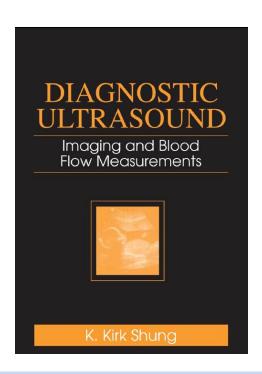




#### Ultrassom em biomedicina

# Atenuação -> Absorção

Theo Z. Pavan


Universidade de São Paulo, FFCLRP, Departamento de Física





#### **Bibliografia**

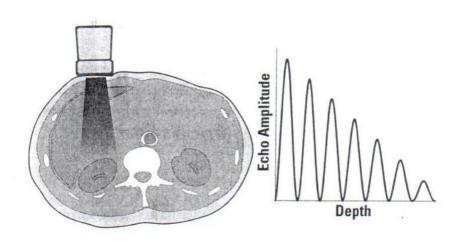
K. Kirk Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements, 2006. Cap. 2.

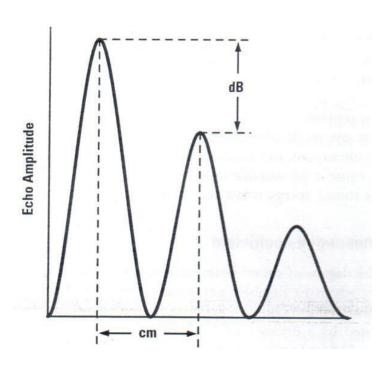






A atenuação implica em perda da energia acústica que pode ocorrer por diferentes processos tais como: espalhamento, reflexão e principalmente pela absorção da onda ultrassônica.


- Reflexão ou espalhamento > energia da onda é espacialmente redistribuída.
- Absorção → conversão de energia ultrassônica em energia térmica






# Reflexão e espalhamento

# **MMM** Absorção









#### A pressão de uma onda plana viajando em um meio atenuante

$$p = P_0 e^{-\alpha x} e^{j(\omega t - kx)}$$

 $\alpha \rightarrow$  o coeficiente de atenuação

$$p(x) = p(0)e^{-\alpha x}$$

$$\alpha (Np/cm) = \frac{1}{x} \ln \left( \frac{p(0)}{p(x)} \right)$$

 $\alpha \; (Np/cm) = \frac{1}{x} \ln \; \left( \frac{p(0)}{p(x)} \right) \quad \text{Nesse caso a atenuação \'e representada pela unidade de nepers}$ por centímetro (Np/cm).





#### Atenuação - Decibel

# Nível Relativo de Intensidade = 10 log $(I_1 / I_2)$ Nível Relativo do Sinal = 20 log $(A_1 / A_2)$

Coeficiente de atenuação

$$\alpha(dB/cm) = \frac{20}{x} \log \left( \frac{p(0)}{p(x)} \right)$$

O grau de atenuação do feixe sonoro é dado em: dB/cm





É preciso destacar que a absorção é uma função da frequência.

Em grande parte dos tecidos o coeficiente de absorção obedece uma lei de potência.

$$\alpha(f) = \alpha_0 |f|^{y}$$



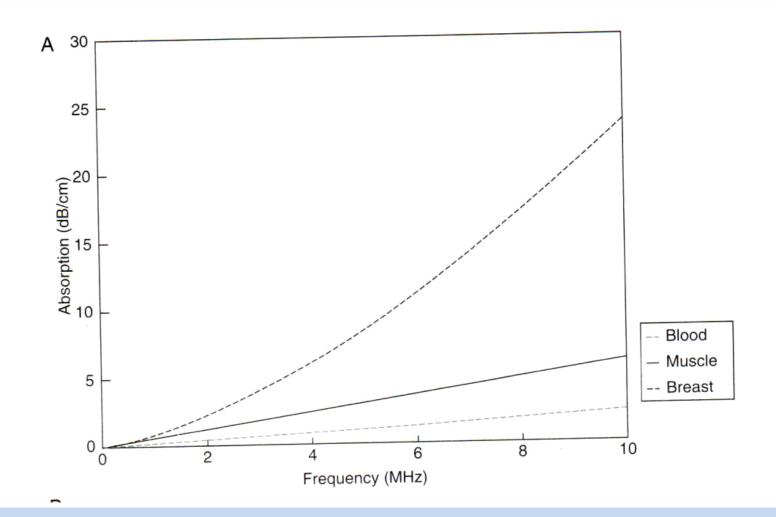


$$\alpha(f) = \alpha_0 |f|^{y}$$

**TABLE B.1** Properties of Tissues

| Tissue       | c                 | $\alpha$                | у                | ρ     | Z                 | B/A  |
|--------------|-------------------|-------------------------|------------------|-------|-------------------|------|
| (units)      | M/s               | dB/MHz <sup>y</sup> -cm |                  | Kg/m³ | megaRayls         |      |
| Blood        | 1584              | 0.14                    | 1.21             | 1060  | 1.679             | 6    |
| Bone         | 3198              | 3.54                    | 0.9 <sup>b</sup> | 1990  | 6.364             | _    |
| Brain        | 1562              | 0.58                    | 1.3              | 1035  | 1.617             | 6.55 |
| Breast       | 1510              | 0.75                    | 1.5              | 1020  | 1.540             | 9.63 |
| Fat          | 1430              | 0.6                     | 1*               | 928   | 1.327             | 10.3 |
| Heart        | 1554              | 0.52                    | 1*               | 1060  | 1.647             | 5.8  |
| Kidney       | 1560              | 10                      | 2 <sup>b</sup>   | 1050  | 1.638             | 8.98 |
| Liver        | 1578              | 0.45                    | 1.05             | 1050  | 1.657             | 6.75 |
| Muscle       | 1580              | 0.57                    | 1*               | 1041  | 1.645             | 7.43 |
| Spleen       | 1567              | 0.4                     | 1.3              | 1054  | 1.652             | 7.8  |
| Milk         | 1553c             | 0.5                     | 1                | 1030  | 1.600             | _    |
| Honey        | 2030 <sup>s</sup> | _                       | _                | 1420s | 2.89 <sup>s</sup> | _    |
| Water @ 20°C | 1482.3            | 2.17e-3                 | 2                | 1.00  | 1.482             | 4.96 |






- Em frequências usadas no ultrassom diagnóstico espalhamento é responsável, tipicamente, por cerca de 10% a 20% do total da atenuação causada pelo tecido.
- O espalhamento é extremamente importante para a formação da imagem.
- Tanto o espalhamento como a absorção são dependentes da frequência de propagação do ultrassom.





### Absorção

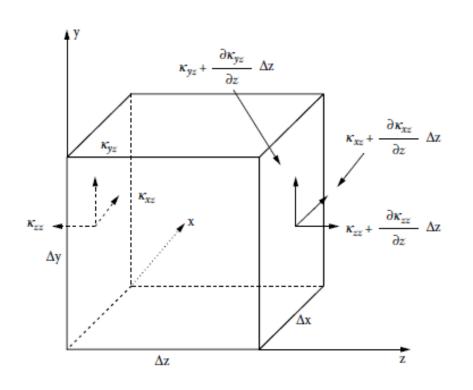






#### Absorção

O processo de absorção no tecido é um efeito bastante complexo.


Dois principais causadores:

- Absorção devido a viscosidade do tecido.
- Modelo de relaxação múltipla.

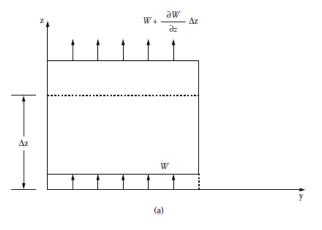




#### **Tensões**



 $\kappa_{zz}$   $\rightarrow$  Tensão longitudinal na direção Z


κ<sub>yz</sub> → Tensão de cisalhamento na direção Y

 $\kappa_{xz}$   $\rightarrow$  Tensão de cisalhamento na direção X





### **Deformações**



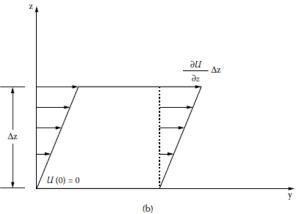
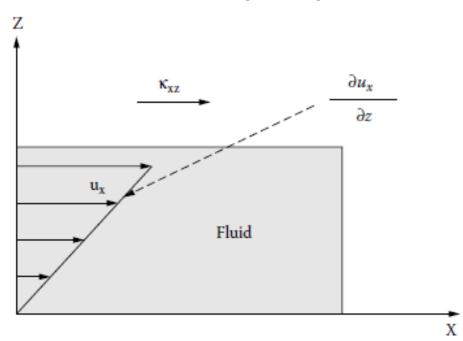



FIGURE 2.5 (a) Longitudinal strain of a Z-plane in the Z-direction. (b) Shear strain of a Z-plane in the Y-direction.

Deformação longitudinal

$$\varepsilon_{zz} = \frac{\partial W}{\partial z}$$

Deformação de cisalhamento


$$\varepsilon_{xz} = \frac{\partial U}{\partial z}$$





#### **Viscosidade**

$$\frac{\partial \varepsilon_{xz}}{\partial t} = \frac{\partial}{\partial t} \frac{\partial U}{\partial z} = \frac{\partial u_x}{\partial z}$$



$$\kappa_{xz} \rightarrow$$
 Tensão de cisalhamento

$$\epsilon_{xz} \rightarrow$$
 Deformação de cisalhamento

$$\eta = \frac{\kappa_{xz}}{\partial u_x / \partial z}$$





#### **Viscosidade**

Nas deduções anteriores consideramos que as oscilações causadas pela onda eram totalmente livres de viscosidade.

Isso acarretava no fato de que a pressão e a velocidade de partícula estavam sempre acopladas.

Equação de Euler

$$\rho_0 \frac{\partial u_x}{\partial t} = -\frac{\partial p(x,t)}{\partial x}$$





#### **Viscosidade**

Para o meio viscoso será preciso que a força ocasionada pela passagem da onda vença a força viscosa para que as partículas se movam.

Diminuição na eficiência da pressão em movimentar as partículas um termo extra p'.

$$\rho_0 \frac{\partial u_x}{\partial t} = -\frac{\partial (p - p')}{\partial x} \qquad p' \approx \eta \frac{\partial u_x}{\partial x}$$

$$\rho_0 \frac{\partial u_x}{\partial t} = -\frac{\partial}{\partial x} \left( p - \eta \frac{\partial u_x}{\partial x} \right)$$





### Absorção por viscosidade

- Essa pressão extra não apresenta altas magnitudes contudo sua presença gera absorção da onda por perda de potência.
- Adotando as mesmas estratégias usadas para a dedução da equação da onda.

Equação da continuidade

$$\rho_0 \frac{\partial u_x}{\partial t} = -\frac{\partial}{\partial x} \left( p - \eta \frac{\partial u_x}{\partial x} \right) \qquad \frac{\partial \delta}{\partial t} = -\rho_0 \frac{\partial u_x}{\partial x}$$

$$\frac{\partial \delta}{\partial t} = -\rho_0 \frac{\partial u_x}{\partial x}$$

$$\frac{\partial^2 p}{\partial x^2} + \frac{\eta}{B} \frac{\partial^3 p}{\partial x^2 \partial t} - \frac{\rho_0}{B} \frac{\partial^2 p}{\partial t^2} = 0$$





#### Absorção por viscosidade

#### Solução típica

$$\frac{\partial^2 p}{\partial x^2} + \frac{\eta}{B} \frac{\partial^3 p}{\partial x^2 \partial t} - \frac{\rho_0}{B} \frac{\partial^2 p}{\partial t^2} = 0 \qquad \qquad p = P_0 e^{-\alpha x} e^{j(\omega t - kx)}$$



$$p = P_0 e^{-\alpha x} e^{j(\omega t - kx)}$$

#### Sendo

$$\alpha = \frac{\eta \omega^2}{2\rho_0 c^3}$$

Proporcional à frequência ao quadrado





#### Absorção por viscosidade

Estudos mostram que a atenuação em tecidos segue uma lei de potência com 1,0 < y < 1,5

$$\alpha(f) = \alpha_0 |f|^{y}$$

| Tissue<br>(units) | C<br>M/s | α<br>dB/MHz <sup>y</sup> -cm | у              | ρ<br>Kg/m³ | Z<br>megaRayls    | B/A  |
|-------------------|----------|------------------------------|----------------|------------|-------------------|------|
|                   |          |                              |                |            |                   |      |
| Bone              | 3198     | 3.54                         | 0.9b           | 1990       | 6.364             | _    |
| Brain             | 1562     | 0.58                         | 1.3            | 1035       | 1.617             | 6.5  |
| Breast            | 1510     | 0.75                         | 1.5            | 1020       | 1.540             | 9.6. |
| Fat               | 1430     | 0.6                          | 1*             | 928        | 1.327             | 10.3 |
| Heart             | 1554     | 0.52                         | 1*             | 1060       | 1.647             | 5.8  |
| Kidney            | 1560     | 10                           | 2 <sup>b</sup> | 1050       | 1.638             | 8.9  |
| Liver             | 1578     | 0.45                         | 1.05           | 1050       | 1.657             | 6.7. |
| Muscle            | 1580     | 0.57                         | 1*             | 1041       | 1.645             | 7.4  |
| Spleen            | 1567     | 0.4                          | 1.3            | 1054       | 1.652             | 7.8  |
| Milk              | 1553c    | 0.5                          | 1              | 1030       | 1.600             | _    |
| Honey             | 2030s    | _                            | _              | 1420s      | 2.89 <sup>s</sup> | _    |
| Water @ 20°C      | 1482.3   | 2.17e-3                      | 2              | 1.00       | 1.482             | 4.9  |

Essa dependência com o quadrado da frequência é encontrada em meios mais homogêneos como água e ar.





### Modelo de relaxação múltipla

- Acredita-se que o modelo de relaxação múltipla apresenta muita influência no processo de absorção ultrassônica em tecidos.
- Vamos supor que uma molécula é movimentada para uma nova posição devido à passagem da onda.
- Tempo necessário para essa molécula voltar a sua posição de equilíbrio → tempo de relaxação (TR).





### Modelo de relaxação múltipla

- Importante analisarmos TR relativo ao período da onda (T).
- TR<<T o efeito desse processo será pequeno.
- TR>>T o efeito também é pequeno já que as moléculas não se movimentarão devido a passagem da onda.
- TR ≈ T o movimento da onda e das moléculas podem estar fora de fase, o que exige mais energia para modificar a direção do movimento das moléculas.

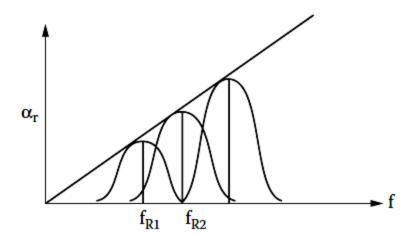




### Modelo de relaxação múltipla

α<sub>r</sub> → Componente da absorção devido ao processo de relaxação.;


G→ constante; f<sub>R</sub> → frequência de relaxação;


**E** → constante associada com absorção por viscosidade;

f<sub>Ri</sub> → Constantes de relaxação associadas com diferentes componentes do tecido;

$$\alpha_r = \frac{Gf^2}{1 + (f/f_R)^2}$$

$$\alpha = Ef^2 + \sum_{i} \frac{Gf^2}{1 + (f/f_{Ri})^2}$$



