Princípios Físicos da Detecção de Radiação e Partículas

Hugo Natal da Luz

Técnicas Experimentais para Física de Partículas

6 de Agosto de 2018

Resumo

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

- Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov
- Transição

Neutrões

2/40

5 Neutrões

Introdução

2 Seção de Choque

Interacção de fotões

- Efeito fotoeléctrico
- Efeito de Compton
- Produção de pares

4 Partículas carregadas

- Fórmula de Bethe-Bloch
- Identificação de partículas
- Flutuações dem dE/dx (distribuição de Landau)
- Alcance de partículas carregadas
- Curva de Bragg
- Electrões um caso especial
- Bremsstrahlung
- Espalhamento de Coulomb múltiplo (multiple Coulomb scattering)
- Radiação de Čerenkov
- Radiação de Transição

Precisamos de detectar partículas para:

- Entender as suas propriedades
- Estudar partículas que não existem às energias normais
 - Tirar vantagem das suas propriedades em aplicações.

Para detectar partículas, elas têm que:

- Interagir com o material do detector
- Transferir a sua energia de um modo que se possa identificar.

Para isso temos que explorar propriedades já conhecidas:

- Transição
- Neutrões 3/40

- Carga eléctrica (quantizada)
- Tipo de interacção a que cada partícula é sujeita (forte, fraca, electromagnética)

Secão de Choque

Fotões

Eotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Interacções de partículas com a matéria

Para uma partícula ser detectada, ela tem que interagir com o material do detector

Partículas podem interagir com:

átomos ou moléculas

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

4/40

electrões núcleo

Exemplos

Partículas

carregadas Ionização, Bremstrahlung, Čerenkov, ...

- Hadrões Interacções nucleares
 - Fotões Efeito fotoeléctrico e de Compton, produção de pares

Neutrinos Interacção fraca

Curto alcance

- interacção forte
- interacção fraca

Longo alcance

Interacção electromagnética:

- ionização
- processos radiativos
- produção de pares

Conceito: Seção de Choque

Seção de choque Área efectiva de uma colisão/interacção.

Reflecte a probabilidade de uma interacção. Feixe paralelo uniforme, incidindo em um átomo.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

5/40

F fluxo: N_0/(cm² s), \dot{N} partículas que interagiram por unidade de tempo, E Energia

Atenção Este exemplo só funciona com:

- uma partícula no alvo
- feixe ocupando área muito maior do que a partícula

Se for uma bola de boliche bombardeada por bolas de gude: σ é a área da seção recta da bola de boliche

Se for um asteroide passando perto da Terra: σ é maior que a área da seção recta da Terra!

Conceito: Seção de Choque

Seção de choque diferencial Para medir a seção de choque total $\sigma(E)$, seria necessário um detector em 4π .

Normalmente estamos interessados em apenas uma fracção do ângulo sólido d Ω correspondente a partículas que passaram no anel de área d σ .

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

6/40

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E,\Omega) = \frac{1}{F}\frac{\mathrm{d}\dot{N}}{\mathrm{d}\Omega}$

Seção de choque total:

 $\sigma(E) = \int \mathrm{d}\Omega \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$

Conceito: Seção de Choque

Seção de choque diferencial Para medir a seção de choque total $\sigma(E)$, seria necessário um detector em 4π .

Normalmente estamos interessados em apenas uma fracção do ângulo sólido d Ω correspondente a partículas que passaram no anel de área d σ .

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

6/40

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E,\Omega) = \frac{1}{F}\frac{\mathrm{d}N}{\mathrm{d}\Omega}$

Seção de choque total:

$$\sigma(E) = \int \mathrm{d}\Omega \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

Alvos têm sempre mais do que um átomo

$$n = AN_{
ho}\Delta x = AN_{
m a}$$
, com $N_{
m a} = N_{
ho}\Delta x$

n átomos no alvo, *A* área exposta ao feixe, N_{ρ}/N_{a} átomos por unidade de volume/área, Δx espessura do alvo Partículas espalhadas para d Ω :

$$\dot{N}(E,\Omega) = Fn \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = FAN_{\mathrm{a}} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

Número total de interacções:

$$\dot{N}_{\rm tot}(E) = FAN_{\rm a}\sigma$$

Probabilidade de interacção:

$$p_{\text{int}} = rac{\dot{N}_{ ext{tot}}(E)}{N_{ ext{incid}}} = rac{\dot{N}_{ ext{tot}}(E)}{FA} = N_{ ext{a}}\sigma$$

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

7/40

O fotão pode desaparecer do feixe com a primeira interacção!

Interacções possíveis

- Efeito fotoeléctrico
- Efeito de Compton
- Produção de pares

O fotão pode desaparecer do feixe com a primeira interacção!

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

7/40

$$\frac{\mathrm{d}r}{\mathrm{d}x} = -\mu$$

 $\mu = \textit{N}_{
ho}\sigma$ coeficiente de absorção

Interacções possíveis

- Efeito fotoeléctrico
- Efeito de Compton
- Produção de pares

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

7/40

 $\frac{\mathrm{d}I}{\mathrm{d}x} = -\mu I$

 $\mu = N_{
ho}\sigma$ coeficiente de absorção

Interacções possíveis

- Efeito fotoeléctrico
- Efeito de Compton
- Produção de pares

λ

Lei de Beer-Lambert

$$l(x) = l_0 e^{-\mu x}$$

$$r=rac{1}{\mu}=rac{1}{N_
ho\sigma}$$
 caminho livre médio

Introdução Seção de Choque

Fotõe

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

8/40

Figure 27.14: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes:

 $\sigma_{\rm p.e.}=$ Atomic photoelectric effect (electron ejection, photon absorption)

 $\sigma_{\text{Rayleigh}} = \text{Rayleigh}$ (coherent) scattering-atom neither ionized nor excited

 $\sigma_{\text{Compton}} = \text{Incoherent scattering (Compton scattering off an electron)}$

 $\kappa_{\rm nuc} =$ Pair production, nuclear field

- $\kappa_e =$ Pair production, electron field
- $\sigma_{\rm g.d.r.} = {\rm Photonuclear\ interactions,\ most\ notably\ the\ Giant\ Dipole} \\ {\rm Resonance\ [48].} \ {\rm In\ these\ interactions,\ the\ target\ nucleus\ is} \\ {\rm broken\ up.}$

Efeito fotoeléctrico

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

9/40

Energia do electrão ejectado:

$$E_e = h\nu - E_b$$

 $h\nu$ Energia do fotão, $E_{\rm b}$ energia de ligação (dependente de Z e da camada electrónica)

Atom

Efeito fotoeléctrico

Introdução

Seção de Choque

Fotões

Fotoeléctrie Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição

Neutrões

9/40

Energia do electrão ejectado:

$E_e = h\nu - E_b$

 $h\nu$ Energia do fotão, $E_{\rm b}$ energia de ligação (dependente de Z e da camada electrónica)

n camada electrónica (mudanças bruscas para h $\nu < \textit{E}_{k})$

Atom

Efeito fotoeléctrico

Energia do electrão ejectado:

Seção de Choque

Fotões

Fotoeléctric Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

9/40

 $h\nu$ Energia do fotão, $E_{\rm b}$ energia de ligação (dependente de Z e da camada electrónica)

 $E_e = h\nu - E_b$

$$\sigma_{\rm p.e.} \propto rac{Z''}{({\rm h}
u)^{rac{7}{2}}}$$

n camada electrónica (mudanças bruscas para h $\nu < \textit{E}_{\rm k})$

Efeito de Compton

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton

P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

10/40

Conservação do momento e da energia

$$\begin{split} \nu + m_{\rm e} {\rm c}^2 &= {\rm h}\nu' + \sqrt{(p_{\rm e} {\rm c})^2 + (m_{\rm e} {\rm c}^2)^2} \\ \vec{p_{\gamma}} &= \vec{p_{\rm e}} + \vec{p_{\gamma}'} \end{split}$$

$$\Delta \lambda = \frac{h}{m_{e}c} (1 - \cos \theta)$$
$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_{e}c^{2}} (1 - \cos \theta)}$$

 \Downarrow

Efeito de Compton

Introdução Seção de

Seçao de Choque

Fotões

Fotoeléctrico Compton

P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

10/40

Conservação do momento e da energia

$$\nu + m_{\rm e}c^2 = h\nu' + \sqrt{(p_{\rm e}c)^2 + (m_{\rm e}c^2)^2}$$

 $\vec{p_{\gamma}} = \vec{p_{\rm e}} + \vec{p_{\gamma}'}$

$$\Delta \lambda = \frac{h}{m_{e}c} (1 - \cos \theta)$$
$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_{e}c^{2}} (1 - \cos \theta)}$$

 \Downarrow

$$\sigma_{
m compton} \propto Z \cdot rac{\ln(E_{\gamma}/m_{
m e}{
m c}^2)}{m_{
m e}{
m c}^2}$$

```
Sh
```

Produção de pares

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

11/40

Necessita da vizinhança do campo eléctrico de um núcleo.

$$E_{\gamma} \geq 2m_{
m e}{
m c}^2(1+m_{
m e}/m_{
m n})$$

 $E_{
m e^-}+E_{
m e^+}={
m h}
u-2m_{
m e}{
m c}^2$

O excesso de energia é transferido para o e^- e para o e^+ sob a forma de energia cinética.

Part.

PID

Bremsstrahlung

11/40

Multiplo Čerenkov Transição Neutrões

Produção de pares

Necessita da vizinhança do campo eléctrico de um núcleo.

$$E_{\gamma} \ge 2m_{\rm e}{
m c}^2(1+m_{\rm e}/m_{\rm n})$$

 $E_{{
m e}^-}+E_{{
m e}^+}={
m h}\nu-2m_{\rm e}{
m c}^2$

O excesso de energia é transferido para o e^- e para o e^+ sob a forma de energia cinética.

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada:

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

12/40

$$S = -\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle$$

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Só para partículas pesadas ($M >> m_e$ e $v >> v_e$)
- Não é válida para electrões

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Só para partículas pesadas ($M >> m_e e v >> v_e$)
- Não é válida para electrões

A Massa atómica do meio

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^{2}\frac{Z}{A}\frac{1}{\beta^{2}} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m}_{\mathrm{e}}\mathrm{c}^{2}\beta^{2}\gamma^{2}T_{\mathrm{max}}}{I^{2}}\right) - \beta^{2} - \frac{\delta(\beta\gamma)}{2} \right]$$

Só para partículas pesadas ($M >> m_e$ e $v >> v_e$)

■ Não é válida para electrões

A Massa atómica do meio $K = N_A e^2 / \epsilon_0 = 0.307 \,\text{MeVcm}^2/\text{g}$

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^{2}\frac{Z}{A}\frac{1}{\beta^{2}} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m}_{\mathrm{e}}\mathrm{c}^{2}\beta^{2}\gamma^{2}T_{\mathrm{max}}}{I^{2}}\right) - \beta^{2} - \frac{\delta(\beta\gamma)}{2} \right]$$

Só para partículas pesadas ($M >> m_{\rm e}$ e $v >> v_{\rm e}$)

■ Não é válida para electrões

A Massa atómica do meio

 $K = N_A e^2/\epsilon_0 = 0.307 \,\mathrm{MeV cm^2/g}$

 $z \in Z$ Número atómico da partícula incidente e do meio

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Só para partículas pesadas ($M >> m_{\rm e}$ e $v >> v_{\rm e}$)
- Não é válida para electrões

A Massa atómica do meio

 $K = N_A e^2/\epsilon_0 = 0.307 \,\mathrm{MeV cm^2/g}$

z e *Z* Número atómico da partícula incidente e do meio *I* Energia de ionização

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m}_{\mathrm{e}}\mathrm{c}^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Só para partículas pesadas ($M >> m_{\rm e}$ e $v >> v_{\rm e}$)

Não é válida para electrões

A Massa atómica do meio

 $K = N_A e^2/\epsilon_0 = 0.307 \,\mathrm{MeV cm^2/g}$

 $z \in Z$ Número atómico da partícula incidente e do meio

I Energia de ionização

 $T_{\max} = \frac{2m_{\rm e}c^2\beta^2\gamma^2}{1+2\gamma m_{\rm e}/M + (m_{\rm e}/M)^2}$ (energia máxima transferida em uma colisão)

Perda de energia média (Stopping power)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregada

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

12/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Só para partículas pesadas ($M >> m_{\rm e}$ e $v >> v_{\rm e}$)

Não é válida para electrões

A Massa atómica do meio

 $K = N_A e^2/\epsilon_0 = 0.307 \,\mathrm{MeV cm}^2/\mathrm{g}$

 $z \in Z$ Número atómico da partícula incidente e do meio

I Energia de ionização

 $T_{\max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1+2\gamma m_e/M+(m_e/M)^2}$ (energia máxima transferida em uma colisão) $\delta(\beta\gamma)$ correcção de densidade

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch

PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo

Čerenkov Transição

Neutrões

13/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^{2}\frac{Z}{A}\frac{1}{\beta^{2}} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m}_{\mathrm{e}}\mathrm{c}^{2}\beta^{2}\gamma^{2}T_{\mathrm{max}}}{I^{2}}\right) - \beta^{2} - \frac{\delta(\beta\gamma)}{2} \right]$$

Particle Data Group (pdg.lbl.gov)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID

Landau Alcance Bragg Electrões Bremsstrahlung

Multiplo Čerenkov

Transição

Neutrões

13/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Perda de energia independente da massa da partícula incidente (para M >> m_e)

(pdg.lbl.gov)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

13/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Perda de energia independente da massa da partícula incidente (para M >> m_e)
- Dependência quadrática da carga e da velocidade: ~ z²/β²

(pdg.ldl.gov)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

13/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m}_{\mathrm{e}}\mathrm{c}^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Perda de energia independente da massa da partícula incidente (para M >> m_e)
- Dependência quadrática da carga e da velocidade: ~ z²/β²
- Depende pouco do absorvedor (Z/A, quase constante para todos os materiais)

Particle Data Group (pdg.lbl.gov)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

13/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m}_{\mathrm{e}}\mathrm{c}^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Perda de energia independente da massa da partícula incidente (para M >> m_e)
- Dependência quadrática da carga e da velocidade: ~ z²/β²
- Depende pouco do absorvedor (Z/A, quase constante para todos os materiais)
- Mínimo para $\beta \gamma \approx 3.5$ (mip minimum ionizing particle)

Particle Data G (pdg.lbl.gov)

Group

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

14/40

Dependência de $1/\beta^2$

$$\Delta p = \int F \mathrm{d}t = \int F \frac{\mathrm{d}x}{v}$$

Partículas mais lentas 'sentem' a força eléctrica durante mais tempo.

Particle Data (pdg.lbl.gov)

Group

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{l^2} \right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

14/40

Dependência de $1/\beta^2$

$$\Delta p = \int F \mathrm{d}t = \int F \frac{\mathrm{d}x}{v}$$

Partículas mais lentas 'sentem' a força eléctrica durante mais tempo.

Regime relativístico: $\beta \gamma > 4$

Partícula de alta energia: o campo eléctrico transverso aumenta (transformação de Lorentz: $E_y \rightarrow \gamma E_y$), aumentando a intensidade da interacção.

(pdg.lbl.gov)

Group

Data

Particle

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição Neutrões

15/40

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = \mathrm{K}z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\mathrm{m_e}c^2\beta^2\gamma^2 T_{\mathrm{max}}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Correcção da densidade

- Átomos do meio são polarizados pelas partículas do feixe
- Blindagem dos electrões que estão mais longe
- Partículas 'sentem' menos intensamente o campo desses electrões.

Particle Data Group (pdg.lbl.gov)

Como detectar e identificar uma partícula carregada?

O que acontece na Time Projection Chamber do ALICE?

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID

- Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov
- Transição

Neutrões

16/40

Iões quase à velocidade da luz colidem

O que acontece na Time Projection Chamber do ALICE?

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

- Bethe-Bloch
- Landau Alcance Bragg
- Electrões
- Bremsstrahlung Multiplo
- Čerenkov
- Transição

Neutrões

- Iões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)

O que acontece na Time Projection Chamber do ALICE?

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch

- Landau
- Alcance Bragg Electrões Bremsstrahlung Multiplo
- Čerenkov
- Transição

Neutrões

- lões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás

O que acontece na Time Projection Chamber do ALICE?

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch

- Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov
- Transição

Neutrões

- Iões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...

O que acontece na Time Projection Chamber do ALICE?

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch

- Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov
- Transição

Neutrões

16/40

- Iões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...

...onde podemos projectar a trajectória no plano x,y.

O que acontece na Time Projection Chamber do ALICE?

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch

- Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov
- Transição

Neutrões

16/40

- Iões quase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...

...onde podemos projectar a trajectória no plano x,y.

Para o z:

O que acontece na Time Projection Chamber do ALICE?

Introdução

Secão de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch

Landau

Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição

Neutrões

16/40

 $v=\frac{\mu E}{p},$

- Iões guase à velocidade da luz colidem
- Várias partículas são projectadas (vamos focar-nos apenas em uma)
- A partícula deixa um rasto de electrões livres no gás
- Campo eléctrico para trazê-los para o plano de leitura...
- ...onde podemos projectar a trajectória no plano x,y.

Para o z:

 μ : mobilidade das cargas E: campo eléctrico p: pressão)

sabendo o instante da colisão, medimos o tempo de deriva $\Rightarrow z = v\Delta t$

Colisão PbPb a 7 TeV

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID

Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

17/40

entdisplays.html .ch/Public/en/Chapter1 http://aliceinfo

Identificação de partículas na TPC

A TPC permite calcular directamente dE/dx

■ MIPs: d*E*/d*x* constante

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID

Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

18/40

Medida do momento

Raio da curvatura da trajectória:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = q\vec{v}\times\vec{B} \Leftrightarrow p_{\perp} = qr_{\mathrm{c}}B$$

Fig. 3. dE/dx spectrum versus momentum in the ALICE TPC from pp collisions at $\sqrt[4]{s} = 7$ TeV.

Flutuações em d*E/*dx

Bethe-Bloch descreve apenas a média da perda de energia.

$$\Delta E = \sum_{n=1}^{N} \Delta E_n$$

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau

Landau

Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

19/40

Na passagem de uma partícula há zonas com pouca perda de energia, mas outras com uma perda elevada (electrões- δ)

Decaimento de uma partícula A na câmara de bolhas de 32 cm (1960)

Flutuações em dE/dx

Bethe-Bloch descreve apenas a média da perda de energia.

Na passagem de uma partícula há zonas com pouca perda de energia, mas outras com uma perda elevada (electrões-δ)

Cauda nas altas energias. Valor mais provável \neq média.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID

Landau

Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

Flutuações em dE/dx

Distribuição de Landau

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares CO

Part. Carregadas

Bethe-Bloch PID

Landau

Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

19/40

$$f(x,\Delta) = \frac{m_{\rm e}v^2}{2\pi N_A e^4} \cdot \frac{A}{Z} \cdot \frac{1}{x} \cdot \frac{1}{\pi} \int_0^{\pi_{\rm HI}} e^{-u\ln u - \lambda u} \sin(\pi u) du$$

$$\ln \lambda = \frac{(\Delta - \Delta^{\rm m.p.}) \cdot m_{\rm e}v^2}{2\pi N_A e^4 \cdot x}, \text{ em que } \Delta^{\rm m.p.} = \frac{2\pi N_A e^4}{m_{\rm e}v^2} \cdot \frac{Z}{A} \cdot x \left\{ \ln \left(\frac{4\pi N_A e^4 \gamma^2}{l^2} \cdot \frac{Z}{Z} \cdot x \right) - \beta^2 + 1 - \gamma_E \right\}$$

Na passagem de uma partícula há zonas com pouca perda de energia, mas outras com uma perda elevada (electrões- $\delta)$

Cauda nas altas energias. Valor mais provável \neq média.

Alcance médio

Integrar a distância para as perdas de energia de E_0 até 0

 $\mathrm{d}E = -\frac{\mathrm{d}E}{\mathrm{d}x} \cdot \mathrm{d}x \Leftrightarrow \mathrm{d}x = -\frac{1}{\mathrm{d}E/\mathrm{d}x} \cdot \mathrm{d}E$

 $R = \int_{F0}^{0} \frac{\mathrm{d}E}{\mathrm{d}E/\mathrm{d}x}$

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg

Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

Alcance médio

Integrar a distância para as perdas de energia de E_0 até 0

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance

Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

20/40

Ξ₀ até 0

$$\mathrm{d}E = -\frac{\mathrm{d}E}{\mathrm{d}x} \cdot \mathrm{d}x \Leftrightarrow \mathrm{d}x = -\frac{1}{\mathrm{d}E/\mathrm{d}x} \cdot \mathrm{d}E$$

$$R = \int_{E0}^{0} \frac{\mathrm{d}E}{\mathrm{d}E/\mathrm{d}x}$$

Exemplo

Protão com p = 1 GeV/cAlvo: chumbo com $\rho = 11.34 \, \text{g cm}^{-3}$

$$R/M = 200 \,\mathrm{g}\,\mathrm{cm}^{-2}\,\mathrm{GeV}^{-1}$$

 $R = 200/11.34/1 \,\,\mathrm{cm} \sim 20 \,\mathrm{cm}^{-1}$

Como medir a energia de partículas carregadas pesadas?

Calorímetro hadrónico — ATLAS

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance

Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

21/40

Camadas de material denso alternadas com camadas de detecção.

Como medir a energia de partículas carregadas pesadas?

Calorímetro hadrónico — ATLAS

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição

21/40

Camadas de material denso alternadas com camadas de detecção.

Chuveiros hadrónicos

Heavy Nucleus (e.g. U) Interacções hadrónicas Incoming hadron Colectivamente com os núcleos Ionization loss Ionization loss individualmente com Intranuclear cascade os nucleões Intranuclear cascade (Spallation 10⁻²² s) (Spallation 10⁻²² s) Internuclear cascade

Introdução

Secão de Choque

Fotões

Entreléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance

Bragg

Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

22/40

Evaporação nuclear

Chuveiros hadrónicos

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau

Alcance

Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

- electrões
- fotões
- neutrões
- piões
- fragmentos de núcleos.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

- Quanto menor é a energia da partícula, maior é a perda de energia
- A partícula perde a maior parte da sua energia no final:
 - Campo dos electrões exerce maior influência
 - No final a partícula pode recombinar com os electrões e ser absorvida no meio.

Curva de Bragg

Partículas pesadas carregadas perdem a maior parte da sua energia no final da trajectória.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões 25/40

- Curva de Bragg: perda de energia pela deposição de energia em função da profundidade
- A maior dose de radiação é localizada no fim da trajectória (com fotões, já vimos, a maior perda dá-se no início, com decaimento exponencial)
 U. Landgraf e S. Kühn.

http://hep.uni-freiburg.de/tl_files/home/wwwherten/particle_detectors/slides/Teilchendetektoren-WS1617-InteractionChargedParticles-2A.pdf

Curva de Bragg

Partículas pesadas carregadas perdem a maior parte da sua energia no final da trajectória.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Bragg Peak Bragg Peak

U. Landgraf e S. Kühn,

Aplicações muito importantes em tratamentos com radioterapia

Por exemplo: aceleradores no GSI, Darmstadt e DFKZ, Heidelberg, na Alemanha.

Neutrões

25/40

 $\label{eq:http://hep.uni-freiburg.de/tl_files/home/wwwherten/particle_detectors/slides/Teilchendetektoren-WS1617-InteractionChargedParticles-2A.pdf$

Perdas de energia para electrões

Electrões (e positrões) perdem energia por ionização

Como as outras partículas, mas a fórmula de Bethe-Bloch precisa de ser modificada:

- Electrões incidente e do alvo têm a mesma massa
- Espalhamento de duas partículas iguais e indistinguíveis.

$$-\left\langle \frac{dE}{dx} \right\rangle_{e} = K \frac{Z}{A} \frac{1}{\beta^{2}} \left[\ln \frac{m_{e}c^{2}\beta^{2}\gamma^{2}T}{2I^{2}} - (\ln 2)(2\sqrt{1-\beta^{2}}-1+\beta^{2}) + (1-\beta^{2}) + \frac{1}{8}(1-\sqrt{1-\beta^{2}})^{2} \right]$$

Devido à sua massa pequena, perdem muita energia em processos radiativos:

- Bremsstrahlung
- Produção de pares e chuveiros electromagnéticos.

Seguem um caminho muito mais tortuoso antes de perderem completamente a sua energia.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões 26/40

Bremsstrahlung

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

27/40

Google III C								0	@			
Trad	utor							Desativ	ar tra	idução instantâ	nea	0
Inglês	Português	Alemão	Detectar idioma	٣	+	Português	Inglês	Espanhol	٠	Traduzir		
Brems und strahlung			×	freio e radiaç	ção							
-					19/5000	M IL I	~					-

Causado pelas acelerações (mudanças de direcção) dos electrões pelos núcleos do meio.

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Brems}} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

z carga eléctrica

m massa

E energia

 α constante da estrutura fina (1/137)

Z, A número atómico e número de massa do material

N_A Númerdo de Avogadro

Bremsstrahlung

Causado pelas acelerações (mudanças de direcção) dos electrões pelos núcleos do meio.

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Brems}} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

Introdução

Secão de Choque

Fotões

Eotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

27/40

z	carga eléctrica	α	constante da estrutura fina $(1/137)$
m	massa	Z, A	número atómico e número de massa do materia

$N_{\rm A}$ Númerdo de Avogadro

Dependências:

m massa

E energia

- *E* importante para energias elevadas
- 7^2 materiais com Z elevado
- $\frac{1}{m^2}$ partículas leves!

Bremsstrahlung

Causado pelas acelerações (mudanças de direcção) dos electrões pelos núcleos do meio.

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Brems}} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

z carga eléctrica	lpha constante da estrutura fina (1/137)
<i>m</i> massa	Z, A número atómico e número de massa do material
<i>E</i> energia	N _A Númerdo de Avogadro

Relação entre perdas de energia por colisões e de Bremsstrahlung

```
Stopping power total:
```

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{ion}} + \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Brems}}$$
$$\frac{(\mathrm{d}E/\mathrm{d}x)_{\mathrm{ion}}}{(\mathrm{d}E/\mathrm{d}x)_{\mathrm{Brems}}} \cong \frac{EZ}{700}$$

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

27/40

(E em MeV).

Bremsstrahlung — Comprimento de radiação X₀

 $\frac{\mathrm{d}E}{\mathrm{d}x} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{m\mathrm{c}^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

28/40

Arranjando a equação de modo a que:

$$\frac{dE}{dx} = \frac{1}{X_0}E \qquad \text{ou seja:} \qquad X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln(183Z^{-\frac{1}{3}})}$$

$$E = E_0 e^{-\frac{x}{X_0}}$$

Quando
$$x = X_0$$
, $E = E_0/e$

Bremsstrahlung — Comprimento de radiação X₀

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 4\alpha N_{\mathrm{A}} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{EZ^2}{m^2}$$

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

28/40

Arranjando a equação de modo a que:

$$\frac{dE}{dx} = \frac{1}{X_0}E \qquad \text{ou seja:} \qquad X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln(183Z^{-\frac{1}{3}})}$$

$$E = E_0 e^{-\frac{x}{X_0}}$$

Quando
$$x = X_0$$
, $E = E_0/e$

 X_0 é a distância para um electrão ficar apenas com 1/e da sua energia, devido a perdas por Bremsstrahlung.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

29/40

20 25 30

Energy (keV)

5 10 15

0

Amptek Mini-X

45

40

35

Bremsstrahlung — exemplos

Introdução Secão de

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

29/40

Fonte de raios X

Bremsstrahlung — exemplos

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

29/40

Fonte de raios X

Radiação de sincrotrão

Sirius — futuro acelerador em construção perto de campinas

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

- Espalhamento elástico devido ao campo dos electrões e dos núcleos do meio
- Não há emissão de radiação, apenas desvios pequenos na trajectória
- Processo descrito à la Rutherford:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cong z^2 Z^2 \frac{1}{\sin^4 \frac{\Theta}{2}}$$

Espalhamento de Coulomb múltiplo

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

- Espalhamento elástico devido ao campo dos electrões e dos núcleos do meio
- Não há emissão de radiação, apenas desvios pequenos na trajectória
- Processo descrito à la Rutherford:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cong z^2 Z^2 \frac{1}{\sin^4 \frac{\Theta}{2}}$$

Espalhamento de Coulomb múltiplo

Espalhamento elástico devido ao campo dos electrões e dos núcleos do meio

- Não há emissão de radiação, apenas desvios pequenos na trajectória
- Processo descrito à la Rutherford:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cong z^2 Z^2 \frac{1}{\sin^4 \frac{\Theta}{2}}$$

- Tratado estatísticamente
- Depende do número atómico do material
- Quase todas as interacções resultam em ângulos de deflexão pequenos
- Com uma distribuição gaussiana à volta de $\Theta = 0$:

$$\sigma_{\Theta} = \frac{13.6 \, MeV}{\beta cp} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln \left(\frac{x}{X_0} \right) \right]$$

z, p carga e momento da partícula, x/X_0 espessura em comprimentos de radiação

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Četenkov Transição

Neutrões

Objectos no mundo macroscópico que se deslocam em um meio mais rápido do que as ondas desse meio:

32/40

Transição

Neutrões

Part.

- Uma onda produzida por uma fonte viajando mais rápida do que a propagação dessa onda gera uma onda plana
- Partículas carregadas também!

Velocidade da luz em um material:

$$v_{luz} = c/n$$

n índice de refracção.

Passagem de uma partícula carregada

Secão de Choque Fotões

Introdução

Eotoeléctrico Compton P. pares

Part. Carregadas

- Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Transição

Neutrões

33/40

Com uma velocidade v < c/n: polarização simétrica, não há momento dipolar

- Com uma velocidade v > c/n:
 - polarização assimétrica
 - mudança abrupta da polarização
 - emissão de radiação electromagnética: radiação de Čerenkov

Fig. 6.7. Illustration of the Cherenkov effect [68].

Pequena correcção na perda de energia: $\frac{dE}{dx} = \left(\frac{dE}{dx}\right)_{ion} + \left(\frac{dE}{dx}\right)_{Brans} + \left(\frac{dE}{dx}\right)_{\check{C}}$ (da ordem de 1 % de $(dE/dx)_{ion}$).

Ângulo de Čerenkov

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição

Neutrões

34/40

Partícula viaja βct Fotão viaja (c/n) t cos θ_č = 1/(β · n)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov

Transição

Neutrões

35/40

Identificação de partículas

- Partículas mais leves emitem mais radiação
- O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p \rightarrow$ massa).

Identificação de partículas

- Partículas mais leves emitem mais radiação
- O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p \rightarrow$ massa).

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

Identificação de partículas

- Partículas mais leves emitem mais radiação
- O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p \rightarrow$ massa).

Choque Fotões

Introdução

Secão de

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

Identificação de partículas

- Partículas mais leves emitem mais radiação
- O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos p → massa).

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

Identificação de partículas

- Partículas mais leves emitem mais radiação
- O ângulo de Čerenkov dá uma medida directa de β (com outras medidas adicionais, obtemos $p \rightarrow$ massa).

Seção de Choque Fotões

Introdução

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

35/40

Imagem 3D (trocar os olhos):

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

36/40

Dois meios com propriedades dieléctricas diferentes,

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.
 - quando a partícula deixa o meio, a polarização altera-se abruptamente
 - emissão de fotões.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões 36/40

- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.
 - quando a partícula deixa o meio, a polarização altera-se abruptamente
 - emissão de fotões.
- Fotões emitidos na gama de raios X (2–20keV)

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões 36/40

- Dois meios com propriedades dieléctricas diferentes,
- Electrão (ou partícula carregada) polariza o meio temporariamente na superfície entre os dois lados.
 - quando a partícula deixa o meio, a polarização altera-se abruptamente
 - emissão de fotões.
- Fotões emitidos na gama de raios X (2–20keV)
- **b**aixa intensidade: arranjo de 'sandwiche' alternando os dois meios.

Neutrões

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transicão

Neutrões

- Neutrões são partículas neutras, com pouca interacção
- A única possibilidade de interacção é através de reacções nucleares com alguns isótopos,
- Quanto menor for a energia do neutrão, maior é a sua seção de choque para a reacção.

Neutrões: Hélio-3

$\mathrm{n} + {}^{3}\mathrm{He} \rightarrow {}^{3}\mathrm{H} + {}^{1}\mathrm{H} + 0.764\,\mathrm{MeV}$

Introdução Seção de

Choque

Fotoeléctrico Compton P. pares

Part. Carregadas

- Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo
- Čerenkov

Transição

leutrões

- Centroid of the charge cloud
- Possible avalanches due to the tritons
- Possible neutron interaction points
- Possible avalanches due to the protons

- A solução mais interessante durante muitos anos,
- Boa eficiência de detecção,

Neutrões: Hélio-3

$\mathrm{n} + {}^{3}\mathrm{He} \rightarrow {}^{3}\mathrm{H} + {}^{1}\mathrm{H} + 0.764\,\mathrm{MeV}$

Introdução Seção de

Choque

Fotoeléctrico Compton P. pares

Part. Carregadas

- Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov
- Transição

Neutrões

- Centroid of the charge cloud
- Possible avalanches due to the tritons
- Possible neutron interaction points
- Possible avalanches due to the protons

- A solução mais interessante durante muitos anos,
- Boa eficiência de detecção,
- ³He já não existe!

Neutrões: Boro-10

$$\begin{array}{rrrr} \mathrm{n}+{}^{10}\mathrm{B}\rightarrow{}^{7}\mathrm{Li}{}^{*}+{}^{4}\mathrm{He} &\rightarrow {}^{7}\mathrm{Li}+{}^{4}\mathrm{He}+0.48\,\mathrm{MeV}\gamma &+ 2.3\,\mathrm{MeV}\,(93\,\%) \\ &\rightarrow {}^{7}\mathrm{Li}+{}^{4}\mathrm{He} &+ 2.8\,\mathrm{MeV}\,(7\,\%) \end{array}$$

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Veutrões

- No estado sólido em PTN,
- Difícil de depositar em superfícies,
- Eficiência de detecção limitada mesmo em camadas espessas por causa da auto-absorção dos produtos da reacção.

Introdução

Seção de Choque

Fotões

Fotoeléctrico Compton P. pares

Part. Carregadas

Bethe-Bloch PID Landau Alcance Bragg Electrões Bremsstrahlung Multiplo Čerenkov Transição

Neutrões

40/40

Obrigado pela vossa atenção.

ntdisplays.html http://aliceinfo.cern.ch/Public/en/Chapter