil-based

products (Figure I). Essential oil-based products are the most

diverse among the three different types. They are complex

mixtures of low-molecular-weight, highly volatile secondary

metabolites. Owing to their versatile nature, they have been used

in variety of products, from contact toxicants to fumigants and

even in behavior-modifier products, such as attractants and

repellents.
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Figure I. Examples of botanical pest management products based on major classes of plant compound.
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mixture. They can exhibit internal interactions in the form
of synergy or antagonism, which can affect the overall
toxicity of the mixture [21]. By contrast, synthetic pesti-
cides are generally based on a single active ingredient
(Table 1).

The most important difference between the production
of botanical insecticides and the manufacture of synthetic
pesticides is the difficulties associated with standardizing
the active ingredients found in botanical pesticides: there
can be great variability in the quality and composition of
these toxic plant extracts. The source of this variability
might be natural [22–25] or might occur as a result of
using different harvest or extraction methods [26,27]. The
initial biomass resource is generally outsourced and min-
imally monitored, in contrast to quality-control protocols
that exist for synthetic pesticides. The extracts are usu-
ally specified based on the level of one or two marker
compounds (putatively the active principles) even though
the presence and level of other constituents in the mix-
ture can significantly influence the overall toxicity and
efficacy of the extract [21]. As a result of limited chemical
standardization, the efficacy of botanical products may
not be consistent [28]. However, synthetic pesticides do
not have these problems owing to their simpler composi-
tional structure compared with that of botanical insecti-
cides, and the degree of control and standards relating to
their manufacture.

Scalability limitation can also be an issue for manufac-
turers of botanical insecticides and depends on natural
resource availability. Formulations may have to be changed
30
to compensate for scarce and/or expensive ingredients that
are not readily available to maintain the competitiveness of
the product. Thus, the availability of the ingredients in the
market dictates the scalability of botanical products. This is
not the case for synthetic pesticides.

Botanical extracts and essential oils often comprise
lipophilic and highly volatile constituents and are known
to be susceptible to conversion and degradation reactions,
such as oxidative and polymerization processes, which can
result in loss of quality and of certain properties [29]. The
stability of these substances is affected when exposed to
elements such as air, light, and elevated temperatures [30].
For this reason, the residual effects of botanical insecti-
cides can be limited and, in some cases, lacking entirely.

Despite these limitations, the use of botanical insecti-
cides in California between 2006 and 2011 grew by almost
50% (http://www.cdpr.ca.gov/docs/pur/pur06rep/chmrpt06.
pdf and http://www.cdpr.ca.gov/docs/pur/pur11rep/chmrpt
11.pdf), in part because the public perceives natural pro-
ducts to be safer than synthetic chemicals, despite evidence
to the contrary [31]. To put this in context, botanical
insecticide use represents only 5.2% of biopesticides, and
only 0.04% of all pesticide use in California [32]. Biopes-
ticides represent approximately 2% of the US$60 billion
global pesticide market (2012 estimate), but the segment is
dominated by microbial insecticides led by products based
on Bacillus thuringiensis [33]. The biopesticide segment is
currently growing at 16% per year, compared with conven-
tional agrochemicals that are growing at a rate of 5.5% per
year [34].

http://www.cdpr.ca.gov/docs/pur/pur06rep/chmrpt06.pdf
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Table 1. Commercial botanical pesticides versus conventional synthetic pesticides

Differentiators Botanical pesticides Synthetic pesticides Refs

Active ingredients Mixture of several secondary metabolites with various

modes of actions. Concentration of active ingredients in

the final product must be at certain level (usually higher

than synthetic pesticides) to be effective

Usually one or two active ingredients with specific mode

of action, for example neurotoxins. Usually small

amount of active ingredient is needed in the final

product for effective control

[21,82]

Manufacturing Simple extraction methods and blending; enzymatic

alterations of some secondary products by enzymes

such as peroxidases and polyphenol oxidase may occur

during extraction; materials are usually outsourced;

various formulations

Multistep synthesis of active ingredients; various

formulations; in-house production

[83,84]

Scalability Limited, depending on availability of biomass; limited

chemical standardization

Scalable for mass production; rigorous standards in

place

Shelf life Limited, can breakdown and/or change over time Relatively stable and/or long shelf life [30]

Production cost Variable, depending on biomass availability and/or

market price

Generally lower than commercial botanical pesticides,

especially off-patent

Application Limited applications in urban, medical, stored products,

forestry, and large-scale agriculture

Various applications in almost all pest management

sectors

[28]

Regulatory hurdles Exemptions in some jurisdictions, certain products still

require full registration

Require full registration

Social hurdles Generally considered safe Generally considered harmful

Marketing channels Mostly retail and limited agriculture Retail and large-scale agriculture, aviation, and military
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Regulatory exemptions such as that provided by List
25(b) of the Federal Insecticide, Fungicide, and Rodenti-
cide Act (FIFRA) of the US Environmental Protection
Agency (EPA), which allows certain essential oils and inert
materials to be used as pesticide active ingredients without
regulatory review, has facilitated the commercialization of
some essential oil-based pesticides in the USA over the
past decade. Many of the essential oils and their products
are included in the Generally Recognized as Safe (GRAS)
list, which have been approved by the US Food and Drug
Administration (FDA) and the US Environmental Protec-
tion Agency (EPA) for food and beverage consumption.
However, to determine whether we are benefiting from
the full potential of these natural substances, we believe
that we need to look at their source and see how they are
used in their natural context.

Secondary metabolites: use in pesticides versus use by
plants
Millions of years before humans became the dominant
species on the planet, plants started to evolve sophisticated
defensive mechanisms. The diversification of flowering
plants during the Cretaceous period (circa 145 million–
66 million years ago) is associated with a sudden burst of
speciation and adaptive radiation of insects that acted as a
major selective force in plant evolution, and led to selection
of plants that had defensive adaptations [35]. Plant–insect
coevolution has been the subject of several studies
[1,5,6,36–38] and several defensive traits have been iden-
tified that plants coevolved as a result of interacting with
coevolving insect herbivores [2,4]. For the purpose of this
review, we only explore traits and features that plants use
specifically for chemical defense (Figure 1).

Chemical defenses in plants can be constitutive, mean-
ing that the toxic chemicals are always present [39], or
specifically induced after herbivore attack [40]. Some
plants have evolved specific ways of storing toxic chemicals
to protect themselves from their harmful effects by follow-
ing two different strategies. Plants either (i) store less-toxic
precursors, which are transformed into active toxins only
when needed [for example, dhurrin, a cyanogenic glyco-
side, in sorghum (Sorghum bicolor) can produce hydrogen
cyanide upon herbivore damage as a result of enzymatic
degradation] or, (ii) store the toxic chemicals in specific
protected cell compartments, such as vacuoles to prevent
self-toxicity [for example, in white melilot (Melilotus alba),
the tonoplast and the plasmalemma separate glucosino-
lates from enzymes that can produce toxic mustard oil]
[41]. Plants have also evolved special anatomical features
to release toxic chemicals. For example, some plants have
evolved glandular trichomes that contain highly special-
ized secretory cells that synthesize and accumulate a
variety of secondary metabolites. The glandular trichomes
of some plants can continuously exude secretions, for
example, capitate trichomes, such as those of tobacco
(Nicotiana tabacum.), whereas others are touch sensitive
and release the toxic materials, when ruptured, to trap and
kill small arthropods, for example, peltate trichomes of the
Lamiaceae (mint family) [42,43].

In the case of induced chemical responses, plants exhibit
a strong degree of specification and control. Plants can
respond differentially to different types of herbivore [44]
and through those responses, change the behavior of pred-
atory and parasitic arthropods that use those chemicals as
cues to find their prey [45]. Plants can also use their
volatile chemicals to signal pest density, location of pests
in the canopy, and the duration of damage [46–48]. Fur-
thermore, plants can control the composition and emission
rates of their volatile chemicals [49–51].

Destructive extraction of these chemicals from plant
tissues negates most of these traits. Simply put, we render
millions of years of plant evolution, chemical specification,
compartmentalization, and structural development use-
less by crudely combining all the extractable phytochem-
icals together. To take better advantage of the attributes of
these secondary metabolites in the production of bio-in-
spired botanical insecticides, we must first closely examine
the underlying assumptions that are made when develop-
ing these products and then address the practical chal-
lenges and limitations.
31
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Figure 1. Factors affecting the elicitation of different secondary metabolites in plants. Plants have evolved specific traits that enable them to control and use their chemical

arsenal robustly. They have perfected these traits over millions of years of evolution. However, most of these traits are destroyed by crude extraction techniques.
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Practical challenges and opportunities
Developing standards, addressing chemical variation,

blending and fortification: what is natural?

Botanical extracts and plant essential oils comprise sever-
al potentially bioactive constituents. Rosemary (Rosmar-
inus officinalis) oil for instance, comprises more than 50
different constituents, of which approximately ten are
considered major compounds that determine specific char-
acteristics of the oil. In addition to these major compounds,
minute amounts of other compounds may also be present in
the mixture and these can have an active role in the
bioactivity of the total mixture [21]. The composition of
plant essential oils is influenced by, for example, season,
geography, harvest time, species chemotype, and extrac-
tion methods [22–27]. Plants can also actively change the
composition of their volatile organic compounds in re-
sponse to minute changes in their microclimate [49]. Most
botanical insecticide manufacturers outsource their essen-
tial oils and usually screen for one or two marker com-
pounds to determine the quality. To compensate for
variability in the composition of essential oils and to create
a uniform mixture with a known level of key compounds,
essential oil traders and botanical pesticides manufac-
turers resort to blending essential oils of different origin
to obtain the desired mixture. A greater understanding of
the role of each constituent in the overall bioactivity of the
mixture could enable manufacturers to create more effec-
tive blends and mixtures with relatively consistent efficacy
[52].

It is also possible to fortify essential oils and botanical
extracts with certain compounds that naturally occur in
these mixtures to maintain a desired overall composition.
However, can fortified mixtures be considered natural?
This might be a concern for consumers that perceive
‘natural products’ to be ‘pure, unadulterated substances’
even though large-scale essential oil and botanical product
32
traders significantly process these products by, for exam-
ple, blending and filtration. This issue might also be a
concern for regulatory agencies. At this point, there is no
official definition or criteria as to what constitutes a natu-
ral essential oil despite the variability in their composition.
By creating standard criteria for botanical product compo-
sition, extraction methods, blending, or fortification, it
might be possible to achieve greater uniformity in pestici-
dal efficacy.

Stability and formulation methods

Compared with synthetic pesticides, botanical insecticides
are relatively unstable and breakdown significantly faster
when exposed to the elements, such as light, temperature,
and air [30]. Constituents of botanical extracts originate
from different biosynthetic pathways. Aromatic phenylpro-
panoids are formed via the shikimic acid pathway resulting
in phenylalanine, whereas terpenoids are derived from the
C5 building blocks isopentenyl diphosphate (IPP) and its
isomer dimethylallyl diphosphate (DMAPP) [53–55]. Once
plant chemicals have been removed from their protective
compartments as a result of destructive extraction meth-
ods, their constituents are prone to oxidative damage,
chemical transformations, or polymerization reactions.
Furthermore, as plant extracts age, their quality declines
further. Over time, they might lose some of their attri-
butes, such as odor, flavor, color, and consistency [56,57].
The compositional diversity of the botanical extracts and
the instability of their constituents can make botanical
insecticides unsuitable for applications where residual
effects over long periods of time are desirable.

To overcome the instability of botanical extracts and
essential oils when used as pesticides, several formulation
techniques and methods have been developed and deployed
in recent years. Microencapsulation, for example, is a meth-
od that is used to protect sensitive materials that can easily
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suffer degradation [58]. Encapsulation techniques can be
divided into three classes: (i) chemical processes, such as
molecular inclusion or interfacial polymerization [59]; (ii)
physicochemical techniques, such as coacervation and lipo-
some encapsulation [60]; and (iii) physical processes, such as
spray drying, spray chilling or cooling, co-crystallization,
extrusion, or fluidized bed coating [61,62]. Microencapsula-
tion techniques are generally used to prepare pesticide
nanoemulsions that provide some level of controlled release
of the botanical active ingredient [63].

These microencapsulation techniques generally slow
down the release or decay of the entire mixture that is
obtained by the destructive extraction of plant tissues;
however, no specific attention is paid to the behavior of
individual constituents of the mixture. By contrast, plants
rely on specific structural features, cellular compartments,
and chemical pathways to control proactively the produc-
tion, storage, and release of individual compounds within
their defensive chemical arsenal [50,51,54,55]. Novel tech-
nologies that consider the behavior and control level of
individual constituents of botanical insecticides are paving
the way for a new generation of botanical insecticides that
are applied in a manner that is closer to the natural
defense methods used by plants against herbivores [64].

Botanical insecticides: stand-alone solutions or

complementary supplements?

The defensive arsenal of plants extends beyond chemical
barriers [2,3,5]. Phytochemicals often work in harmony
with other means of defense to protect plants from herbi-
vores. However, does maximizing the efficacy of botanical
insecticides by producing more potent versions of phyto-
chemical mixtures via blending and fortification, despite
the higher cost, provide a better option than integrating
botanical products with other methods of pest manage-
ment? Botanical insecticides have been successfully used
in combination or rotation with synthetic pesticides [20]
and biological control agents [65,66]. Owing to their insta-
bility and lack of residual toxicity, botanical pesticides can
be easily incorporated into integrated pest management
programs along with biological control agents. A closer look
at the role of phytochemicals in plant–insect interactions
across different trophic layers could inspire further devel-
opment of effective integrated solutions. Considering the
relatively higher cost of botanical insecticides and their
scalability limitations, the integrated use of botanical
insecticides with other control measures could be a more
economically viable option both for consumers and pest
management solution providers.

Concluding remarks and outlook
Most botanical insecticides are based on toxic chemicals
that plants generate as part of their constitutive defensive
arsenal. Many phytochemicals are induced by herbivore
attack on demand when needed; however, our strategies
for using commercial pesticides do not emulate this partic-
ular type of defensive behavior.

We have identified three important areas for future
research to improve the efficacy of botanical insecticides.
The first is improved extraction methods with specific
attention to preserving the integrity of phytochemical
mixtures. Sophisticated extraction methods based on phys-
ical [67], biological [68], and chemical [69] techniques allow
greater control over the composition of plant extracts and
provide opportunities for selective extraction of specific
bioactive compounds [70]. However, because of their com-
plexity and cost, these methods have not yet been adopted
for the mass production of plant extracts by most botanical
product producers. For example, traditional steam distil-
lation is still a preferred method for obtaining essential oils
in many countries that mass-produce essential oils [12].
Further research is needed to develop advanced extraction
methods that are simple and economically viable yet pro-
vide adequate levels of control of the composition of botan-
ical extracts.

The second area relates to novel formulation methods
that mimic the chemical compartmentalization and storage
capacity of plants. Compartmentalization of drug substrates
to prevent unwanted reactions is a common practice in the
development of pharmaceuticals [71]. The compartments
can be formed in various sizes from a visible to a nano-scale
[63,72]. The same techniques that have been successfully
used in pharmaceuticals can be used for enhancing pesticide
formulations. The main challenge for incorporating these
techniques for industrial botanical insecticide production is
again, cost and complexity. Although the effectiveness and
innovative aspects of a product are well regarded in certain
societies, cost and economic viability are still the primary
factors that determine the commercial success of a product;
therefore, more research is needed to find economical solu-
tions and novel formulation methods that address the
compartmentalization issue yet maintain commercial com-
petitiveness of botanical insecticides.

The third area is the development of advanced technol-
ogies and delivery methods that provide qualitative and
quantitative release control at the level of individual con-
stituents. In recent years, micro- and nanoencapsulation
techniques have been investigated as means of providing
controlled release of botanical insecticides [58–62]. These
technologies can extend the efficacy of botanical insecti-
cides over longer periods of time. Despite these formulation
advances, the controlled release remained at the whole
formula mixture level without addressing differences in
volatilization and biological characteristics of individual
constituents of botanical materials used in production of
botanical insecticides. A better understanding of the be-
havior and bioactivity of individual components of botani-
cal insecticides coupled with more advanced methods of
compartmentalization and formulation will allow greater
degrees of control over the availability and activity of
individual components of complex botanical mixtures
and, consequently, should enhance the efficacy of botanical
insecticides.
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