Princípios Físicos da Detecção de Radiação e Partículas

Hugo Natal da Luz

Técnicas Experimentais para Física de Partículas

6 de Agosto de 2018

Resumo

- 1 Introdução
- 2 Seção de Choque
- 3 Interacção de fotões
 - Efeito fotoeléctrico
 - Efeito de Compton
 - Produção de pares
- 4 Partículas carregadas
 - Fórmula de Bethe-Bloch
 - Identificação de partículas
 - Flutuações dem dE/dx (distribuição de Landau)
 - Alcance de partículas carregadas
 - Curva de Bragg
 - Electrões um caso especial
 - Bremsstrahlung
 - Espalhamento de Coulomb múltiplo (multiple Coulomb scattering)
 - Radiação de Čerenkov
 - Radiação de Transição
- 5 Neutrões

Introdução Secão de

Choque

Fotoeléctrico

Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau

Alcance Bragg

Electrões Bremsstrahlung

Multiplo Čerenkov

Cerenkov Transição Neutrões

Princípios da Detecção de Partículas

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo

Bethe-Block

Čerenkov Transição Neutrões

3/40

Precisamos de detectar partículas para:

- Entender as suas propriedades
- Estudar partículas que não existem às energias normais
- Tirar vantagem das suas propriedades em aplicações.

Para detectar partículas, elas têm que:

- Interagir com o material do detector
- Transferir a sua energia de um modo que se possa identificar.

Para isso temos que explorar propriedades já conhecidas:

- Carga eléctrica (quantizada)
- Tipo de interacção a que cada partícula é sujeita (forte, fraca, electromagnética)

Secão de Choque

Fotões Fotoeléctrico Compton

P. pares

Carregadas Bethe-Block

DID

Landau

Alcance Bragg

Flectrões

Multiplo Čerenkov

Transição

Neutrões


Bremsstrahlung

Interacções de partículas com a matéria

Para uma partícula ser detectada, ela tem que interagir com o material do detector

Partículas podem interagir com:

- átomos ou moléculas
- electrões
- núcleo

Partículas

carregadas Ionização, Bremstrahlung, Čerenkov. ...

Hadrões Interaccões nucleares

Compton, produção de pares

Neutrinos Interacção fraca

Exemplos

Fotões Efeito fotoeléctrico e de

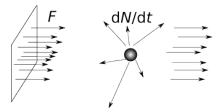
Curto alcance

- interacção forte
- interacção fraca

Longo alcance

Interacção electromagnética:

- ionização
- processos radiativos
- produção de pares



Conceito: Seção de Choque

Seção de choque Área efectiva de uma colisão/interacção.

Reflecte a probabilidade de uma interacção.

Feixe paralelo uniforme, incidindo em um átomo.

$$\sigma(E) = \frac{1}{F} \frac{dN}{dt} = \frac{\dot{N}}{F} \qquad (fm^2)$$

F fluxo: $N_0/(cm^2 s)$, \dot{N} partículas que interagiram por unidade de tempo, E Energia

Atenção Este exemplo só funciona com:

- uma partícula no alvo
- feixe ocupando área muito maior do que a partícula
- lacktriangle Se for uma bola de boliche bombardeada por bolas de gude: σ é a área da seção recta da bola de boliche
- \blacksquare Se for um asteroide passando perto da Terra: σ é maior que a área da seção recta da Terra!

Introdução

Choque

Fotões

Fotoeléctrico Compton

P. pares

Carregadas

Bethe-Bloch

PID Landau

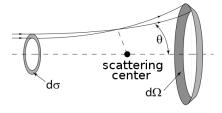
Alcance Bragg

Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões



Conceito: Seção de Choque

Seção de choque diferencial Para medir a seção de choque total $\sigma(E)$, seria necessário um detector em 4π .

Normalmente estamos interessados em apenas uma fracção do ângulo sólido d Ω correspondente a partículas que passaram no anel de área d σ .

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E,\Omega) = \frac{1}{F} \frac{\mathrm{d}\dot{N}}{\mathrm{d}\Omega}$$

Seção de choque total:

$$\sigma(E) = \int \mathrm{d}\Omega \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch PID

Landau

Alcance

Bragg

Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

Conceito: Seção de Choque

Seção de choque diferencial Para medir a seção de choque total $\sigma(E)$, seria necessário um detector em 4π .

> Normalmente estamos interessados em apenas uma fracção do ângulo sólido d Ω correspondente a partículas que passaram no anel de área d σ .

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E,\Omega) = \frac{1}{F} \frac{\mathrm{d}\dot{N}}{\mathrm{d}\Omega}$$

Seção de choque total:

$$\sigma(E) = \int \mathrm{d}\Omega \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

Introdução

Fotões Fotoeléctrico

Compton P. pares

Carregadas

Bethe-Block PID Landau Alcance Bragg Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

6/40

Alvos têm sempre mais do que um átomo

$$n = AN_{\rho}\Delta x = AN_{a}$$
, com $N_{a} = N_{\rho}\Delta x$

n átomos no alvo, A área exposta ao feixe, N_o/N_a átomos por unidade de volume/área, Δx espessura do alvo

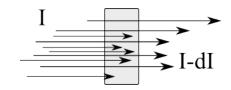
Partículas espalhadas para d Ω :

$$\dot{N}(E,\Omega) = Fn \frac{d\sigma}{d\Omega} = FAN_a \frac{d\sigma}{d\Omega}$$

Número total de interacções:

$$\dot{N}_{\rm tot}(E) = FAN_{\rm a}\sigma$$

Probabilidade de interacção:


$$p_{\text{int}} = \frac{\dot{N}_{\text{tot}}(E)}{N_{\text{incid}}} = \frac{\dot{N}_{\text{tot}}(E)}{FA} = N_{\text{a}}\sigma$$

Interacção de fotões com a matéria

Introdução

O fotão pode desaparecer do feixe com a primeira interacção!

Fotoeléctrico

Secão de Choque

Compton P. pares

Carregadas Bethe-Bloch PID

Landau Alcance

Bragg Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

- Efeito fotoeléctrico
- Efeito de Compton
- Produção de pares

Interacção de fotões com a matéria

Introdução

Seção de Choque

Fotões

Fotoeléctrico

Compton P. pares

Part.

Carregadas

Bethe-Bloch

PID

Landau Alcance

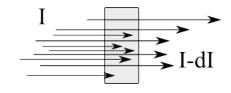
Bragg

Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

7/40


O fotão pode desaparecer do feixe com a primeira interacção!

$$\frac{dI}{dx} = -\mu I$$

 $\mu = N_{\rho}\sigma$ coeficiente de absorção

Interacções possíveis

- Efeito fotoeléctrico
- Efeito de Compton
- Produção de pares

Seção de Choque

Fotões

Fotoeléctrico

Compton P. pares

Part.

Carregadas Rethe-Bloch

PID Landau

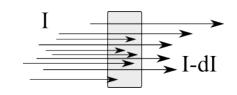
Alcance Bragg

Electrões Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

7/40


O fotão pode desaparecer do feixe com a primeira interacção!

$$\frac{\mathrm{d}I}{\mathrm{d}x} = -\mu I$$

 $\mu = N_{\rho}\sigma$ coeficiente de absorção

Interacções possíveis

- Efeito fotoeléctrico
- Efeito de Compton
- Produção de pares

Lei de Beer-Lambert

$$I(x) = I_0 e^{-\mu x}$$

$$\lambda = \frac{1}{\mu} = \frac{1}{N_{
ho}\sigma}$$
 caminho livre médio

Interacção de fotões com a matéria

Introdução

Seção de Choque

Fotoeléctrico

Compton P. pares

Part.

Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição Neutrões

8/40

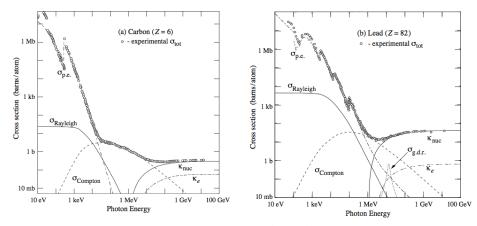


Figure 27.14: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes:

 $\sigma_{\rm p.e.}=$ Atomic photoelectric effect (electron ejection, photon absorption)

 $\sigma_{\text{Rayleigh}} = \text{Rayleigh}$ (coherent) scattering-atom neither ionized nor excited $\sigma_{\text{Compton}} = \text{Incoherent}$ scattering (Compton scattering off an electron)

 $\kappa_{\text{nuc}} = \text{Pair production, nuclear field}$

 κ_e = Pair production, electron field

 $\sigma_{\rm g.d.r.}$ = Photonuclear interactions, most notably the Giant Dipole Resonance [48]. In these interactions, the target nucleus is broken up.

Efeito fotoeléctrico

Introdução

Secão de Choque

Fotões Fotoeléctrico

Compton

P. pares

Carregadas

Bethe-Bloch PID

Landau

Alcance

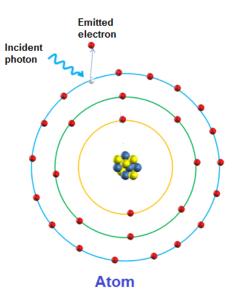
Bragg

Electrões

Bremsstrahlung Multiplo

Čerenkov

Transição


Neutrões 9/40

$$E_{\rm e}={\rm h} \nu-E_{\rm b}$$

 $h\nu$ Energia do fotão, E_b energia de ligação (dependente de Z e da camada electrónica)

Efeito fotoeléctrico

Introdução

Seção de Choque

Fotões

Fotoeléctric

Compton P. pares

Part.

Carregadas

Bethe-Bloch

PID

Landau

Alcance

Bragg

Electrões

Bremsstrahlung Multiplo

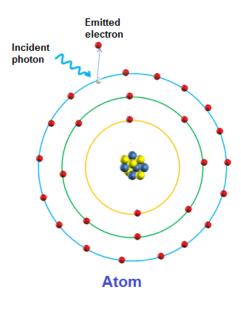
Čerenkov Transição

Neutrões

9/40

ıtrões

Energia do electrão ejectado:


$$E_e = h\nu - E_b$$

 $h\nu$ Energia do fotão,

 $E_{\rm b}$ energia de ligação (dependente de Z e da camada electrónica)

$$\sigma_{
m p.e.} \propto rac{Z^n}{({
m h}
u)^{rac{7}{2}}}$$

 \emph{n} camada electrónica (mudanças bruscas para h $\nu < E_{\rm k}$)

Efeito fotoeléctrico

Introdução

Seção de Choque Fotões

Compton

P. pares

Carregadas

Bethe-Bloch PID

Landau

Alcance

Bragg

Electrões

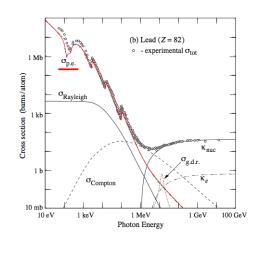
Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

9/40

Energia do electrão ejectado:


$$E_e = h\nu - E_b$$

 $h\nu$ Energia do fotão,

E_b energia de ligação (dependente de Z e da camada electrónica)

$$\sigma_{
m p.e.} \propto rac{Z^n}{({
m h}
u)^{rac{7}{2}}}$$

n camada electrónica (mudanças bruscas para $h\nu < E_k$)

Efeito de Compton

Introdução Secão de

Choque Fotões

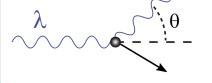
Fotoeléctrico

P. pares

Part.

Carregadas

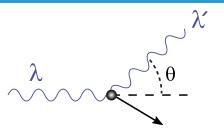
Bethe-Bloch PID Landau


Alcance Bragg Electrões

Bremsstrahlung Multiplo

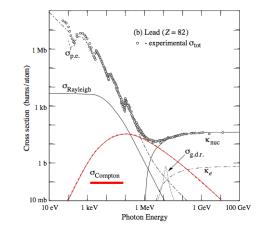
Čerenkov Transição

Neutrões


Conservação do momento e da energia

$$\begin{cases} h\nu + m_{\rm e}c^2 &= h\nu' + \sqrt{(p_{\rm e}c)^2 + (m_{\rm e}c^2)^2} \\ \vec{p_{\gamma}} &= \vec{p_{\rm e}} + \vec{p_{\gamma}} \end{cases}$$

$$E_{\gamma}' = \frac{E_{\gamma}}{E_{\gamma}}$$


Efeito de Compton

Conservação do momento e da energia

$$\begin{cases} h\nu + m_{\rm e}c^2 &= h\nu' + \sqrt{(p_{\rm e}c)^2 + (m_{\rm e}c^2)^2} \\ \vec{p_{\gamma}} &= \vec{p_{\rm e}} + \vec{p_{\gamma}'} \end{cases}$$

$$\Delta \lambda = \frac{h}{m_{\rm e}c} (1 - \cos \theta)$$
$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_{\rm e}c^2} (1 - \cos \theta)}$$

Para E_{γ} elevado:

$$\sigma_{
m compton} \propto Z \cdot rac{\ln(E_{\gamma}/m_{
m e}c^2)}{m_{
m e}c^2}$$

Introdução

Seção de Choque

Fotões

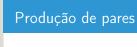
Fotoeléctrico

P. pares

P. pare

Part. Carregadas

Bethe-Bloch PID Landau Alcance


Bragg Electrões Bremsstrahlung

Multiplo Čerenkov

Transição Neutrões

Neutrõe

Seção de Choque

Fotões

Fotoeléctrico Compton

P. pares

Part

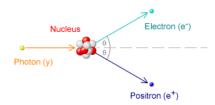
Carregadas Bethe-Bloch

Bethe-Blo

Landau

Alcance

Bragg Electrões Bremsstrahlung


Multiplo Čerenkov

Transição

Neutrões

Necessita da vizinhança do campo eléctrico de um núcleo.

$$E_{\gamma} \ge 2m_{\rm e}{
m c}^2(1+m_{\rm e}/m_{\rm n})$$
 $E_{{
m e}^-}+E_{{
m e}^+}={
m h}
u-2m_{
m e}{
m c}^2$

O excesso de energia é transferido para o e⁻ e para o e⁺ sob a forma de energia cinética.

Secão de Choque

Fotões

Fotoeléctrico Compton

P. pares

Part.

Carregadas Bethe-Bloch

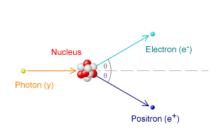
PID Landau

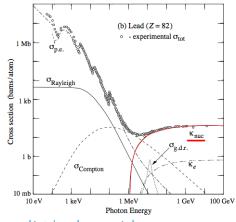
Alcance

Bragg

Electrões Bremsstrahlung

Multiplo


Čerenkov Transição


Neutrões

11/40

Produção de pares

Necessita da vizinhança do campo eléctrico de um núcleo.

$$E_{\gamma} \ge 2m_{\rm e}{
m c}^2(1+m_{\rm e}/m_{\rm n})$$
 $E_{\rm e^-} + E_{\rm e^+} = {
m h}
u - 2m_{\rm e}{
m c}^2$

O excesso de energia é transferido para o e⁻ e para o e⁺ sob a forma de energia cinética.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch PID Landau Alcance

Bragg Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

12/40

Perda de energia média (Stopping power)

$$S = -\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle$$

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch

PID Landau Alcance Bragg

Electrões Bremsstrahlung Multiplo Čerenkov

Transição

Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

Introdução Seção de

Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Rethe-Bloch

PID
Landau
Alcance
Bragg
Electrões
Bremsstrahlung
Multiplo
Čerenkov
Transicão

Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- lacksquare Só para partículas pesadas ($M>>m_{
 m e}$ e $v>>v_{
 m e}$)
- Não é válida para electrões

Introducão

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carre Beth

Carregadas Bethe-Bloch

Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 \, T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Só para partículas pesadas $(M >> m_e \text{ e } v >> v_e)$
- Não é válida para electrões

A Massa atómica do meio

Introducão

Seção de Choque

Fotões

Fotoeléctrico Compton

P. pares

Carregadae

Bethe-Bloch

PID Landau Alcance

Bragg Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Só para partículas pesadas $(M >> m_e \text{ e } v >> v_e)$
- Não é válida para electrões

A Massa atómica do meio

$$K = N_A e^2/\epsilon_0 = 0.307 \,\mathrm{MeVcm^2/g}$$

Introdução Seção de Choque

Fotões

Fotoeléctrico Compton

P. pares

Part.

Bethe-Bloch

PID Landau Alcance

Bragg Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Só para partículas pesadas $(M >> m_e \text{ e } v >> v_e)$
- Não é válida para electrões

A Massa atómica do meio

$$K = N_A e^2/\epsilon_0 = 0.307 \,\mathrm{MeVcm^2/g}$$

z e Z Número atómico da partícula incidente e do meio

Introducão

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas Bethe-Bloch

PID Landau

Alcance Bragg

Electrões Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Só para partículas pesadas $(M >> m_e \text{ e } v >> v_e)$
- Não é válida para electrões

A Massa atómica do meio

$$K = N_A e^2 / \epsilon_0 = 0.307 \,\text{MeVcm}^2/\text{g}$$

z e Z Número atómico da partícula incidente e do meio

/ Energia de ionização

Introdução Seção de Choque

Fotões

Fotoeléctrico Compton

P. pares

Carregadas

Bethe-Block

PID Landau

Alcance Bragg

Electrões Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Só para partículas pesadas $(M >> m_e \text{ e } v >> v_e)$
- Não é válida para electrões

A Massa atómica do meio

$$K = N_A e^2/\epsilon_0 = 0.307 \,\mathrm{MeVcm^2/g}$$

z e Z Número atómico da partícula incidente e do meio

/ Energia de ionização

$$T_{\rm max} = {2m_{\rm e}c^2 eta^2 \gamma^2 \over 1 + 2\gamma m_{\rm e}/M + (m_{\rm e}/M)^2}$$
 (energia máxima transferida em uma colisão)

Introdução Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch PID

Landau

Alcance Bragg

Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

12/40

Perda de energia média (Stopping power)

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Só para partículas pesadas $(M >> m_e \text{ e } v >> v_e)$
- Não é válida para electrões

A Massa atómica do meio

$$K = N_A e^2 / \epsilon_0 = 0.307 \, \text{MeVcm}^2 / \text{g}$$

z e Z Número atómico da partícula incidente e do meio

$$T_{\max} = \frac{2m_{\rm e}c^2\beta^2\gamma^2}{1+2\gamma m_{\rm e}/M+(m_{\rm e}/M)^2}$$
 (energia máxima transferida em uma colisão)

$$\delta(\beta\gamma)$$
 correcção de densidade

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

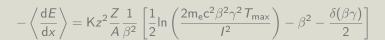
Carregadas

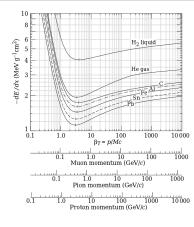
Bethe-Bloch PID

Landau Alcance

Bragg

Electrões


Bremsstrahlung Multiplo


Čerenkov

Transição

Neutrões

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch PID

Landau

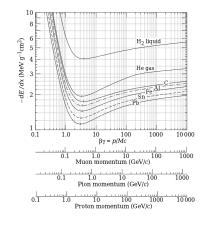
Alcance

Bragg Electrões

Bremsstrahlung

Multiplo Čerenkov

Transição


Neutrões

13/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 \, T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta (\beta \gamma)}{2} \right]$$

Perda de energia independente da massa da partícula incidente (para $M >> m_e$)

Seção de Choque

Fotões

Fotoeléctrico Compton

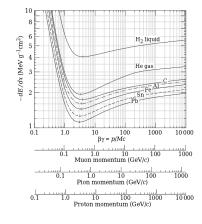
P. pares

Part. Carregadas

Bethe-Bloch

PID Landau Alcance

Bragg Electrões Bremsstrahlung


Multiplo Čerenkov Transição

Neutrões

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 \, T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta (\beta \gamma)}{2} \right]$$

- Perda de energia independente da massa da partícula incidente (para $M >> m_e$)
- Dependência quadrática da carga e da velocidade: $\sim z^2/\beta^2$

Seção de Choque

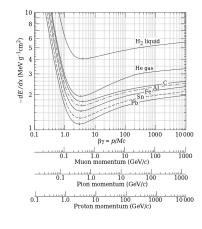
Fotões

Fotoeléctrico Compton

P. pares

Part. Carregadas

Bethe-Bloch


PID
Landau
Alcance
Bragg
Electrões
Bremstrahlung
Multiplo
Čerenkov

Transição Neutrões

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Perda de energia independente da massa da partícula incidente (para $M >> m_e$)
- Dependência quadrática da carga e da velocidade: $\sim z^2/\beta^2$
- Depende pouco do absorvedor (Z/A, quase constante para todos os materiais)

Secão de

Choque Fotões

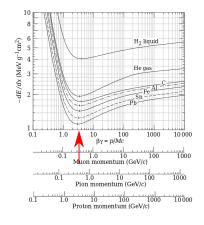
Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch

PID Landau Alcance Bragg Electrõe


Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Perda de energia independente da massa da partícula incidente (para $M >> m_e$)
- Dependência quadrática da carga e da velocidade: $\sim z^2/\beta^2$
- Depende pouco do absorvedor (Z/A, quase constante para todos os materiais)
- Mínimo para $\beta \gamma \approx 3.5$ (mip minimum ionizing particle)

Entendendo Bethe-Block

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2\frac{Z}{A}\frac{1}{\beta^2}\left[\frac{1}{2}\mathrm{ln}\left(\frac{2\mathrm{m_e}\mathrm{c}^2\beta^2\gamma^2T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

Dependência de $1/\beta^2$

$$\Delta p = \int F dt = \int F \frac{dx}{v}$$

Partículas mais lentas 'sentem' a força eléctrica durante mais tempo.

$dE/dx (MeV g^{-1}cm^2)$ H2 liquid He gas 100 1.0 1000 10000 $\beta \gamma = p/Mc$ Muon momentum (GeV/c) Pion momentum (GeV/c) Proton momentum (GeV/c)

Particle Data Gro (pdg.lbl.gov)

Introdução Secão de

Choque Fotões

Fotoeléctrico Compton

P. pares

Part.

Carregadas

Bethe-Bloch PID

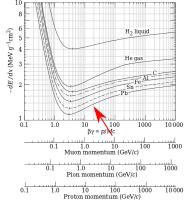
Landau Alcance

Bragg Electrões

Bremsstrahlung Multiplo

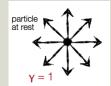
Čerenkov Transição

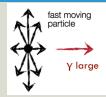
Neutrões


Entendendo Bethe-Block

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2\mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Dependência de $1/\beta^2$


$$\Delta p = \int F dt = \int F \frac{dx}{v}$$


Partículas mais lentas 'sentem' a força eléctrica durante mais tempo.

Regime relativístico: $\beta \gamma > 4$

Partícula de alta energia: o campo eléctrico transverso aumenta (transformação de Lorentz: $E_y \rightarrow \gamma E_y$), aumentando a intensidade da interacção.

Particle Data

Compton P. pares

Part. Carregadas Bethe-Bloch

Introdução Secão de

Choque Fotões

PID Landau Alcance

Alcance Bragg Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

Secão de

Choque Fotões

Fotoeléctrico Compton P. pares

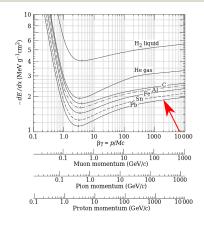
Part.

Carregadas Bethe-Bloch

PID Landau Alcance Bragg Electrões

Bremsstrahlung Multiplo Čerenkov

Transição Neutrões


15/40

$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \mathrm{ln} \left(\frac{2 \mathrm{m_e} \mathrm{c}^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$

Correcção da densidade

- Átomos do meio são polarizados pelas partículas do feixe
- Blindagem dos electrões que estão mais longe
- Partículas 'sentem' menos intensamente o campo desses electrões.

Como detectar e identificar uma partícula carregada?

O que acontece na Time Projection Chamber do ALICE?

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton

P. pares

Carregadas Bethe-Bloch

PID

Landau Alcance

Bragg

Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

■ lões quase à velocidade da luz colidem

O que acontece na Time Projection Chamber do ALICE?

Choque

Fotões

Fotoeléctrico Compton P. pares

Carregadas Bethe-Bloch

Landau

Alcance Bragg

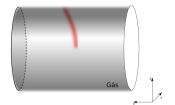
Electrões Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões

16/40



Gás

- lões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)

O que acontece na Time Projection Chamber do ALICE?

- lões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás

Choque

Fotões Fotoeléctrico

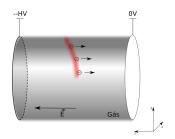
Compton P. pares

Carregadas Bethe-Bloch

Landau Alcance

Bragg

Electrões Bremsstrahlung Multiplo


Čerenkov Transição

Neutrões

O que acontece na Time Projection Chamber do ALICE?

- lões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...

Introdução

Seção de Choque

Fotões

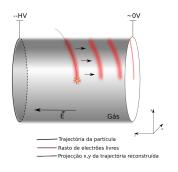
Fotoeléctrico Compton P. pares

Carregadas

Bethe-Bloch

Landau Alcance

Bragg Electrões Bremsstrahlung Multiplo


Čerenkov Transição

Neutrões

O que acontece na Time Projection Chamber do ALICE?

- lões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...

...onde podemos projectar a trajectória no plano x,y.

Introdução

Secão de

Choque

Fotoeléctrico

Compton P. pares

Part. Carregadas

Carregadas Bethe-Bloch

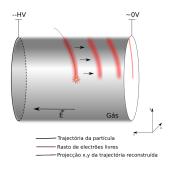
PID

Landau Alcance

Bragg

Electrões Bremsstrahlung

Multiplo


Čerenkov Transição

Neutrões

O que acontece na Time Projection Chamber do ALICE?

- lões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...
- ...onde podemos projectar a trajectória no plano x,y.
- Para o z:

Introdução

Compton
P. pares
Part.

Carregadas Bethe-Bloch

PID Landau Alcance

Bragg Electrões Bremsstrahlung Multiplo

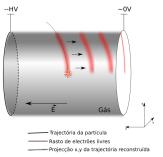
Čerenkov Transição

Neutrões

Choque

Fotões

P. pares


Landau

Alcance Bragg Flectrões

Čerenkov

Como detectar e identificar uma partícula carregada?

O que acontece na Time Projection Chamber do ALICE?

- lões guase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...

Introdução Secão de Fotoeléctrico Compton Carregadas Bethe-Block

- ...onde podemos projectar a trajectória no plano x,y.
- Para o z:

$$v = \frac{\mu E}{p},$$

 μ : mobilidade das cargas

E: campo eléctrico

p: pressão)

sabendo o instante da colisão, medimos o tempo de deriva $\Rightarrow z = v\Delta t$

Bremsstrahlung Multiplo

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

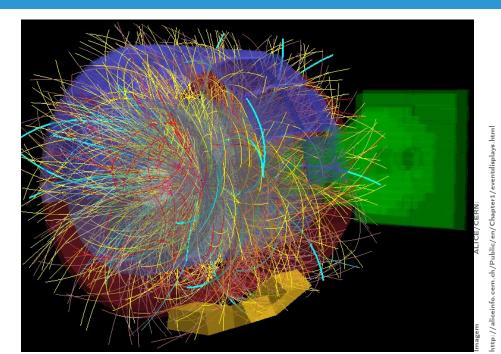
Carregadas Bethe-Bloch

PID

Landau

Alcance

Bragg Electrões

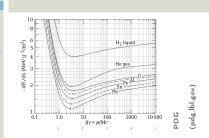

Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões

Identificação de partículas na TPC


A TPC permite calcular directamente dE/dx

■ MIPs: dE/dx constante

Medida do momento

Raio da curvatura da trajectória:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = q\vec{v} \times \vec{B} \Leftrightarrow p_{\perp} = qr_{c}B$$

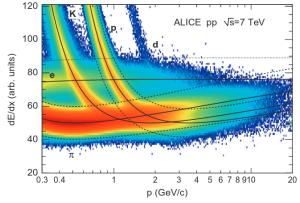


Fig. 3. dE/dx spectrum versus momentum in the ALICE TPC from pp collisions at $\sqrt{s} = 7$ TeV.

Introducão

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas Bethe-Bloch

PID

Landau Alcance Bragg

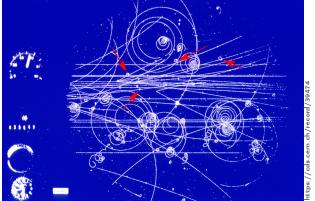
Electrões Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

18/40

IM A 706 (2013) 55-



Flutuações em d \overline{E}/dx

Bethe-Bloch descreve apenas a média da perda de energia.

$$\Delta E = \sum_{n=1}^{N} \Delta E_n$$

Na passagem de uma partícula há zonas com pouca perda de energia, mas outras com uma perda elevada (electr $oes-\delta$)

Decaimento de uma partícula A na câmara de bolhas de 32 cm (1960)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas Bethe-Bloch

PID PID

Landau Alcance Bragg

Electrões Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

Flutuações em dE/dx

Bethe-Bloch descreve apenas a média da perda de energia.

$$\Delta E = \sum_{n=1}^{N} \Delta E_n$$

Na passagem de uma partícula há zonas com pouca perda de energia, mas outras com uma perda elevada (electrões- δ)

Cauda nas altas energias. Valor mais provável \neq média.

Introdução Secão de

Choque

Fotoeléctrico

Compton P. pares

Part

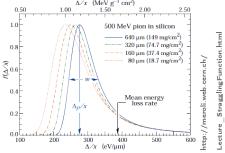
Carregadas Bethe-Bloch PID

Landau

Bragg Electrões Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões


Flutuações em dE/dx

Distribuição de Landau

$$f(x,\Delta) = \frac{m_{\rm e}v^2}{2\pi N_A {\rm e}^4} \cdot \frac{A}{Z} \cdot \frac{1}{x} \cdot \frac{1}{\pi} \int_0^{\inf} {\rm e}^{-u \ln u - \lambda u} \sin(\pi u) {\rm d}u$$

$$\text{com } \lambda = \frac{(\Delta - \Delta^{\mathbf{m},\mathbf{p}_+}) \cdot m_{\mathbf{e}} v^2}{2\pi N_A \mathrm{e}^4 \cdot x}, \text{ em que } \Delta^{\mathbf{m},\mathbf{p}_+} = \frac{2\pi N_A \mathrm{e}^4}{m_{\mathbf{e}} v^2} \cdot \frac{Z}{A} \cdot x \left\{ \ln \left(\frac{4\pi N_A \mathrm{e}^4 \gamma^2}{l^2} \cdot \frac{Z}{Z} \cdot X \right) - \beta^2 + 1 - \gamma_E \right\}$$

Na passagem de uma partícula há zonas com pouca perda de energia, mas outras com uma perda elevada (electrões- δ)

Cauda nas altas energias. Valor mais provável \neq média.

Introdução Secão de

Choque

Fotoeléctrico

Compton P. pares

Part.

Carregadas Bethe-Bloch PID

Landau

Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

Alcance médio

Integrar a distância para as perdas de energia de E_0 até 0

Introdução Secão de

Choque Fotões Fotoeléctrico

Compton P. pares

Part.

Carregadas Bethe-Bloch PID

Landau Alcance

Bragg Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

$$dE = -\frac{dE}{dx} \cdot dx \Leftrightarrow dx = -\frac{1}{dE/dx} \cdot dE$$

$$R = \int_{E0}^{0} \frac{\mathrm{d}E}{\mathrm{d}E/\mathrm{d}x}$$

Introdução

Secão de

Choque

Fotões

Fotoeléctrico

Compton

Carregadas Bethe-Bloch

P. pares

Part.

PID

Landau

Bragg Electrões

Multiplo

Čerenkov

Transição

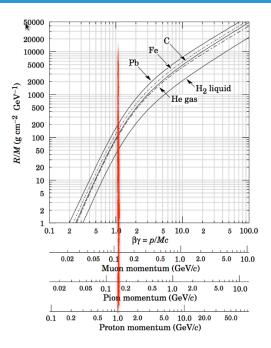
Neutrões

Alcance médio

Integrar a distância para as perdas de energia de E_0 até 0

$$dE = -\frac{dE}{dx} \cdot dx \Leftrightarrow dx = -\frac{1}{dE/dx} \cdot dE$$

$$R = \int_{E0}^{0} \frac{\mathrm{d}E}{\mathrm{d}E/\mathrm{d}x}$$

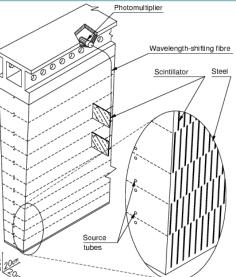

Exemplo

Protão com $p=1\,\mathrm{GeV/c}$ Alvo: chumbo com $\rho=11.34\,\mathrm{g\,cm^{-3}}$

$$R/M = 200 \, \mathrm{g \, cm^{-2} \, GeV^{-1}}$$

 $\to R = 200/11.34/1 \, \mathrm{cm} \sim 20 \, \mathrm{cm}$

20/40


Bremsstrahlung

Como medir a energia de partículas carregadas pesadas?

Calorímetro hadrónico — ATLAS

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch PID

Landau

Alcance

Bragg Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

21/40

Camadas de material denso alternadas com camadas de detecção.

Como medir a energia de partículas carregadas pesadas?

Calorímetro hadrónico — ATLAS

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

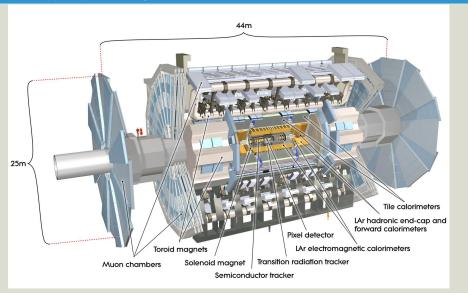
Part.

Carregadas Bethe-Bloch PID

Landau

Alcance

Bragg Electrões


Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

21/40

Camadas de material denso alternadas com camadas de detecção.

Chuveiros hadrónicos

Introdução Secão de

Choque

Fotões

Fotoeléctrico Compton P. pares

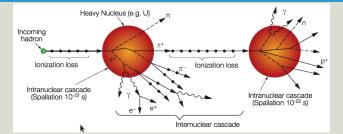
Part.

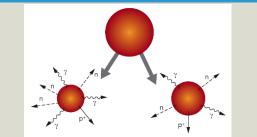
Carregadas Bethe-Bloch PID

Landau Alcance

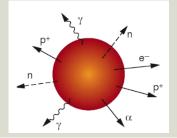
Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição Neutrões


22/40


Interacções hadrónicas

- Colectivamente com os núcleos
- individualmente com os nucleões


Excitação nuclear

Fissão

Evaporação nuclear

Introdução

Seção de Choque

Fotões

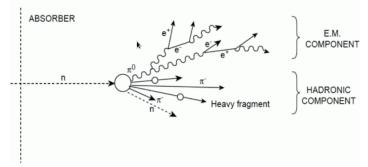
Fotoeléctrico Compton P. pares

Part.

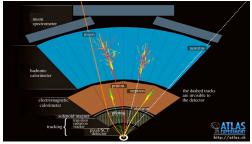
Carregadas
Bethe-Bloch

Landau

Alcance


Bragg

Electrões Bremsstrahlung Multiplo


Čerenkov Transição

Neutrões

- electrões
- fotões
- neutrões
- piões
- fragmentos de núcleos.

Introdução

Secão de

Choque

Fotoeléctrico

Compton P. pares

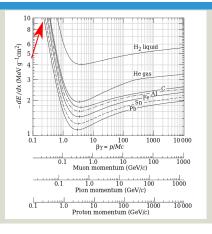
Part.

Carregadas

Bethe-Bloch PID

Landau

Alcance

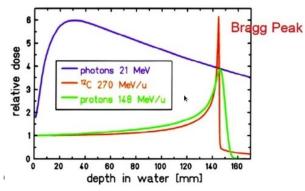

Bragg

Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões


- Quanto menor é a energia da partícula, maior é a perda de energia
- A partícula perde a maior parte da sua energia no final:
 - Campo dos electrões exerce maior influência
 - No final a partícula pode recombinar com os electrões e ser absorvida no meio.

Curva de Bragg

Partículas pesadas carregadas perdem a maior parte da sua energia no final da trajectória.

- Curva de Bragg: perda de energia pela deposição de energia em função da profundidade
- A maior dose de radiação é localizada no fim da trajectória (com fotões, já vimos, a maior perda dá-se no início, com decaimento exponencial)

U. Landgraf e S. Kühn.

Introdução

Secão de Choque

Fotões

Fotoeléctrico Compton P. pares

Carregadas Bethe-Block PID

Landau Alcance

Electrões

Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

25/40

http://hep.uni-freiburg.de/tl files/home/wwwherten/particle detectors/slides/Teilchendetektoren-WS1617-InteractionChargedParticles-2A.pdf

Curva de Bragg

Partículas pesadas carregadas perdem a maior parte da sua energia no final da trajectória.

Introdução

Seção de Choque

Fotões

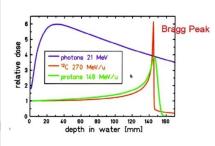
Fotoeléctrico Compton P. pares

Part.

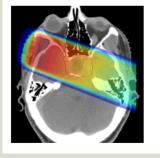
Carregadas Bethe-Bloch

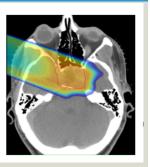
PID Landau

Alcance


Bragg Electrões Bremsstrahlung

Multiplo Čerenkov Transição


Neutrões


25/40

Aplicações muito importantes em tratamentos com radioterapia

Por exemplo: aceleradores no GSI, Darmstadt e DFKZ, Heidelberg, na Alemanha.

U. Landgraf e S. Kühn,

 $http://hep.uni-freiburg.de/tl_files/home/wwwherten/particle_detectors/slides/Teilchendetektoren-WS1617-InteractionChargedParticles-2A.pdf$

Perdas de energia para electrões

Electrões (e positrões) perdem energia por ionização

Como as outras partículas, mas a fórmula de Bethe-Bloch precisa de ser modificada:

- Electrões incidente e do alvo têm a mesma massa
- Espalhamento de duas partículas iguais e indistinguíveis.

$$-\left\langle \frac{dE}{dx} \right\rangle_{e} = K \frac{Z}{A} \frac{1}{\beta^{2}} \left[\ln \frac{m_{e} c^{2} \beta^{2} \gamma^{2} T}{2I^{2}} - (\ln 2)(2\sqrt{1 - \beta^{2}} - 1 + \beta^{2}) + (1 - \beta^{2}) + \frac{1}{8}(1 - \sqrt{1 - \beta^{2}})^{2} \right]$$

Devido à sua massa pequena, perdem muita energia em processos radiativos:

- Bremsstrahlung
- Produção de pares e chuveiros electromagnéticos.

Seguem um caminho muito mais tortuoso antes de perderem completamente a sua energia.

Introdução

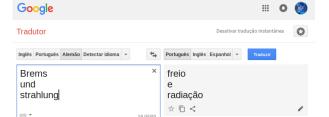
Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas
Bethe-Bloch
PID
Landau
Alcance
Bragg


Electrões
Bremsstrahlung
Multiplo
Čerenkov
Transição

Neutrões

Bremsstrahlung

Causado pelas acelerações (mudanças de direcção) dos electrões pelos núcleos do meio.

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Brems}} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{\mathrm{e}^2}{\mathrm{mc}^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{\mathrm{m}^2}$$

z carga eléctrica

m massa

E energia

 α constante da estrutura fina (1/137)

Z, A número atómico e número de massa do material

N_A Númerdo de Avogadro

Choque Fotões

Fotoeléctrico

Compton P. pares

Part.

Carregadas Bethe-Bloch PID

Landau Alcance Bragg

Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

Bremsstrahlung

Causado pelas acelerações (mudanças de direcção) dos electrões pelos núcleos do meio.

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Brems}} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

z carga eléctrica

 α constante da estrutura fina (1/137)

m massa

Z, A número atómico e número de massa do material

E energia

NA Númerdo de Avogadro

Dependências:

E importante para energias elevadas

7² materiais com 7 elevado

 $\frac{1}{m^2}$ partículas leves!

Compton P. pares

Introdução

Secão de Choque

Fotões Fotoeléctrico

Carregadas Bethe-Block

PID Landau Alcance Bragg

Electrões Bremsstrahlung Multiplo Čerenkov

Transição Neutrões

Introdução Secão de Choque Fotões

Fotoeléctrico Compton

P. pares

Carregadas

Landau Alcance

Bragg Electrões

Neutrões

Bremsstrahlung

Causado pelas acelerações (mudanças de direcção) dos electrões pelos núcleos do meio.

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Brems}} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

z carga eléctrica

m massa

E energia

 α constante da estrutura fina (1/137)

Z, A número atómico e número de massa do material

N_A Númerdo de Avogadro

Bethe-Block PID

Relação entre perdas de energia por colisões e de Bremsstrahlung

Stopping power total:

$$\frac{dE}{dx} = \left(\frac{dE}{dx}\right)_{\text{ion}} + \left(\frac{dE}{dx}\right)_{\text{Brems}}$$
$$\frac{(dE/dx)_{\text{ion}}}{(dE/dx)_{\text{Brems}}} \cong \frac{EZ}{700}$$

(E em MeV).

27/40

Bremsstrahlung Multiplo Čerenkov Transição

Bremsstrahlung — Comprimento de radiação X_0

Seção de Choque

Fotões Fotoeléctrico

Compton P. pares

Part.

Carregadas Bethe-Bloch PID

Landau Alcance Bragg

Electrões

Bremsstrahlung

Multiplo

Čerenkov Transição

Neutrões

28/40

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{\mathrm{e}^2}{\mathrm{mc}^2} \right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

Arranjando a equação de modo a que:

$$\frac{dE}{dx} = \frac{1}{X_0}E$$
 ou seja: $X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln(183Z^{-\frac{1}{3}})}$

Temos, por integração:

$$E=E_0\mathrm{e}^{-\frac{x}{X_0}}$$

■ Quando $x = X_0$, $E = E_0/e$

Bremsstrahlung — Comprimento de radiação X_0

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

P. pares

Carra

Carregadas Bethe-Bloch

PID Landau

Alcance

Bragg Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

28/40

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2} \right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

Arranjando a equação de modo a que:

$$\frac{dE}{dx} = \frac{1}{X_0}E$$
 ou seja: $X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln(183Z^{-\frac{1}{3}})}$

Temos, por integração:

$$E=E_0\mathrm{e}^{-\frac{x}{X_0}}$$

Quando $x = X_0$, $E = E_0/e$

X₀ é a distância para um electrão ficar apenas com 1/e da sua energia, devido a perdas por Bremsstrahlung.

Bremsstrahlung — exemplos

Introdução

Seção de Choque

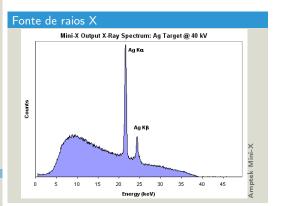
Fotões

Fotoeléctrico Compton P. pares

P. pares

Part. Carregadas Bethe-Bloch

PID Landau Alcance


Bragg Electrões

Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

Bremsstrahlung — exemplos

Introdução

Seção de Choque

Fotões

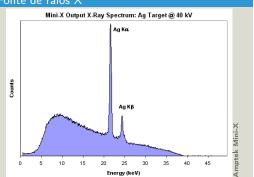
Fotoeléctrico Compton P. pares

Part

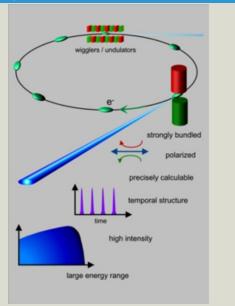
Carregadas Bethe-Bloch

PID
Landau
Alcance
Bragg

Electrões Bremsstrahlung


Multiplo Čerenkov Transição

Neutrões


29/40

Fonte de raios X

Radiação de sincrotrão

Bremsstrahlung — exemplos

Introdução

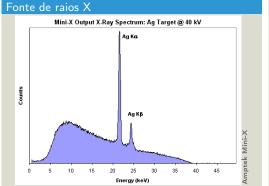
Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas


Bethe-Bloch PID Landau Alcance Bragg

Electrões Bremsstrahlung

Multiplo Čerenkov Transição

Neutrões

29/40

Radiação de sincrotrão

Sirius — futuro acelerador em construção perto de campinas

Introdução Secão de

Choque

Fotões

Fotoeléctrico Compton

P. pares

Part.

Carregadas

Bethe-Bloch PID

Landau

Alcance

Bragg Electrões

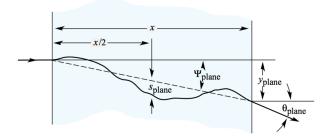
Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões

- Espalhamento elástico devido ao campo dos electrões e dos núcleos do meio
- Não há emissão de radiação, apenas desvios pequenos na trajectória
- Processo descrito à la Rutherford:


$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cong z^2 Z^2 \frac{1}{\sin^4 \frac{\epsilon}{2}}$$

Espalhamento de Coulomb múltiplo

- Espalhamento elástico devido ao campo dos electrões e dos núcleos do meio
- Não há emissão de radiação, apenas desvios pequenos na trajectória
- Processo descrito à la Rutherford:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cong z^2 Z^2 \frac{1}{\sin^4 \frac{\Theta}{2}}$$

Introdução Secão de

Choque

Fotões Fotoeléctrico

Compton
P. pares

Part.

Carregadas Bethe-Bloch

PID

Landau

Alcance

Bragg Electrões

Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões 30/40

Espalhamento de Coulomb múltiplo

- Espalhamento elástico devido ao campo dos electrões e dos núcleos do meio
- Não há emissão de radiação, apenas desvios pequenos na trajectória
- Processo descrito à la Rutherford:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cong z^2 Z^2 \frac{1}{\sin^4 \frac{\Theta}{2}}$$

- Tratado estatísticamente
- Depende do número atómico do material
- Quase todas as interacções resultam em ângulos de deflexão pequenos
- Com uma distribuição gaussiana à volta de $\Theta = 0$:

$$\sigma_{\Theta} = \frac{13.6 \, \textit{MeV}}{\beta \textit{cp}} z \sqrt{\frac{\textit{x}}{\textit{X}_0}} \left[1 + 0.038 \, \text{ln} \left(\frac{\textit{x}}{\textit{X}_0} \right) \right]$$

z, p carga e momento da partícula, x/X_0 espessura em comprimentos de radiação

Introdução Seção de Choque

Fotões

Fotoeléctrico

Compton P. pares

Part.

Carregadas Bethe-Bloch PID

Landau Alcance

Bragg Electrões Bremsstrahlung

Multiplo Čerenkov

Transição Neutrões

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas

Bethe-Bloch PID

Landau

Alcance

Bragg Electrões

Bremsstrahlung Multiplo

Čerenkov

Transição

Neutrões

Radiação de Čerenkov

Objectos no mundo macroscópico que se deslocam em um meio mais rápido do que as ondas desse meio:

Introdução

Secão de Choque

Fotões

Fotoeléctrico Compton P. pares

Carregadas Bethe-Block PID Landau Alcance

Bragg Electrões Bremsstrahlung

Multiplo Transição

Neutrões

32/40

Avião à velocidade do som

Ondas criadas por um barco

- Uma onda produzida por uma fonte viajando mais rápida do que a propagação dessa onda gera uma onda plana
- Partículas carregadas também!

Introdução

Seção de Choque Fotões Fotoeléctrico Compton

P. pares

Carregadas

Landau

Bragg Electrões

Multiplo

Transição

Neutrões

Bethe-Bloch PID

Bremsstrahlung

Radiação de Čerenkov

Velocidade da luz em um material:

$$v_{luz} = c/n$$

n índice de refracção.

Passagem de uma partícula carregada

- Com uma velocidade v < c/n: polarização simétrica, não há momento dipolar
- Com uma velocidade v > c/n:
 - polarização assimétrica
 - mudança abrupta da polarização
 - emissão de radiação electromagnética: radiação de Čerenkov

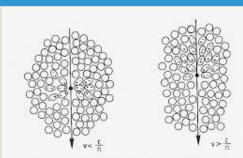


Fig. 6.7. Illustration of the Cherenkov effect [68].

33/40

Pequena correcção na perda de energia: $\frac{dE}{dx} = \left(\frac{dE}{dx}\right)_{ion} + \left(\frac{dE}{dx}\right)_{Brems} + \left(\frac{dE}{dx}\right)_{\check{C}}$ (da ordem de 1% de $(dE/dx)_{ion}$).

Radiação de Čerenkov

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Part. Carregadas

Bethe-Bloch PID

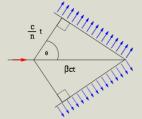
Landau

Alcance

Bragg Electrões

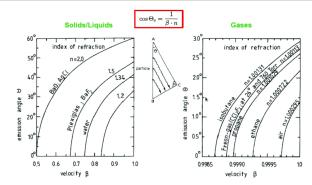
Bremsstrahlung

Multiplo Čerenkov


Transição

Neutrões

34/40


Ângulo de Čerenkov

- lacksquare Partícula viaja β ct
- Fotão viaja $\left(\frac{c}{n}\right)t$

$$\cos\theta_{\check{c}} = \frac{1}{\beta \cdot n}$$

Materiais possíveis:

Introdução

Secão de Choque

Fotões

Fotoeléctrico Compton

P. pares

Carregadas

Bethe-Bloch PID Landau

Alcance

Bragg Electrões Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões

35/40

Identificação de partículas

- Partículas mais leves emitem mais radiação
- lacktriangle O ângulo de Čerenkov dá uma medida directa de eta (com outras medidas adicionais, obtemos $p \rightarrow \text{massa}$).

Identificação de partículas

- Partículas mais leves emitem mais radiação
- \blacksquare O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p\to$ massa).

Neutrino Charged particle in water

Photosensors

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas Bethe-Bloch

PID Landau

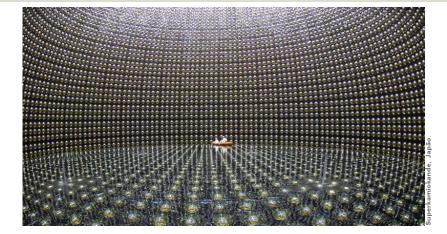
Landau Alcance

Bragg

Electrões Bremsstrahlung

Multiplo

Transição


Neutrões

Identificação de partículas

- Partículas mais leves emitem mais radiação
- \blacksquare O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p\to$ massa).

Introdução Secão de

Choque Fotões

Fotoeléctrico

Compton P. pares

Part

Carregadas

Bethe-Bloch

PID

Landau

Alcance

Bragg Electrões

Bremsstrahlung

Multiplo Čerenkov

Transição

,

Neutrões 35/40

Introdução Secão de

Choque

Fotoeléctrico

Compton P. pares

Part.

Carregadas

Bethe-Bloch

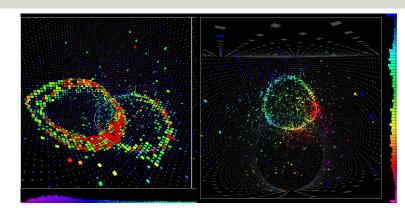
PID

Landau

Alcance

Bragg Electrões

Bremsstrahlung Multiplo

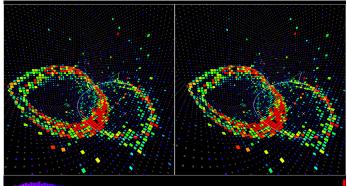

Čerenkov

Transição Neutrões

35/40

Identificação de partículas

- Partículas mais leves emitem mais radiação
- \blacksquare O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p\to$ massa).



Identificação de partículas

- Partículas mais leves emitem mais radiação
- \blacksquare O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p\to$ massa).

Imagem 3D (trocar os olhos):

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part.

Carregadas Bethe-Bloch

PID

Landau

Alcance

Bragg

Electrões Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões 35/40

Seção de Choque

Fotões

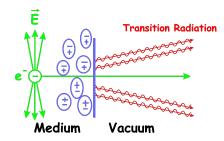
Fotoeléctrico Compton P. pares

Part.

Carregadas Bethe-Bloch

PID Landau

Alcance Bragg


Electrões Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

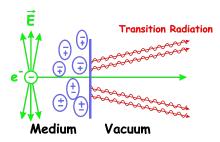
36/40

Dois meios com propriedades dieléctricas diferentes,

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares


Part.

Carregadas Bethe-Bloch PID

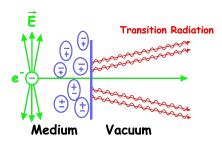
Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Neutrões

- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.

Seção de Choque

Fotões


Fotoeléctrico Compton P. pares

Part. Carregadas

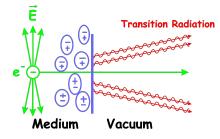

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Neutrões

- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.
 - quando a partícula deixa o meio, a polarização altera-se abruptamente
 - emissão de fotões.

Seção de Choque

Fotões


Fotoeléctrico Compton P. pares

Part.

Carregadas Bethe-Bloch PID

Landau Alcance Bragg Electrões Bremsstrahlung Multiplo

Čerenkov Transição Neutrões

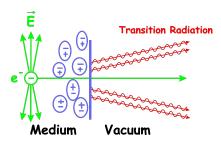
- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.
 - quando a partícula deixa o meio, a polarização altera-se abruptamente
 - emissão de fotões.
- Fotões emitidos na gama de raios X (2–20keV)

Introdução Secão de

Choque

Fotoeléctrico

Compton P. pares


Part.

Carregadas
Bethe-Bloch
PID
Landau
Alcance
Bragg

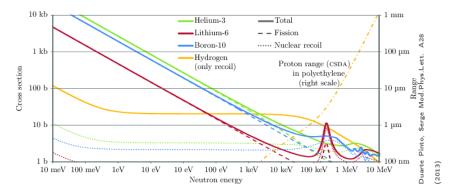
Electrões Bremsstrahlung Multiplo Čerenkov

Neutrões

- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.
 - quando a partícula deixa o meio, a polarização altera-se abruptamente
 - emissão de fotões.
- Fotões emitidos na gama de raios X (2–20keV)
- baixa intensidade: arranjo de 'sandwiche' alternando os dois meios.

Seção de Choque

Fotões


Fotoeléctrico Compton P. pares

Part.

Carregadas
Bethe-Bloch
PID
Landau
Alcance
Bragg
Electrões
Bremsstrahlung
Multiplo
Čerenkov

Transição Neutrões

- Neutrões são partículas neutras, com pouca interacção
- A única possibilidade de interacção é através de reacções nucleares com alguns isótopos,
- Quanto menor for a energia do neutrão, maior é a sua seção de choque para a reacção.

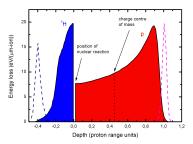
Introdução Secão de Choque

Fotões

Fotoeléctrico Compton

P. pares

Carregadas Bethe-Bloch


PID Landau Alcance Bragg Electrões Bremsstrahlung

Multiplo Čerenkov Transição

38/40

Neutrões: Hélio-3

$$n + {}^{3}He \rightarrow {}^{3}H + {}^{1}H + 0.764 \,MeV$$

- Centroid of the charge cloud
- Possible avalanches due to the tritons
- Possible neutron interaction points
- Possible avalanches due to the protons

- A solução mais interessante durante muitos anos,
- Boa eficiência de detecção,

200

Introdução Seção de Choque

Fotões

Fotoeléctrico Compton

P. pares

Carregadas

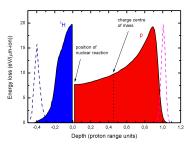
Bethe-Bloch

PID Landau

Alcance Bragg Electrões

Bremsstrahlung Multiplo

Čerenkov Transição


veutroes

38/40

Neutrões: Hélio-3

$$n + {}^{3}He \rightarrow {}^{3}H + {}^{1}H + 0.764 \,MeV$$

- Centroid of the charge cloud
- Possible avalanches due to the tritons
- Possible neutron interaction points
- Possible avalanches due to the protons

- A solução mais interessante durante muitos anos,
- Boa eficiência de detecção,
- ³He já não existe!

Neutrões: Boro-10

No estado sólido em PTN.

Difícil de depositar em superfícies,

 Eficiência de detecção limitada mesmo em camadas espessas por causa da auto-absorção dos produtos da reacção.

Introdução Secão de Choque

Fotões Fotoeléctrico

Compton P. pares

Part.

Carregadas Bethe-Block DID Landau Alcance Bragg Flectrões Bremsstrahlung Multiplo Čerenkov

Transição

39/40

Some ¹⁰B-based solutions: Multi-grid [1]

Inclined detector [2]

Boron coating Substrate

Neutrons

Ialousie [3]

Cátodos microestruturados revestidos com boro em MWPC empilhadas [4] Straw tubes revestidos com boro [5].

[1] J.C. Buffet et al., IEEE NSS 15 Conf. Rec., p. 171, 2012.

[2] J. Buffet et al., NIM A. 554, 1-3, p. 392, 2005. [3] C.J.Schmidt, M. Klein, CDT: www.n-cdt.com/

- [4] I.Stefanescu et al., Jinst. 8 P12003, 2013.
- [5] Proportional Technologies Inc., www.proportionaltech.com

Introdução Seção de

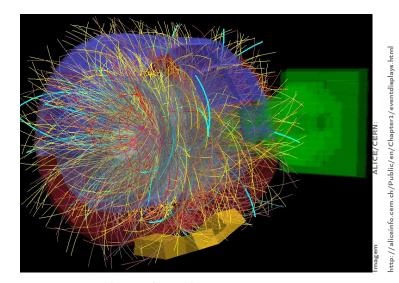
Choque Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch

PID


Landau Alcance

Bragg

Electrões

Bremsstrahlung Multiplo

Obrigado pela vossa atenção.