GAMES OF
STRATEGY

' THIRD EDITION

Avinash Dixit

Princeton University

Susan Skeath
Wellesley College

David Reiley

University of Arizona and Yahoo! Research

HAMRURLRY | | N
| W WL
| Pat

333333

DEDALUS - Acervo - FFLCH




A A

132 [CH. 4] SIMULTANEOUS-MOVE GAMES WITH PYRE 211

de the sum by 3. If the remainder

em up, and then divi
ets it, and if it is

e cookie, if the remainder is 1 Sara g
a payoff of 1 for winning (and eating the

fingers, they'll add th
is zero Roxanne gets th
2 Ted gets it. Each of them receives

cookie) and zero otherwise.
(a) Represent this three-player game in normal form, with Roxanne as the

Row player, Sara as +he Column player, and Ted as the Page player.
(b) Find all the pure-strategy Nash equilibria of this game. Is this game a
fair mechanism for allocating cookies? Explain why or why not.
U12. (Optional) Construct the payofl matrix for your own two-player game that
each player should have three

satisfies the following requirements. First,
strategies. Second, the game should not have any dominant strategies.

Third, the game should not be solvable using minimagx. Fourth, the game

should have exactly two pure-strategy Nash equilibria. Provide your game

atrix, and then demonstrate that all of the above conditions are true.

Simultaneous-Move Games
with Pure Strategies II:
Continuous Strategies and
I1I: Discussion and Evidence

HE DISCUSSION OF SIMULTANEOUS-MOVE GAMES in Ch
——— : ¢ i apter 4 focused
fl]goge_ﬂ;) :;E;:?czi::;cirﬁrr:;d '; ::Irfcmte set of actions from whichcilt:
- :. of this type include sporting cont i
tion_sol :; lr‘.l ;;;2;;!, :;:cr;he.:r of b\.rellldeﬁn.cd plays can be used in aggivenessiti:
e s b foi, in which the kicker can choose to go high or low, to
e ga,mese?(amp!e. Other examples include coordination and
i i in which players have only two or three available
preeles Such games amenable to analysis with the use of a game table, at
Moy Simunaneou; I::easonable nufnber of players and available actions,.
sl s e lisgair (EAD differ from those considered so far; they
B e ﬁh raleg:e‘s from a wide range of possibilities. Games in
it mmrim_l;io“ 5?$§,!I?ces f;)}lit:he:r prt;mu:ts. philanlhwpis-l;-é‘l'\-ouse
- Seorcont actors choose project bid levels are ex-
g 1llcalrl 5,13{?5{2?@? vir:ue‘lllylr 1_‘r‘1ﬁn§_ggw§;t of choices. Technically, ;I)fi::s
i ) ; ave a mlnlml‘lm unit, such as a cent, and so there
Every el o ttllsc(l;(?te set of price strategies. But in practice the unit
too many chict atiom g e discreteness would require us to give each player
simpler and i mgilrzssan:i malfe the game table too large; therefore it is
When pleyertan Su.:_lh o uc; 1 choices as m:\lil\uqusly- variable real numbers,
rge Vrgl»ger of actions available, game tables become

asE
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134 [CH. 5] SIMULTANEOUS-MOVE GAMES WITH PURE STRATEGIES
virtually useless as analytical tools; they become 100 unwieldy to be of practi-
calise, For these games we need a different solution technique. We present the
analytical tools for handling such continuous strategy games in the first part of
this chapter.

“This chapter also takes up some broader matters relevant 1o behavior in
simultaneous-move games and to the concept of Nash equilibrium. We review
the empirical evidence on Nash equilibrium play that has been collected both
from the laboratory and from real-life situations. We also present some theoretical
criticisms of the Nash equilibrium concept and rebuttals of these criticisms, You
will see that game-theoretic predictions are often a reasonable starting point for
understanding actual behavior, with some caveats, such as the level of player.

l PURE STRATEGIES THAT ARE CONTINUOUS VARIABLES

loped the method of b_esllmspm_lse analysis for finding all

In Chapter 4 we deve!
move games. Now we extend

pure-strategy Nash equilibria of simultaneous-
that method to games in which each player has available a continuous range of
choices—for example, firms setting prices of {heir products, To calculate bestre-
sponses in this type of game, we find, for each possible value of one firm’s price,
{he value of the other firm's price that is best for it (maximizes its payoff). The
continuity of the sets of strategies allows us 10 use algebraic formulas o show
how strategies generate payoffs and to show the best responses as curves in &
graph, with each player’s price (or any other continuous strategy) on one of the
axes. In such an {llustration, the Nash equilibrium of the game 0CCurs where the
two curves meet. We develop this idea and technique by using two stories.

A. Price Competition

a small town, Yuppie Haven, that has two Festaurants,

Xavier's Tapas Barand Yyonne's Bistro, To keep the story simple, we suppose that

each place has a set ment, Xavier and Yvonne have to set the prices of their re-

spective menus. Prices are their strategic choices in the game of competing with

each other; each bistro's goal is to set price to maxirnize profit, the payofl in this
they must get their menus primed'sepm'ately without

game, We suppose that
knowing the other's price, so the game has simultaneous moves.! Because prices
start with general or al-

can take any value within an (almost) infinite range, we
gebraic symbols for them. We then find best-response rules that we use Lo solve

Our first story is set in

I reality, the competition extends over time, so each can observe the other's past choices. This
Ttepetition of the game introduces nNew considerations, which we COVeT in Chapter 11
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the game and to i ilibri i

T ice Py.determme equilibrium prices. Let us call Xavier's price P, and

. In setting its price, each restaurant ha

e ( : : s to calculate the conse

. ynll)metric r;z(:ilt)) Itlil;lr:gs t1;elat1ve1y s1m1?le, we put the two restaurar?tlsleiﬁc: i/efzor

pl tl’), uu.t readers with a little more mathematical skill c::r};

S iosstm% muc.h more general numbers or even algebraic

i —— 0 s.ervmg each customer is $8 for each restaura-

e exp')eru?nc('a or market surveys have shown that, wh
 and Yvonne's price is P, the number of their respectivei;::m?ln

ers, respectively Q, and Q, (me i
a.
e e ), sured in hundreds per month), are given by the

Q. =4-2P,+P,
Q=44—-2P,+ P,

The key idea in these e ion: that € re: raises its price by $
de: quations is that, if on y
( | ) staurant rai i P i
say, Yvonne increases Py by $1), its sales will g0 down by 200 per month ‘Qy
c(hanges by — 2) and those of the other restaurant will go up by 100 per month
Q changes by 1. Presumably, 100 of Yvonne's custome: i
X . s switch to Xavier's and
vier's pro: i p X
Xa it per week (in hundreds of week), call it [I,—the
N N of dollars per i
Greek letter IT (pl) is the traditional economic symbol for p].'Oﬁt)—i iven b
S given by the

pIOdUCt of the net revenu rice less co! bl o
€ per customer i
(p st or Px 8) and the num

I, = (P~ 8) Q,= (P, — 8) (44 — 2P, + P)).

By multiplying out an nging th of the pre
d rearranging the t i p
; A ! erms on the right-hand side
ceding expression, we can write profit as a function of increasing powefst of Pr -
X+

Tl, =-8(44 + P) + (16 + 44 + P,)P,— 2(P,)?
=-8(44 +P,) + (60 + P)P,—2(P)%

Xavier sets his pri imi i
Yo o ::l;e i,; :0 max1n.uz|e this payoff. Doing so for each possible level
i ?liists u‘s Xavier's best-response rule; we can then graph it.
) e ax1;at1've examples where one real number (such as .the
el e }r]nlze an'otlller real number that depends on it (such
et s payoff) have a similar form. (In mathematical jargon, o
cond number as a function of the first.) In the apper;(;"]l: tv:‘)tl“hl'cl
is

2
Readers wh,
0 know some i i
are demand functi economics will recognize th: N
ncti at the equati inki it .
ions for the two products Xand Y. The quantigr der(::xgz? 2? quimmes o
each product is de-

Creasing in j T

its own pri ownward slo: e

price (demands are dowm i i

e : g sloping) and increasing in the price of the other
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chapter we develop a simple general technique for performing such maximiza-
tion; you will find many occasions ©© use it. Here we just state the formula.

The function we want {b maximize takes the general form
y=A+BX-C X

¢ used the descriptor ¥ for the number we want to maximize and
X for the number we want to choose 10 maximize that Y. In our specific example,
profit, Hy would be repmsemed by ¥, and the price, Py bY X. Similarly, although
in any specific problem, the terms A, B, and C in the equation above would be
known numbers, wé have denoted them by general algebraic symbols 50 that
our formula can be applied across wide variety of similar problems. (The tech-
nical term for the terms A, B, and Cis paramelers, o algebraic constants.) Be-
cause most of our applications involve nonnegative % entities, such as prices,
and the maximization of the Y enlity, we require B = pand €= 0. Then the for-
mula giving the choice of X 10 maximize Y in terms of the known parameters A,
B, and Cis simply X = B/(2C). Observe that A does not appear in the formula,
although it will of course affect the value of ¥ that results.

Comparing the general function in the equation above and the specific ex-
ample of the profit function in the pricing game on the previous page, Wwe have®

where we hav

B=60+P, and C= 2.

Therefore Xavier's choice of price 10 maximize his profit will satisfy the formula
B/(2C) and willbe
p,=15+ 0.25P,

This equation determines the vatue of P, that maximizes Xavier's profit, given a
particular value of Yvonne’s price, P. In other words, it i exactly what we want,
the rule for Xavier's best response.
yvonne's best-response rule can be found similarly. Because the costs and
sales of the two restaurants are entirely symmetric, the equation is obviously
going to be
p,=15+0.25P¢

Both rules are used in the same way to develop best-response graphs. If Xavier
sets a price of 16, for example, then Yvonne plugs this valug into her best-response
rule to find P, = 15+ 0.25(16) = 19; similarly, Xavier's best response {0 Yvonne’s
p,=16is P = 19, and each restaurant’s best response 1o the othet's price of4is
16, that to 815 17, and s0 07

*although Py, chosen by Yvonne, is2 variable in the full game, here we are considering ontyapart
of the game, namely Xavier's best response, where he regards\l\/onne‘s choice as outside his control

and therefore ke 8 constant.

PURE
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Yvonne's
price Py
30+
Yvonne's
be
20 st

[~ response
Nash equilibrium

Xavier's
best
response

L I
10 20 30

Xavier's price Py

1 . Best-| e Pricing Game
FIGURE 5 Response Curves and Equilibrium in the Restaurant Pric g G

Figure 5.1 shows the graphs of th

b oo ese two best-response relati i

iy prizzss (::fh (::reez(ample——namely, the linear relation ttl)(;?vi.eglzv Htllg to

B gon, and the f:onstant cost of producing each n?e;n—

cach ol the two —r ;)é_»(;‘se curves is a straight line. For other speciﬁcatio_

T il ,S e L:lrves can be other than straight, but the methodrcl)sf
g i i .Ofe:hmely, ﬁrs’t ho.lding one restaurant’s price (say, P,}
e e l;)thers price (say, P;) that maximizes the ;eé—

The point of inters’ection fn PN

I o nz the two best-response curves is the Nash equilib-
el i il ﬁrmee}rll the two restaurants. That point represents the
i i N t at are best responses to each other. The specifi
e M~ bes;tmcmg strategy in equilibrium can be found alpeblr :
chase our example to make t_lzzsgtlol?::i!(::ielsi e delibsrat;;,
case, we simply substitute the expression fornlfxail;'ltaongl::h:x;(;};zliz?l if?)f i‘syt Irtli oy

, to find

P =1 .
v 5+ 0.25P, = 15 + 0.25(15 + 0.25Py) =18.75 + 0.0625 P,
8 v

This las € i = he problem, it
: quation simpliﬁes to P, i Ty P
e lt : y 20. Given the syminet of i
s simple to detiermme that Px = 20 also. ThUS, in equilibrium each lestal ur a’lllt
3halgeS $20 for its menu and makes a proﬁt of $12 on each of th(; 2,400 custo.

¥ mers

i
'Without thi:
this s
specificat: ymmetry, the
C[}:Eclﬁca(mnsv still “nearrg,o iy two best-response equations will be different, but gi
ance to do s0 in Exercia it is not much harder to solve the p ADUHEIENTOLE other
xercise S2 at the end of this chapter. nonsymmetric case. You will have a
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(2,400 = (44-2 X 20 + 20) hundred] that it serves each month, for a total profit

of $28,800 per month.

8. Some Economics of oligopoly

Our main purpose in presenting the restaurant pricing example was to illustrate

how the Nash equilibrium can be found in a game where the strategies are con-
{inuous variables, such as prices. But it is interesting 1o taie a further look into
this situation and to explain some of the economics behind pricing strategies
and profits when @ small number of firms (here just two) compete. In the jargon
of economics, such comp etition is referred 10 as oligopoly, from the Greek words

for “a small number of sellers.”
Begin by observing that eac
ward. Specifically, when one restaurant raises its price by $
own price by 0.25, O 25 cents. When one restaurant raises
its price, some of its customers switch to the other restaurant, and its rival can
then best profit from them by raising its price part of the way. Thus a restaurant
that raises its price i helping to increase the other’s profit. In Nash equilibrium,
where each restaurant chooses its price independently and out of concern for its
awn profit, it does not take into account this benefit that it conveys to the other.
Could they get together and conperatively agree 10 raise their prices, thereby rais-

ing both profits? Yes. Suppose the two restaurant charged $24 each. Then each

would make a profit of $16 on each of the 2,000 customers (2,000 = (44 — 2 X 24
, for a total profit of $32,000.

+ 24) hundred] that it would serve each month
This pricing game is exactly like the prisoners’ dilemma game presented
in Chapter 4, but now the strategies are continuous variables. In the story in
Chapter 4, the husband and wife were each tempted to cheat the other and
confess to the police; but, when they both did so, both ended up with lon-
ger prison sentences (worse outcomes). In the same way, the more profitable
Nash equilibrium. The separale calculations of the two

price of $24 isnot a
restaurants will lead them to undercut such a price. Suppose that Yvonne

somehow starts by charging $24. Using the best-response formula, we see that
Xavier will then charge 15+ 025 X 24 = 21, Then Yvonne will come back with
her best response to that: 15+ 025 X 21 = 20,25, Continuing this process, the
prices of both will converge toward the Nash equilibrium price of $20.

But what price is jointly hest for the two restaurants? Given the symmetry,
suppose both charge the same price P.Then the profit of each will be

h of the two firm best-response curve slopes up-
1, the other’s best re-

sponse is 10 raise its

m,=",=F- 8)(44a — 2P+ P) = (P-8)44-P) =~ 352 + 52P — P2
The two can choose P to maximize this expression. Using the formula provided

in Section LA, we see that the solution is P = 52/2 = 26. The resulting profit for

each restaurant is $32,400 per month.
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In the jargon of economics, such collusi i
e 3 .o usion to raise prices to the joil i-
mellevel ! U_Sl'egdo?, ggfﬁi;hef?lgh prices hurt consumers, and regu{at::irya(;zﬁ—
nakems oo Onz aen t}l;y to pre.vc?nt the formation of cartels and to
R —— noF er. EXPIICI( collusion over price is illegal, but
it may be possibie fo male ain tac.1t collusion in a repeated prisoners’ dilen"lma'
Collusion needrr)lot :lwgaifr:f;;gtch}?p:r o, |
e . lead o higher prices. In the precedi
k& Custozlr::;‘c’)v\zerfsr its ?rlc(?, its sales increase, in paft beec(::llsgeeita(rirrlg\iz
S subm}; torn its rival because the products (meals) of the t
e al,rtees for each other. In other contexts, two firms ma \go
seiing products ey Caseco'rfnplements to each other—for example, hardv?/,arz
s uilii)l ' one firm lowers its price, the sales of both firms
neresse. n accountqth brlum. where the firms act independently, they do
P an ek eneﬁt' that :cl lower price of each would C(')nvez on
S actizn ee:lpn(fes higher than they would if they were able
R s.l lowing them to cooperate would lead to lower
Competition need n()ct]aal:;/)eit;se iconslumel:S e
e : nvolve the use of prices as th i
v il Z};aamnglte, cﬁshlng .ﬂ‘eets may compete to bring a larg:r Sct;?zflgtl(c)
P Sectionywzmpetl.tlon as opposed to the price competition con-
S r—— 7 er.ld_0¢f:on51der quantity competition later in this ch:
-chapter exercises. e

C. Political Campaign Advertising

Our second example is one drawn from politi
ou : politics. It requires j i
cul:s:::fiv tohre;r; ZvrfdnoFmally use, but we explain the ;tuft?olrlll Zteiigglfh? cO rle
Consider an electi(;/v1 e )
e todlctectaay f;lofr?lsltlested by two parties or candidates. Each is try-
o E e other by advertising—either positive ads that
e i o hge out oneself or negative, attack ads that emphasize
ore A toppoment. To keep matters simple, suppose the vot-
Meraneosiensst 3 Cln. and unco.nc.erned and are moved solely by the ads
e advaerallmdthat this 1s‘ a pretty accurate description of U S.
i —— tce aflalyses in political science do recognize th.aé
i Chapterslga;eEg‘l; Zorfé;we address the behavior of such vot-
party equals its share of the total campaisglrrln :;3";;32510; (:ht:teisv Z:)enzhzrelloila
. Call the

S
Firms do tr
t . - .
y to achieve explicit collusion when they think they can get h
away with it. An enter-

taining and i

instructive .

Br story of R

roadway Books, 2000) y of one such episode is in The Informant, by Kurt Eichenwald (New York:
. ork:
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Party R's

ad,y
($ millions)

Party L's
best response

Nash
equilibrium

pParty R's

= best response

100
. 2 Party L'sad, X
($ millions)

est Responses ar ash Equilibrium in e Campaign el ng Game
Best P! paigl vertising
FIGURE 5.2 R d Nash E b the G Advert Gi

illi dvertising and R
H L. spends $x million on &
arti - candidates L and R; when i o
o ca'lllirm Lwill get a share x/{x+ y) of the votes fmd.ﬂ will get f::;“(j " ;}re
i fF:l rea;lc-.'s who get interested in this application can
Once again, 5 o .
nemlgireaunents in specialized political science v\nﬂn_gsm S——
B Raisi money to pay for these ads includes a cost: ); K
dRalsl:::galmuc'cat\s: time and effort of the candidates, p?ny 5;.‘;:‘ B [l.l e
a::dsgjalnc‘fumrc political payoff to large cnntrlhumrs:.ar: 1;:1 vt
:-;[ceﬂ 'COSIS if these payoffs are exposed and lead t‘a sr..Iu: ::he,: e
‘l Iysis, let us suppose all these costs are proportiona 0 S
anal Y“”’d" res x and y. Specfically, let us Suppose that party {;Ea;g; b
Expﬂ(‘l‘ b:lilts vote percentage minus its advertising expenditure, 100X
sure s ‘ v
Similarly party R's payoff is 100/ (x + )= ¥ .
Now we can find the best responses. Ie
the formula mathematica i
For a given strategy X o p.ar 1 ;
leulus first-order condition is found by ;;:{i:l:‘g}
= i cLtoy H
fixed and sefting the derivative of 100y/(x + ) = ywnrh ;e;;::s 2 'gmph "
x Itis 100x/ (x+ y)2 — 1 =0, 00y = 10Vx — x. Figure 5.2 8 1 oy
7810, . e o ‘
iﬁat of the analogous best-response function of party L: nn]rn‘: E:f sty 2
Look at the best-response curve of party R. As the va u o i
Y arty Rs y increases for a while and then (lerfmasu.. fisgenproms
cr'-if::;gsiﬂg very little, then one’s own ads hzm? a high r:w::re xl gl
. Tes and it pays Lo respond to a small increase in the other’s exp
votes, Vs

spending more oneself to compete

cause we cannot do so without

lly and then explain its general

caleulus, we derive party R chooses

meaning intuitively, in words.
y to maximize its payoff. The ca

harder. But if the other party already has 8
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massive expenditure, then one's own ads get only a small return in relation to
their cost, so it is better to respond to the other’s increase by scaling back.

As it happens, the two parties’ best-response curves intersect at their
peak points. Again, some algebraic manipulation of the equations for the two
curves yields us exact values for the equilibrium values of x and y. You should
verify that here x and y are each equal to 25, or $25 million, (This is presumably
a congressional election; Senate and presidential elections cost much more
these days.)

As in the pricing game, we have a prisoners’ dilemma. If both parties cut
back on their ads in equal proportions, their vote shares would be entirely un-
affected, but both would save on their expenditures and so both would have
a larger payoff. Unlike a producers’ cartel for substitute products that keeps
prices high and hurts consumers, but like a producers’ cartel for complements
that leads to lower prices, a politicians’ cartel to advertise less would probably
benefit voters and society. We could all benefit from finding ways to resolve this
particular prisoners’ dilemma. In fact, Congress has been trying to do just that
for several years and has imposed some partial curbs, but political competition
seems too fierce to permit a full or lasting resolution.

‘What if the parties are not symmetrically situated? Two kinds of asymmetries
can arise. One party (say, R) may be able to advertise at a lower cost, because it
has favored access to the media. Or R’s advertising dollars may be more effective
than L's; for example, L's vote share may be x/(x + 2y), while R's is 2y/(x + 2y).

In the first of these cases, R exploits its cheaper access to advertising by
choosing a higher level of expenditures y for any given x for party L; that is,
R's best-response curve in Figure 5.2 shifts upward. The Nash equilibrium
shifts to the northwest along L's unchanged best-response curve. Thus R ends
up advertising more, and L less, than before. It is as if the advantaged party uses
its muscle and the disadvantaged party gives up to some extent in the face of
this adversity.

In the second case, both parties’ best-response curves shift in more complex
ways. The outcome is that both spend equal amounts, but less than the 25 that they
spent in the symmetric case. In our example where R’s dollars are twice as effective
as Ls, it turns out that their common expenditure level is 200/9 = 22.2 < 25. (Thus
the symmetric case is the one of most intense competition.) When R’s spend-
ing is more effective, it is also true that the best-response curves are asymmetric in
such a way that the new Nash equilibriurn, rather than being at the peak points of
the two best-response curves, is on the downward part of L's best-response curve
and on the upward part of R’s best-response curve. That is to say, although
both parties spend the same dollar amount, the favored party, R, spends more
than the amount that would bring forth the maximum response from party L, and
the underdog party, L, spends less than the amount that would bring forth the
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maximuin response from party R. We include an optional exercise (Exercise U12)
in this chapter thatlets the mathematically advanced students derive these results.

D. General Method for Finding Nash Equilibria

Although the strategies (prices or campaign expenditures] and payolls (prof-
its ot vote shares) in the two previous examples are specific to the context of
competition between firms or political parties, the method for finding the Nash
equilibrium of a game with continuous strategies is perfectly general. Here we
<tate ifs steps 50 you can use it as a recipe for solving other games of this kind.
Suppose the players are numbered 1,2, 3, Label their strategies X, & .-« inthat
order, and their payoffs by the corresponding upper-case letters X, ¥, Z,... The payoff
ofeach is in general @ function of the choices of all; label the respective functions F G,

H, ... Construct payolls from the il‘l-fDl:ﬂl_al]Ol‘lrabOl.l} the game, and write them as

X=F(x,y,z,...),Y= G(x,y,z,...),Z=H(x.y,z....).

Using this general format to describe our example of price competition between

two players (firms) makes the strategies X and y become the prices P and Py. The
payolfs X and Yare the profits Il and I1,. The functions Fand G are the quadratic

formulas,
n,=- 8(44 + Py) +(16+ 44+ Py)PX - 2(Py)

and similarly for T
In the general approach, player 1 regards the strategies of players 2,3, . -

outside his control, and chooses his own strategy to maximize his own payofl.
Therefore for each given set of values of 3, z .. - . player I's choice of x maximizes
X= Flx; )% ... ) Hyouuse caleulus, the condition for this maximization i that
the derivative of X with respect 10 X holding y % . - - constant (the partial derivi-
tive) equals zero. For special functions, simple formulas are available, such as
the one we stated and used above for the quadratic. And even if an algebra or
caleulus formulation is 100 difficult, computer programs can tabulate or graph
hest-response functions for you. Whatever method you use, you find an equation
for player 1's optimal choice of x for given i Z .-+ that is player 1's best-response
function. Similarly, you can find the best-response functions for each of the other

L a8

players.
The best-response functions are equal in number (0 the niitber of the strate-

gies in the game and can be solved simultaneously while regarding the strategy
variables as the unknowns. The solution is the Nash equilibrium we seek, Some
games may have multiple solutions, yielding multiple Nash equilibria. Othet
games may have no solution, requiring further analysis, such as inclusion of

mixed strategies.
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2 EMPIRICAL EVIDENCE CONCERNING NASH EQUILIBRIUM

In Chapter 3, when we considered empirical evi
. . : evidence on sequential-m
ictuany p(li ;;;g)ifl;l\givsalg that the evidence came from observat(ilons on gar;)l‘::
e L S ]abor , as well as games deliberately constructed for test-
S fotr}elltory or the classroom. We pointed out the different
ntorps B o e t.wo methods. Similar issues arise in securing and
i ey are on1 simultaneous-move games.
B i p a);ed for substantial stakes by experienced players
i .no‘Iv edge and the incentives to employ good strate—,
- sdmc ude many factors beyond those considered in the
e Wheth.er - thata d? not bear out the predictions of the theory, we
e eory is wro.ng or whether some other factor is havi
rect e overwh(.elms the strategic considerations. "
e Cleane??; :s(p;r:l?l:}?:; Ze;?n(;oinntr.o] for the other factors and therefore pro-
= ! - : inexperienced players and provi
" ne‘ie; :mn;e :fs ir;(;e;ltlves to learn the game and play it well. Coﬁfl?on‘::dt:rig‘l
first several’plays of tl’sle:N g:rlr(lieﬂi(r)lu:: eerxz:::(rii try t}tlill]gs ocntiung
i ina mental setting may repres i
o Soﬁfzi; ;rilgl tht tlclle equlhbrlum. that experienced playerZ wo}:ﬂd Tt:laltrrtllltlz
ot S E c.ontrol for inexperience and learning by discarding
e il y! m their data. But the learning phase may last longer thaj
ing or one afternoon that is the typical limit of laboratory sgession;1

A. Laboratory and Classroom Experiments

Researcher
osearche ;e:r;l(\)/et eZ?I}lli:thed numerous laboratory experiments in the past
ek pe(;)ple act when placed in certain interactive strate-
e R af, o they play Nash equilibrium strategies? Review-
i R avis %.Hld Charles Ho.lf conclude that, in relatively simple
it a Lfmlque Nash eq.u.lhbrium, that outcome “has consid-
e e. t . ; t.er so.me repetitions with different partners.”® But in
tbere o altiple Np ;11 e sllt.uaflons or when coordination is required because
A Nath o, Zs equilibria or when the calculations required for finding
bl re more complex, the theory's success is more mixed. We
er the performance of Nash equilibrium in such circumstance; )

“Douglas D, i
. Davis and Cl i
Press, 1993), Ch, 2. harles A. Holt, Experimental Economics (Princeton: Princeton University
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i i ers
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ly fail to coordinate unless they have some comn‘mﬁ ‘ S
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{[a::]ll ‘:::1;(11‘;1‘11111215 Schelling and David Kreps report on several etllir:l;:.;:zt‘: 2-
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made alphabetically, but even then there was no clear dividing p
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s e lexities of the situation better than
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the experimenter knows them. For example, o ey it
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These observations do not show any deficiency of the Nash equilibrium concept
itself. However, they do warn us against using the concept under naive or mis-
taken assumptions about people’s payoffs; it might be a mistake, for example, to
assume that players are always driven by the selfish pursuit of money.

111 LEARNING FROM EXPERIENCE One game, often used in classrooms or laboratories,
asks each participant to choose a number between 0 and 100. Typically, the
players are handed cards on which to write their names and a choice, so this
game is a simultaneous-move game. When the cards are collected, the average
of the numbers is calculated. The person whose choice is closest to a specified
fraction—say half—of the average is the winner. The rules of the game (this whole
procedure) are announced in advance.

The Nash equilibrium of this game is for everyone to choose 0. In fact the
game is dominance solvable. Even if everyone chooses 100, half of the average
can never exceed 50; so, for each player, any choice above 50 is dominated by
50.° But all players should rationally figure this out, so the average can never ex-
ceed 50 and half of it can never exceed 25, and so any choice above 25 is domi-
nated by 25. The iteration goes on until only 0 is left.

However, when a group actually plays this game for the first time, the win-
ner is typically a player who has chosen a number just a little less than 25. This
outcome seems to suggest that the winner assumes that everyone else will choose
randomly (so their average is 50} and then chooses her own best response to
that. The outcome is quite far from the Nash equilibrium.

What happens if the game is repeated? Our experience in classroom trials
has been that the winning choice falls rapidly in successive plays. In Skeath's
class, half the class played the game first while the other half watched, then the
other half played, and finally the whole class played. In Dixit's class, the game
was played by different groups of 10 students at a time. By the third round, the
winner's choice was usually as low as 2 or 3.

How should one interpret this result? Critics would say that, unless the exact
Nash equilibrium is reached, the theory is refuted. Indeed, they would argue, if
you have good reason to believe that other players will not play their Nash equilib-
rium strategies, then your best choice is not your Nash equilibrium strategy either.
If you can figure out how others will deviate from their Nash equilibrium strate-
gies, then you should play your best response to what you believe they are choos-
ing. Others would argue that theories in social science can never hope for the kind

°If you factor in your own choice, the calculation is strengthened. Suppose there are N players,
In the “worst-case scenario” where all the other (N — 1) players choose 100 and you choose x, the
average is [x + (N — 1)100|/ N. Then your best choice is half of this; so x = [x + (N — 1)1001/(2N), ot
x= IVOO(N— 1)/(2N - 1). If N= 10, then x = 900/19 = 47 (approximately), So any choice above 47 is
dominated by 47. The same reasoning applies to the successive rounds.
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can credibly signal its resolve in diplomatic negotiation or in the face of a poten-
tial war. Game theory began to be used systematically in economics and busi-
ness in the mid-1970s, and such applications continue to proliferate. We have
space for only a couple of prominent examples.

The theory has helped us to understand when and how the established firms
in an industry can make credible commitments to deter new competition—for
example, to wage a destructive price war against any new entrant. The prisoners’
dilemma game, in its one-time and repeated forms, has helped us to understand
what kinds of industries will see fierce competition and exhibit low prices and
what kinds will sustain tacit agreements to keep prices and profits high. More
recently, game theory has become the tool of choice for the study of political
systems and institutions within a country as well as for cross-country compari-
sons. For example, game theory has shown how voting and agenda setting in
committees and elections can be strategically manipulated in pursuit of one’s
ultimate objectives. In this introductory book, we can develop only a few ele-
mentary examples of this kind. We already saw an example (price competition)
in this chapter. More examples appear later, including a case study of the Cuban
missile crisis and analyses of auctions, voting, and bargaining.*

Some critics remain unpersuaded by these successful applications of the
theory. They claim that the same understanding of these phenomena can be ob-
tained without using game theory, by basing one’s analysis on previously known
general principles of economics, political science, and so on. In one sense they
are right. A few of these analyses existed before game theory came along. For ex-
ample, the equilibrium of the interaction between two price-setting firms, which
we developed in Section 1 of this chapter, was known in economics for more than
a hundred years; one can think of Nash equilibrium as just a general formulation
of that equilibrium concept for all games. Some theories of strategic voting date
to the 18th century, and some notions of credibility can be found in history as far
back as Thucydides' Peloponnesian War. However, what game theory does is to
unify all these applications and thereby facilitate the development of new ones.

In the past 30 years, several new ideas and applications have been identi-
fied. For example, we now understand how different forms of auctions (English

"“For those who would like to see more applications, here are some suggested sources. Thomas
Schelling's Strategy of Conflict (New York: Oxford University Press, 1960) and Arms and Influence
(New Haven: Yale University Press, 1966) are still required reading for all students of game theory.
The classic textbook on game-theoretic treatment of industries is Jean Tirole, Industrial Organiza-
tion (Cambridge: MIT Press, 1988), In political science, an early classic is William Riker, Liberalism
Against Populism (San Francisco: W. H, Freeman, 1982), For surveys of more recent work, see several
articles in fh Handhaok of Game Theory, £d. Robert J. Aumann and Sergiu Hart (Amsterdam: North-
Holland, 1997, 1994, 2002}, particularly Bacry O'Neill, “Game Theory Models of Peace and War,” in
volume 2, unel Kyle Bagwell and Asher Wolinsky, “Game Theory and Industrial Organization,” and
Jeffrey Banks, “Strategle Aspects of Political Systems,” in volume 3.
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and Dutch, sealed bid and open outcry) lead to differences in bidding strategies
and in the seller's revenues. We understand how the existence of a second-strike
capability reduces the fear of surprise attack. And we understand how govern-
ments can successfully manipulate fiscal and monetary policies to improve their
chances of reelection even when the voters are sophisticated and aware of such
attempts. If these examples were all amenable to previously known approaches,
they would have been discovered long ago.

1, STATISTICAL TESTING  The second approach to examining empirical evidence is
quantitative and statistical. The general procedure in this work is to assume that
Nash equilibrium prevails and to derive the implications of this assumption in
the form of equations linking various magnitudes—the players' choices and
outcomes—that may be observable in the situation being studied. These equa-
tions can then be estimated by using real data. In industrial economics, firms
compete by choosing their quantities and prices as {llustrated in the examples
in this chapter; they also have other strategic choices at their disposal, includ-
ing product quality, investment, R & D, and so on. While the choice of quantities
or prices may be studied in a static context {ata given time), games of strate-
gic competition in investment or R & D are dynamic. Numerous studies of both
kinds of interactions have been carried out,' This work has produced encourag-
ing results. Game-theoretic models, based on the Nash equilibrium concept and
its dynamic generalizations, fit the data for many major industries, such as au-
tomobile manufacturers, reasonably well and give us a petter understanding of
the determinants of competition than the older analysis, which assumed perfect
competition and estimated supply—'md-demand curves.

In politics, the votes on various issues within legislatures are the outcome
of the legislators’ strategic interaction. The equilibrium of this game depends
on the legislators’ underlying preferences. Detailed voting records in the U.5.
Congress are public information. On the basis of the relation between prefer-
ences and voting in a Nash equilibrium, these data can be used to infer the leg-
istators’ preferences, This method has been used with remarkable success
by Keith Poole and Howard Rosenthal.'? They find that U.S. politics can be

HA survey of static studies of prices and quantity competition is “Empirical Studles of Indus-
tries with Market Power” by Timothy I Bresnahan, in Handbook of Industrial Organization, el
Richard L. Sehmalansee and Robert D. Willig, vol, 2 (Amsterdarn: North-Holland, 1589). A general
muothod for dynamic studies is d loped in A Framework for Applied Dynamic Analysis in Indus-
trinl Organtzation.” by Ulrich Doraszelski and Ariel Pakes, in Handbook of Industrial Feonomics, ed.
Mark Armstrong and Robert Porter, vol. 3 (Amsterdany Norih-Hollund, 2007).

1gefth Poole and Howard Rosenthal, “Patterns of Congressional Voting,” American Jowrnal of Po-
litieal Science, vol. 35, no. 1 (February 1991), pp 2211-278, and Congress: A Political-Economic History
of Roll Call Voring (New York: Oxford University Press, 1996).
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adequately 51.Jmmarized by conflicts over issues in a two-dimensional space

one 1zepi(es.emmg economic inequality and the other racial inequality. '

. ag aj Ghemawat, a professor at the Harvard Business School, has developed

§ Lx.e mode Of. qlllantltatlve analysis, using case studies of individual firms or in-

ustries and statistical analysis of larger data samples.' His game-theoretic models
are I i ini i

Zlinlgeglallkablydsuccessful in improving our understanding of several initially puz-

usiness decisions on pricing, capacity, in: i

‘ : , , innovation, and so on. However, his

r/o(ljk a.]so .bllngs out the need to construct models that have sufficiently rich déztail

o do ]ustlce. to the circumstances of the firms or industries being analyzed. In a

tg}(leneral and introductory textbook such as this one, we lack the space and es;:hew

e more advanced techniques that ar
e needed to construct such
o models. But we
gr;]:e;};f;u~ 01(1: ;he way to further study that will bring these methods within your
p. in Chapter 15 we develop one such
theory-based case study fi
! : e rom
field of international politics to illustrate the method ' e

|t|l|0:1 R(E)I;L-WOR-IiI.J bzx‘AMPLE OF LEARNING  We conclude by offering an interesting illustra-
equilibrium and the learning process in - i
is Zu:Eide ttlie laboratory or classroognpl), where pei)lrselzlpvl\;(;ﬂig agr:rieTf}::(:j;E?ls
and the stakes are high, creating strong motivation iti
if]arrzlbsliephen Jay Gould discovered th%s beautiful e;::lpglzo]?”;fg)?lrgtgrg::)?t :)Of
e 20th century, the best batting averages recorded i :
been declining. In particular, the numbegr of instanc(:slzfz l;éllzje)f Evier":(?n hz:;e
or bet‘ter used to be much more frequent than they are now. Devoteesglrflgb' Y
pall history often explain this decline by invoking nostalgia: "‘There wer0 'ase-
in those days.” A moment’s thought should make one wonder why there Svg .
corresPonding pitching giants who would keep batting averages low. But Gr ; r;g
demolishes such arguments in a more systematic way. He points t;ut thi ?u
should look at all batting averages, not just the top ones. The worst battingaavzl:
zti}%es arfe not as bad as they used to be; there are also many fewer .150 hitters in
e .mz?]or leagues than there used to be. He argues that this overall decrease i
variation is a standardization or stabilization effect: "
When baseball was very young, styles of play had not become sulfficientl
regular to foil the antics of the very best. Wee Willie Keeler could “hit ’e d
W.here they ain't” (and compile an average of .432 in 1897) because field .
didn't yet know where they should be. Slowly, players moved toward o, etris—
]"::Z\l, ;:::;,tlhogs O.f positioning, fielding, pitching, and batting—and variatrijon
- y. eclined. The F)est [players] now met an opposition too finely
e tO.ltS own perfection to permit the extremes of achievement that
characterized a more casual age. [emphasis added] :

'.'\Panka' Gh .
M"Losinjg thi,?:wa't" 'Games Businesses Play: Cases and Models (Cambridge: MIT Press, 1997)
ge,” in The Flamingo’s Smile (New York: Norton, 1985), pp. 215-229, ' .
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In other words, through 2 succession of adjustments of strategies to counter one

another, the system settled down into its (Nash) equilibrivm.

Gould marshals decades of hitting statistics 10 demonstrate that such a de-
crease in variation did indeed ocour, except for occasional “blips.” And indeed
the blips confirm his thesis, because they occur soon after an equilibrium is dis-
turbed by an externally imposed change. Whenever the rules of the game are al-
tered (the strike zone is enlarged or reduced, the pitching mound is lowered, or
new teams and many new players enter when an expansion takes place) or the
technology changes (a livelier ball is used or perhaps, in the future, aluminum
bats are allowed), the preceding sysiem of mutual best responses is thrown out
of equilibrium, Variation increases for a while as players experiment, and some
succeed while others fail. Finally a new equilibrium is attained, and variation
goes down again. That is exactly what we should expect in the framework of
learning and adjustment to Nash equilibrium.

We take up the evidence concerning mixed strategies in Chapter 8 and the
evidence for some specific games of types of games-—for example, the prisoners’
dilemma, bargaining, and auctions—at appropriate points in later chapters, For
riow, the experimental and empirical evidence that we have presented should make
you cautiously optimistic about using Nash equilibrium as a first approach or as the
point of departure for your analysis. On the whole, we believe you should have
considerable confidence in using the Nash equilibrium concept when the game in
question is played frequently by players from a reasonably stable population and
under relatively unchanging rules and conditions, When the gante is new of is

played just once and the players are inexperienced, you should use the equilib-
rium concept more cautiously and should not be surprised if the outcome that you
observe is not the equilibrium that you caleulate. But even then, your first step in
the analysis should be o look for a Nash equilibrium; then you can judge whether
it seemns a plausible outcome and, if not, proceed to the further step of asking why
not. Often the reason will be your misunderstanding of the players’ objectives, not
the players’ failure to play the game correctly, given their true objectives.

3 CRITICAL DISCUSSION OF THE NASH EQUILIBRIUM CONCEPT

In addition to the eritiques lodpged against the Nash equilibrium concept by
those who have examined the empirical evidence, there have also been theo-
retical criticisms of the concept. In this section, we briefly review some such
criticisms and some rebuttals, in each case by using an example.'® Some of the

15Dayid M. Kreps, Game Theoty and Economic Modelling (Oxford: Clarendon Press, 1990) gives

an excellent in-depth discussion.
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criticism i
- ;Satr: mutuallylcontradlctory, and some can be countered by thinking of
o iten;fs.elves in a better way. Others tell us that the Nash equilibriim
self is not enough and sug;
: gest some augm i i
. U gmentations or relaxati
ottt tha htalwlle be:er properties. We develop one such alternative here and p(:)' ni
others that appear in later cha il
. ters. We beli ¥ i i
N ! p elieve our presentation
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iy y settled science would
‘We begin ideri i
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in this book are noncooperative, i :
el e perative, in the sense that every pl
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n i "
e is not the best according to her own value system (payoff scale), givi :
bt eve yorklle else does, then she will change it. In other words, it is aj Jegl'en
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e . . 0
e fer(sj. N;shhequﬂlbrlum has just this property of “simultaneous be:tS .
; indeed, that is its very definition. I o
' = . In any purported final
i ' nal outcome
' .ash equilibrium, at least one player could have done b 'that
ing to a different action. SRR
This consi i i
il :;ie;]atlﬁn leaclis eminent game theorist Roger Myerson to rebut those
ash equilibrium that are based intuiti
e ‘ ' . on the intuitive appeal of playin,
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. spec
£ e inks the p]aiers should do. If this specification is not a Nash e(fuililliy
5 ... we can show that it would destroy i idi i
i : . Toy its own validity if the -
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A. The Treatment of Risk in Nash Equilibrium

Some criti i
5 riskclr:lcs argue that the Nash equilibrium concept does not pay due attenti
. In some games, people might find st ies di o
iy : strategies different from their Nash i-
= e:; rsr:lrjteglis }tlo be safer and may therefore choose those strategies. a\j\/eeoqflfj 1
es of this kind. The first is due to Joh : .
- ; : : n Morgan, an e i
T aCt ;ﬁebUmversny of California, Berkeley; Figure 5.3 shows thecg(;r:l:(ilc;lpmfes_
o s : : . able.
equmbriuy cell inspection quickly reveals that this game has a uniquz Nash
m—namely, (A, A), yielding the payoffs (2, 2). But you may thinkas
. , as

16
Roger Mye
yerson, Game Theory (Cambridge: Harvard University Press, 1991), p. 106,
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A

B

I

C

FIGURES5.3 A Game with a Questionab!e Nash Equilibrium

did several participants in an experiment conducted by Morgan, that playing C
for the following reasons. It guarantees you the same payoff
as you would get in the Nash equilihrlum——namﬂy. 2; whereas if you play your
Nash equilibrivm strategy A, you will get a 2 only so long as the other player also
plays A. Why take that chance? What is more. if you think the other player might
use this rationale for playing C. then you would be making a serious mistake by
ly a 0 when you could have gotien your guaramccd

has a lot of appeal,

playing A; you would get on
2 by playing C.

Myerson would respond, "Not s0 fast. If you really believe that the other
thus and would play C, then you should play B to get the

player would think
payolf 3. And if you think the other person would think thus and so would play B,

then your best response to B is A. And ifyou think the other would figure this out
too, you should be playing your st response 10 A, namely A. Back to the Nash
cquilihrium'." As you can see, criticizing Nash equilibrium and rebutting the criti-
cismsis itself something of an intellectual game, and guitea fascinating one.

The second example, due 10 David Kreps, is even more dramatic. The payoff

re 5.4, Before doing any theoretical analysis of this game, you

matrix is in Figu
you are player A

should pretend that you are actually playing the game and that
Which of your two actions would you choose?
Keep in mind your answer to the preceding question and let us proceed
1o analyze the game. 1f we start by looking for dominant strategies, we see that
player A has no dominant strategy but player B does. Playing Left guarantees Ba
payoff of 10, no matter what A does, versus the 9.9 that is gained by playing Right
(also no matter what A does). Thus, player B should play Left. Given that player
B is going 10 O Left, player A does better 1o g0 pown. The unique pure-slramgy
Nagh equilibrium of this game is (Down. Left); each player achieves a payoff of
10 at this outcome.
The problem that arises here is that many people {but not all) would not,
as player A, choose to play Dowit. (What did you choose?) This is true for those
\who have been students of game theory for years as well as for those who have

C
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Left Right

Up 9,10 8,99

Down 10,10 |-1000, 9.9

FIGURE 5.4 Disastrous Nash Equilibrium?

never heard of the subjec
ject. If A has any doubls ab i 4
rationality, then it is a lot sale Sisipbuita Loty
! 5 afer for A to play Up tha
gL : : g an to play her Nash equilib-
3 l; “1‘- :1Ia;|3|gy nir Down. What if A thought the payolT table tilas as illtlst::tltl:;(lﬂ”
i + 5.4 but in reality B's payoffs were th y it »
ality i s the reverse—the 9.9s we i
e ok : - e 9.9s went wi
ﬂ: ; et:w Ilﬂ:, went with Right? What if the 9.95 were only an approximat :;Ir: Lﬁﬂl
. : . ] : @ and
e S;yufljs were actually 10.17 What if B was a player with a subslantiall
o iuc stystem or was not a truly rational player who might choose thi
o) ,-a?'[o L‘llf!l'l just for fun? Obviously, our assumptions of perfect in'furmatlm
;mt :m ity can really be crucial to the analysis that we use in the st 1d 1f
: . - - e 1 1
man{;g{fm }Izin:hi.t.duf players can alter equilibria from those that we would :u(:
dict and can call the reasonablene ] dlibri A
i, sleness of the Nash equilibrium concept
Howe i
cqu“ihriilvcr. the rcﬂl‘ prnblr:m with many such examples is not that the Nash
st m r.:‘nnc'.pl. is inappropriate but that the examples choose to use it i
.B ; ppfrroprrateiy simplistic way. In this example, if there are any douht:; ab :::
-‘ i -
dth‘::t :, then 'Ihtﬁ fact should be made an integral part of the analysi“; ::'A
it devl:;::; Il."l sepayal'fs.l the game is one of asymmetric information ancl we
2 he general techniques for studyi 2 il Ch
8- \ ying such games until Chapter 9
ample is a relatively simple game ind, ¢ :
figure out its equilibrium very easily. e i
Su E i is @ ili
- ;};:eo:fr)\etlufnl;s thm:. is a probability p that B's payofTs from Left and Right
srse of those shown in Figure 5.4; so (1 i
s ‘ qure 5.4; so (1 — piis the probability that
i stated in that figure. Because A 3
e Becatise A hiust take her action withou
h is the case, she must choose | ;
a . - 1er strategy to be “bes
average.” In this game th ion i m e
e caleulation is simple, bec i
iy ple, because in each case B has
o gy; the only problem for A is that i .
i is that in the two different ¢
tegies are dominant for B With probabili i
i, e . % probability (1 — p), B's dominant
s L . case shown in the figure) and, wi ili :
ey Ca gure) and, with probability p, it is Ri
= site case). Therefore if A chooses i e
L ses Up, then with probability (1 — ) he
v mglr:i d}:gg Left and so geta payoff of 9; with probability p, he will meet B
i s0 get a payoff of 8. Thus A's statistical or probability-weighted
rom playing Up is 9(1 — p) + 8p. Similarly, A's statistical ;wo.ray';{:
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payoft from playing Down is 10(1 — p) — 1000p. Therefore it is better for Ato

choose Up if
9l — p) +8p>1000 — p) — 1000p,

Thus, even if there is only a very slight chance that B’s payoffs are the opposite
of those in Figure 5.4, it is optimal for A t0 play Up. In this case, analysis based
on rational behavior, when done correctly, contradicts neither the intuitive sus-
picion nor the experimental evidence after all.
In the preceding calculation, we supposed that, facing an uncertain pros-
pect of payoffs, player A would calculate the statistical average payoffs from her
different actions and would choose that action which yields her the highest sta-
tistical average payoff. This implicit assumption, though it serves the purpose in
this example, is not without its own problems. For example, it implies that a per-
son faced with two situations, one having a 50-50 chance of winning or losing
$10 and the other having 2 50-50 chance of winning $10,001 and losing $10,000,
should choose the second situation, because it yields a statistical average win-
ning of 50 cents (3 X 10,001 — % X 10,000}, whereas the first yields 0 (4% 10 —

2
1% 10). But most peop amuch

or p>1/1009.

{e would think that the second situation carries
bigget risk and would therefore prefer the first situation. This difficulty is quite
easy to resolve. In the Appendix to Chapter 7, we show how the construction of
a scale of payoffs that is suitably nonlinear in money amounts enables the deci-
sion maker to allow for risk as well as return Then in Chapter 9, we show how
the concept can be used for understanding how people respond to the presence

of risk in their lives, for example, by arranging the sharing of risk with others, of

through the provision of insurance.

8. Multiplicity of Nash Equilibria

Another criticism of the Nash equilibrium concept is based on the observa-
tion that many games have multiple Nash equilibria. Thus, the argument goes,
the concept fails to pin down outcomes of games sufficiently precisely to give
unigue predictions. This argument does not automatically require us to aban-
don the Nash equilibrium concept. Rather, it suggests that if we want a unique
prediction from our theory, we must add some criterion for deciding which one
of the multiple Nash equilibria we want o select.

In Chapter 4, we studied many games of coordination with multiple equilib-
ra. From among these equilibria, the players may be able to select one as a focal
point if they have some common social, cultural, or historical knowledge or if the

deliberate or accidental features that enable their expectations 10

game has some
licity of Nash equilibria in a €0

converge. Here is a veTy extreme example of multip!
ordination game. TWO P
pendently, the share that eac

layers are asked to write down, simultaneously and inde-
1 wants of a total prize of $100. 1f

the amounts that
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they write do
N e A
xand the ot . »mett anything. For any x, one player writi
(almost) inﬁ:iiz gr:lg if(liloo . e a.Nash equilibrium. Thus thepgafne ha:;ls
point, This social nogrm ; ashi eflu‘hb“f“ But in practice, 50:50 emerges as a focal
almost an instinct; pla e0 eqlrlx1 2ty or faitness seoms so deeply ingrained as to be
true focal point, n;)t or):l rsk:v i C}'mose 50.say i L
that it is obviou‘s to eaclsll : O; — everyone should know
obviousness should be ke Moy I ol e
as we see when we cons?gmmo-n kn.OWI?dge' That need not always be the cz;se
enlightoned and o alital- era 51.tuat10n in which one player is a woman from aI;
i frorgn . n?r.l soclety W.hO believes that 50:50 is obvious and the
o e :a r;archal society who believes it is obvious that, in any
will do what is ob\;ious :) ile(;li)l:'j hgi‘:rtlt:re; e jas i e,
neitt;t}elr's obvious solution is obvious ‘asrloilgorln&e:vi:ggﬁthbno:lhing‘ e
e existence of focal points is often a matter of coinci o
them where none exist is basically an art th. 0‘ o o e
historica at requires a lot of attenti
scriptionl. 3‘}11‘118 be:;:l context of e same and not merely its matheI:Tll;)gc;(I ;l:
depend only on an abstinatn veme th_eOHSts’ who would prefer the outcome to
should be identified by nzcmstf)eicsl\f/‘lvci?l?:li Zfl?’iartne_f’layers RS drie =
We think e xternal associations. We di
e ;ll;,artn :i;t:;:ilcalng cult.ur'al contexts are just as important to ;Saggar;i
unique outcome from mjlt' elSCIiIlpnon, a'n'd‘ %f e e e
E¥hager @ el s1p e hash equlllb.rla, that is all to the better.
Noshueq bl T.here i .ee that sequential-move games can have multiple
us to select a particuiar e:]:irl(i)g;lilc;:'hftrteuquiremenLOf e
rollback eauilibri ; ns out that this one is in f;
asymmetr?ezli]l?fal(l;g;ﬁziclhapter 3 Il"l more complex games with inforzf;t:zi
have boen developed tozzl'dconllphcatlons, other restrictions called refinements
Eonabial o A 1C I(:ntlfy and rule 01‘1t Nash equilibria that are unrea-
e OUICO;ne ‘ llaﬂter 9, we consider one such refinement process
for each refinement is ofteil ‘sepeiiﬁir{f)c; f)zyf'smln e e et
stivn rticular type of game. A
Ottl:e:;t;?;?:n[;lgzirsfugdate their information when they (;gbserve viii?f:;ig;
sonable in its contextr : : Zd (SIEReRach S.u?h SUpNBHerRofion perctijrea:
the Nash oquiibria ar;d IL in many games it is not difficult to eliminate most of
The opposite of th t er‘e.fo.re to narrow down the ambiguity in prediction
equilibria is that szrnt D Dt o N;Sh
in Section 4.8 and sa?dg?}ines e have. none at all. We saw an example of this
mixtures, Nash equilibri at, by extending the concept of strategy to random
and consider Nash l'l.u‘m C ogld b.e restored. In Chapters 7 and 8 we explain
ash equilibria in mixed strategies. In higher reaches of ;)ame
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soteric examples of games that have no Nash equilib-
this added complication is not relevant

s that we deal with in this book, so we

theory, there are more €
rium in mixed strategies either. However,
for the types of analysis and application
do not attempt to address it here.

C. Requirements of Rationality for Nash Equilibrium

Remember that Nash equilibrium can be regarded as a system of the strategy
choices of each player and the belief that each player holds about the other
players' choices. In equilibrium, (1) the choice of each should give her the best
payoff given her belief about the others' choices, and (2) the belief of each player
should be correct—that is, her actual choices should be the same as what this
player believes them to be. These seem 10 be natural expressions of the require-
ments of the mutual consistency of individual rationality. If all players have
common knowledge that they are all rational, how can any one of them ratio-
nally believe something about others’ choices that would be inconsistent with a

rational response to her own actions?
To begin to address this question,
Figure 5.5. Cell-by-cell inspection quic
equiiibrium-—namcly, (R2, C2), leading to payoffs (3, 3). In this equilibrium, Row
she believes that Column is playing C2. Why does she believe
lumn to be rational, Row must simultaneously be-
hoosing R2, because 2 would not be
would be playing either Rl ot R3.Thus,
formation of beliefs and responses, be-

we consider the three-by-three game in
Kly reveals that it has only one Nash

plays R2 because
this? Because she knows Co
lieve that Column believes that Row is €
Column’s best choice if she believed Row
the claim goes, in any rational process of
liefs would have to be correct.

The trouble with this argument is tha
about beliefs. If we allow it to go far enough, we can justify other choice combi-
nations. We can, for example, rationally justify Row's choice of R1. To do so, we
note that R1 is Row’s best choice if she believes Column is choosing C3. Why
does she believe this? Because she believes that Column believes that Row is
playing R3. Row justifies this belief by thinking that Column believes that Row

t it stops after one round of thinking

COLUMN
C1 2 a
R1
ROW R2
R3 7.0

fs and Responses

FIGURE 5.5 Justifying Choices by Chains of Belief
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believe i i
x tums th;; .Collumn 1s. playing C1, believing that Row is playing R1, believi
Thu.s. r.ati is 1?";1ycl;am of beliefs, each link of which is perfectly 1'a;ional e
onality alone does not justify N: ilibri ,
L es T ash equilibrium. Ther 5
ﬁb ;?ltllr(;aFed %;:gl;lments of this kind that do justify a special form Zfa ;s;:];)re S?
in which players can condition thei i e
: eir strate: i
rort . : gies on a publicl
e c;:(lﬁatlon device. But we leave that to more advancedptream}l’e(;ltzzell-val;ie
St t1k:)n, lwe de’velop a simpler concept that captures what is logi ’lln’t e
y the players’ common knowledge of their rationality alone e

4 RATIONALIZABILITY

What strate; ices i justi
b matriy(f (;kfl(;icgejr:en 5gzmes can b.e ]u.stlﬁed on the basis of rationality alone?
leyeatn sl e .5, we can. justify any pair of strategies, one for each
S ofttylf)e o.f logic ?s that used in Section 3.C. In other words,
ondl el e nine logically conceivable combinations. Thus ra:
at all. Is this a general feagtzlrz 1(1)81‘T :ﬁ’é:;‘g’::;; I;a”ow dw{n i B o
: ' ? No. For example, if a str; i i
xizt:ctjl,l:tlt;(t);l:rlgaal:rne bca.n rule.it out of. consideration. And when ;tltzf/};rlss fe(zr;gl:
cminaton of dominted semegion o be pafoned on e bass o sommen
& ‘ : . performed on the basis
N go;vll:ta((i)it;(rjefltreagtilg:::rtlyi)ls dthls the be.st that can be done? No. Somzfrfl(z)rrr(lenrlzi
P e o ei 5 :IF}(;; .by usinga Property slightly stronger than being
S fg : 8 1.s property identifies strategies that are never a
calledrationaizable, nd the concept el 5 known 4 pomatizabity
— ; o is known as rationalizability.
- l); ;rlster;)u(ﬁ(c)ek:llgvsv 1ddlt;0nal concept, and what does it do for 1?;? As for
s i ow' ar .we ceTn narrow down the possible outcomes of
e thi Oytlflrs ralltlon:'ihty alone, without invoking correctness of
figure out that the other pla(;/ref ;ﬁ;ziz::i:home. et eetlon ear e
ol ha ' . e some available action o i
. WK::;: 1at Cl}s1 ;32 50;51?1; to pin down the single action that she will c}rlztc)tsf.?\ss,
it o ,d ; ai flpends on the context. In some cases rationalizabil-
L g v;m the outcom('as at all. This was so in the three-by-three
g t.h.e n sor:ile cases it narrows down the possibilities to some
smbaakie i v;/ayf Nown to Fl?e Nash equilibrium if the game has a
ohe A fe o A ash equilibria if there are several. An example of
i e Iour— y-four enlargement of the previous example, con-
—— L.lil.. bn' son.nle other cases, the narrowing down may go all the
i R q .1' l‘ll:ll'n, in thesv? cases we have a more powerful justifica-
sh equilibrium that relies on rationality alone, without assuming
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on example of Section 4.B is

correctness of expectations. The quantity competiti
{ takes us all the way to the

an example in which the rationalizability argumen
game's unique Nash equilibritm.

A. Applying the Concept of Rationalizability

Consider the game in Figure 5.6, which is the same as Figure 5.5 but with an
additional strategy for each p{aycr."' We just indicated that nine of the strategy

combinations that pick one of the first three strategies for each of the players

can be justified by a chain of beliefs about each other’s beliefs. That remains true

in this enlarged matrix. But can Ra-and CA be justified in this way?

Could Row ever believe that Column would play CA? such a belief would
have 1o be justified by Column's beliefs about Row's choice. What might Column
believe about Row’s choice that would make C4 Column's best response?
Nothing. If Column pelieves that Row would play R1, then Column's best choice
is C1. If Column pelieves that Row will play R2, then Column's best choice is C2.
1f Column believes that Row will play R3, then €3 is Column's best choice. And,
if Column believes that Tow will play Rd, then €1 and C3 are tied for her best
choice. Thus C4 is never 3 pest response for Column.'® This means that Row,
knowing Column 10 be rational, can never attribute to Column any helief about

Row's choice that would justify Column's choice of C4. Therefore Row should

never believe that Column would chaose C4.

Note that, although 4 is niever a best response, itis not dominated by any of

C1, C2, and C3. For Column, C4 does better than C1 against Row’s R3, better than

COLUMN

FIGURE 5.6 Rationalizable Strategies

developed the concept of rationalizability:
irica, vol. 52, 00. 4 (July 1984},

iPrhis example s taken from the original article that
AR i Bl
ic The-

geu Douglas Bernhein, | g jor,” Et
pp..um-unza. See alsn Andre Mas-Calell, Michat! Whinston, and jerry Green. Microeconom
ar_rthwYurk: Oxford University Press, 1845), pp 242-245.

ingote thit in cach case the best chotew is strictly better than (4 for Coluran. Thus C4 is never even
1l fior o best rEsponse. W cain distinguish between weak nnd strong senses of never being 2 best re-

SpONsE just aswe distinguished between weak and strong dominance. Here,

we have the strong sense.
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C2 again "
nateg " z; Row'’s R4, and better than C3 against Row’s R1. If a strategy is domi-
gmmr:“ w:) r;:an r:evel:‘be a Pest response. Thus “Never a best response” is a more
m.spnmu ma.v;:)l than : ljﬂnulmtcd.‘ Eliminating sirategies that are never a best
! y be possible even when eliminari ina gl 0,
s Pose } ing dominated strategies is not, S
])DS;{;Tllng strategies that are nevera biest response can Narrow d:?wn the (s‘ lsﬂf
at s5€ 7 ) el
; :<h e :)l::(c.omcs more than can elimination of dominated strategies 19 ’
e elimination of “never best re: u o bee
. , , sponse” strategies ¢ i
ot . gies can also be carried
S lvel)é 4Because a rational Row can never believe that a ration lrée; -
. . a
. rll;)segg nl ,a r:?tlonal Column should foresee this. Because R4 is Row’s b(; ‘imn
i C4y against C4, Column should never believe that Row will play R4 ?Fhre_
B . ’ us
K and o4 ;le nzver figure in the set of rationalizable stratgies. The concept of
ility does allow us to narrow d .
! own i
e the set of possible outcomes of
If a gam ilibri it i
. bg e.has a Nash equilibrium, it is rationalizable and in fact can be sus
faine elylr a slimple 0T1e—r0und system of beliefs, as we saw in Section 3.C. But
ti()na]ig l;elra y, even if a game does not have a Nash equilibrium, it may h.av‘e ra
zable outcomes. Consider the twi ’ 5
: . 0-by-two game obtai i
e res. Lo tained from Figure 5.
2y gure I5,6 by retaining just the strategies R1 and R3 for Row and C1 ani C3 fa ;
olumn. It i i o
- ttIS easy to see that it has no Nash equilibrium in pure strategies. But
ek u come{s are rationalizable with the use of exactly the chain of b 1 f
n; ;‘mted earlier, that went around and around these strategies e
us i izabili .
o tthg concept of rationalizability provides a possible way of solvin
at do not have a Nash equilibrium. And more important, the conc pgt
, e

ells u n t p bilities <] O
s how far we can narrow down the pos:
S T n a game on the basis of

B. Rationalizability Can Take Us All the Way to Nash Equilibrium

In some imi i F-. o1 1 .
; i(. games, 1telrlal;:d elimination of nevel best: esponse st du:gies can nar
row things down all the way to Nash equi ibri
ol t 5 ilibrium ot said ¢
ol it y q il 1. Note we said can, not must.
" is useful because in these Wi & (4 ase.

But if it o Clthl .lla' 5 150 garnes we can s {Illnﬂlh n the c
for Nash eq\llllb um by a guing that it follows V% al

-~ I t 1t Tollows |)\IT(§|V_ from the pla ers’ rational
think ng about each other’s thinkin, | ssti at can

: . ‘ g- l'ltcl't..’i“nl.ﬁy. one class of games that

be solved in thlSWaylS very important in e ics 5 B

. Ty p T (til\(illll“r”" lass i

. This class consists of com
etiti e
pt ition between f .l s th a. choose the quantltles that they produce, knowing
hatwtheﬂtotal quantity that is put on the market will determine the pr'ce
e illus i i t ‘

- : trate a game of this type In the context of a small coastal town. It has
two fish ng boats that go out every eve lillg and return the following m.orning

i9-
In Chapte
. 8, we wi .
be dominated by ‘a mixtl” -see that in two-player games, a strategy that is never a best respon
SUategios, the tuo ki ure of the other strategies. Therefore, in two-player games th: ponse can
o kinds of elimination become equivalent. games that allow mixed
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1o put their night’s catch on the market. The game is played out in an era before
modern refrigeration, 50 all the fish has to be sold and eaten the same day. Fishare
quite plentiful in the ocean near the tOWn, so the owner of each boat can decide
how much to catch each night. But each knows that, if the total that is brouglit to
the market i 100 Jarge, the glut of fish will mean & |ow price and low profits.
specifically, we suppose that, if one boat brings R barrels and the other
brings S barrels of fish to the market, the price P (measured in ducats per barrel)
will be P = 60 — (R + ). We also suppose that the two boats and their crews
are somewhat different in their fishing efficiency. Fishing costs the first boat 30
ducats per barrel and the szcond boat 36 ducats per barrel.
Now we can write dow: the profits of the two boat 0Wners, Uand V, in terms
of their strategies R and S
U= [(BO-R—S) —30]R= (30— S)R—Rz,
V= [(60-R—S)—36]S=(24~R)S— s%

with these payoff expressions, wWe construct best-response curves and find the
Nash equilibrium. As in our price competition example from section 1, each
player’s payoff is @ quadratic function of his own strategy, holding the strategy
of the other player constant. Therefore the same mathematical methods we de-
velop there and in the Appendix can be applied.

The first boat's best response R should maximize U for each given value of
the other boat’s S. With the use of caleulus, this means that we should differen-
tate U with respect t0 R, holding § fixed, and set the derivative equal to ZeT0,

which gives

80~ R _9oR=0; so R= 15 — SI2.
The noncalculus approach uses the result that the U-maximizing value of R=
B/(2C) where in this case B =30~ Sand C=1.This gives R = (30 — 8)/2,0r R

=15-—S/2.
Similarly, the best-response equation of the second boat is found by choos-

ing Sto maximize V for each fixed R, yielding
$= (24— R)I2; $O §=12—- Ri2.

The Nash equilibrium is found by solving the two best-Tesponse equations
jointly for Rand S, which is easy to do. So we just state the results:®’ quantities
are R=12 and S = 6; price is p=42;and profits are U=14dand V= 36.

wpjthough they A ncidental to our purpost. some interesting properties of the solution aré
ting out. The quantities differ because the costs differ; the more efficient [lower-cosﬂ
oven bigger differences in
20%, but it makes

worth poin
boat gets i sell more. The cost anndd quantity differonces together imply
the resulting profits. The cost advantage of the first boat aver the socond is onty
four times as mueh profit as the second boat.
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30

BR1:R=15-5/2

N=(12,6)
75

BR2:S=12-R/2

e 9 1375 15 24
RE5.7 Nash Equilibrium Through Rationalizability

Figure 5.7 shows the two fishermen’s be

o . : st-response curves (labeled

e e :?ililsatignsddmplayefi) and the Nash equilibrium (labeledBII\{IlvE\lriri;il
o tho ol pe ye:3 ) ‘at the intersection of the two curves. Figure 5.7 als
it STl ‘y rs' eliefs atfout each other’s choices can be narrowed. d .

ot va){ 1felsmlfn‘;itmg strategies that are never best responses o
el iy depoend(;a;l th(;1 first owner rationally believe the second owner will
e e Wh:tv:h 'at th.e second owner thinks the first owner will pro-
e o e e is might be, the whole range of the second owner'’s
bl it wgl l:a:nd 12. So tl.le first owner cannot rationally believe
B T 1 e choose anything else; all negative choices of S (obvi-
iiie cecorimeres I;grrli:)atltrert.than 12 (Iless obviously) are eliminated. Simi-
anwl{]ﬂng e thaa r110;15211131 think that the first owner will produce
ow take thi :

S Ov\m:r'tshz1 :;Cﬂ;e 2econd round. When the first owner has restricted the
Pl es of S to the range between 0 and 12, her own choices of
defe o t:i range of best responses to S's range. The best response t

has o negaﬁve, = tehbest response to S=12is R=15—-12/2=9. Because BR(1)

kg betweeﬁeg ! rfgliiho-llt’~ the whole range of R allowed at this round of

oy mgntol e . Similarly, the second owner's choice of Sis restricted

S=12 s eSponses t.O R between 0 and 15—namely, values betw

15/2 = 4.5. Figure 5.7 shows these restricted ra;lges onthe a)zeesn
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The third round of thinking narrows the ranges further. Because R must
be at least 9 and BR2 has a negative slope, S can be at most the best 1esponse
to 9—namely, S =12 ~ 9/2 = 7.5. In the second round, S was already shown to
be at least 4.5. Thus § is now restricted to be between 4.5 and 7.5. Similarly, be-
cause S must be at least 4.5, Rcanbe at most 15 —4.5/2= 12.75. In the second
round, Rwas shown to be at least 9, s0 now it is restricted to the range from 9
to 12.75.

This succession of rounds can
ready evident that the successive narrowing of the two ranges is converging on
12 and § = 6. Thus the Nash equilibrium is the only
ation of strategies that are never best
argument need not

be carried on as far as you like, but it is al-

the Nash equilibrium, R=
outcome that survives the jterated eflimin
responses.” We know that in general the rationalizability
narrow down the ouleomes of a game 10 115 Nash equilibria, so this is a special
feature of this example. Actually, the process works for an entire class of games;
it will work for any game that has a unique Nash equilibrium at the intersection
of downward-sloping best-response curves.”

This argument should be carefully distinguished from an older one based
on a succession of best responses. The old reasoning proceeded as follows. Start
at any strategy for one of the players—say, R = 18. Then the best responseé of
the otheris § = 12 — 18/2 = 3. The best response of Rt0 §=3isR=15-3/2=
13.5. In turn, the best response of Sto R=1351s12 — 13.5/2 = 5.25. Then, in its
turn, the best R against this Sis R= 15—~ 5.25/2= 12.375. And so on.

The chain of best responses in the old argument also converges to the Nash
equilibrium. But the argument is flawed. The game is played once with simul-
taneous moves. It is not possible for one player to respond to what the other
player has chosen, then have the first player respond back again, and so on. 1f
such dynamics of actual play were allowed, would the players not foresee that
the other is going to respond and so do something different in the first place?

The rationalizability argument is different. It clearly incorporates the fact
that the game is played only once and with simultaneous moves. All the think-
ing regarding the chain of best responses is done in andvance, and all the succes-
sive rounds of thinking and responding are purely conceptual. Players are not
responding to actual choices but are merely calculating those choices that will
never be made. The dynamics are purely in the minds of the players.

21This example can also be solved by iteratively eliminating dominated strategies, but proving

dominance is harder and needs more caleulus, whereas the never-best-response property is obvious
from Figure 5.7, so we use the simpler argument.

225 gimilar argument works with upward-sloping best-response curves, such as those in the pric-
ing game of Figure 5.1, for narrowlng the range of bt responses starting at low prices. Narrowing
from the higher end is possible only if thete 5 some obvious starting point. This starting point might
be a very high price that can never be exceeded for some externally enforced reason—if, for exam-
ple, people simply do not have the money to pay prices heyond 2 certain Jevel.
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SUMMARY

When players in a simultaneous-move
N g moy game have a continuous range of acti
el rszﬁz}:lsee; arialyms yle.lds mathematical best—responie ru?efstlt%r;i
L e b:ss li, to obtain Nash equilibrium strategy choices. The
N okv!vn on. 2'1 d%agram in which the intersection of the
R -b?s equilibrium. Firms choosing price or quantit
o expendimrz Ie511 e values and political parties choosing campai 131]
e o vels are examples of games with continuous stmtr:e ii
s et roﬁr}:j t.ests of tﬁe Nash equilibrium concept show thgaltz
& Lo e pli ! fn is essential for coordinating in games with multiple
rience and begin to chgosesgtxsiieggaigiilzltlc;ws e }fl’layers o
N : 1008 pproach Nash equilibri i
o mafsﬁi:;ifuiqui:?na are accurate only when the expe(r]imetr)ltlt;rsr’1 acs];qllr:les-.
e Ill)om?:;esncez of p}a'yers. 3ed—world applications of game thz-
i e o an po.htlcal scientists, in particular, to understand
Theoretical criti’cism; ‘;Oftilrl';elilesllsimere’ alnl():I cp et
o heores quilibrium concept have ar,
iy n[;e;i%easvr;ortn ;:liqullately z.i(fcolunt for risk, that it is of limited usili)i(iat:sa;
basis of rationality aloneplz fr?:ril;k::ral:(;sandbﬂ:at i(ti e
e g , a better description of the
Lo ryprecliCti otl;;eotsrf : Vszfnemen.t of the. I.\Iash equilibrium concept ci?lnll:azntg
N v prtentlI‘il equilibria. The concept of rationalizability
et of strategies that are never a best response to obtain a
g rationa]izab;)mss. Wh'en a game has a Nash equilibrium, that out-
SR e, but rationalizability also allows one to predict i-
games that have no Nash equilibria. o

KEY TERMS

best-response curves (137)
best-response rule (134)
continuous strategy (134)
never a best response (157)

rationalizability (157)
rationalizable (157)
refinement (155)

SOLVED EXERCISES

S1.

In the political i
campaign advertisin i i
e v g game in Section 1.B,
hudRe: l'I:IniI; budget, x (millions of dollars), and party R sirrln)i?:rtly L}fhooses
et s ;‘, tTt:li_lim's:a of duIIFars). We showed there that the best-resy e
eare y=10Vx— x, for party R, and x = 10Vy xforionts;zlimes
= arty L.
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i illion?
: L ,if party L spends $16 mil N
is party R's best responset : R
oy Ib*p ):11‘!0(1 best-response rules to verify tha't the Nash eq]
b oot 25, or $25 million.

rium advertising budgets are ¥ =y = . N
i mand functions
The bistro game illustrated in Figure 5.1 defines dc‘ e
S 3 Js (Q,) as Q= 44— 2P P,
neals at Xavier's (Q,) and Yvonnes e i =
- > Profits for each firm depend in addity 3
o S 3 heie that Yvonne's is able to reduce its
. sach customer. Suppose hett : it
et ere $2 per customer by completely climina(m;r; the o
a mere 1 l "
i ;rtz sick up their orders at the counter, ‘i‘lflﬂ a fe yes ;-,3 -
('—“5“101“ \ 'f]nls; the tables). Xavier's continues 1o incur a cos
employees ¢
) jum prices
"‘-‘“0“131;- late the best-response rules and the Nash equilibrium |
d cuiate : ’ 2 N
[d] Ifiec'ilh two firms, given the change in the cost conditions
or the ,

i i -es be-
15 jescribe the differences
s{-response curves and ¢ : ; %
e s Mr(;p:)}fund Fl:gurc 5.1, In particular, which curve ha? m(::l ::l
¢ i a .
mfletr: y}?(l)lvrv%nuch? Explain why these changes occurred in the diag)
and by ? '
i ich sells bread, an
jetown has two food stores, La Boulangerie, which :,L:'I:{‘);mead e
Yup!m. agerie, which sells cheese. It costs $1 m‘njakc a kra g ——
I‘? l mmalfc a ;mum.l of cheese. If La Boulangernes price is ,d o ;h.eese
u’ tfun;tl]nead and La Fromagerie's price is Pz dollars pcrd pm:;*.Q pes
k:' pective weekly sales, (0, thousand loaves of bread and (2
their res y . -
pounds of cheese, are given by the following equations

Q =14— P~ 05P, Q=19~ 0.5P, — P,

ite i ion of P, and P, (in the exercises
@ Foreachstore wite b B anction forbrevity) Then fnd
ﬂt‘lalF f‘l‘: V\gc‘:’:/:’ ll)est—response rules. Graph the best-response curves,
;nirﬁndi:he Nash equilibrium prices in this gnm_e{.,im“‘r —
Suppose that the two stores collude and set p‘rwfﬂ e
. i fits. Find the joint profit-maximizing prices )
o _“f lhmtpmt intuitive explanation for (he differences between e
I;Irl]\;:d:qii;::;‘um prices and those that maximize joint profit, Why ¥
ash e max
joint profit maximization not afas}:ﬂeﬂ::ﬂ};n::{l:;?‘ comploments i
(@) Mt thk_:m' (::ITT::B;L“:L l“::lﬁ m v\:‘ny a drop in the price of one il‘:
s s el £ the other, The products in our bistro ex:‘xrr}ple i
Crea'ses o Obstitutes for each other, How does this dlfterem'.fi
secno’n e ar'ifsu nces among your findings for the i‘lcsl-l'l‘.‘:!ip?lll‘-’;t
g dlhere ilibrium prices, and the joint pmmj“mmﬂ"'ﬁl:ri
ml'es'stit:xetlk\jizsqui?tlion and the corresponding entities in the bis
price ,

example in the text?

()

=

(c

<
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S4. The game illustrated in Figure 5.3 has a unique Nash equilibrium in pure

strategies. However, all nine outcomes in that game are rationalizable.
Confirm this assertion, explaining your reasoning for each outcome.

85. For the game presented in Exercise S5 in Chapter 4, what are the rationaliz-

able strategies for each player? Explain your reasoning.

$6. Section 4.B of this chapter describes a fishing game played in a small

coastal town. When the response rules for the two boats have been derived,
rationalizability can be used to justify the Nash equilibrium in the game. In
the description in the text, we take the process of narrowing down strate-
gies that can never be best responses through three rounds. By the third
round, we know that R (the number of barrels of fish brought home by boat
1) must be at least 9, and that S (the number of barrels of fish brought home
by boat 2) must be at least 4.5. The narrowing process in that round re-
stricted R to the range between 9 and 12.75 while restricting S to the range
between 4.5 and 7.5. Take this process of narrowing through one additional

(fourth) round and show the reduced ranges of R and S that are obtained at
the end of the round.

§7. Two carts selling coconut milk (from the coconut) are located at 0 and 1, 1

mile apart on the beach in Rio de Janeiro. (They are the only two coconut-
milk carts on the beach.) The carts—Cart 0 and Cart 1—charge prices Do
and p,, respectively, for each coconut. One thousand beachgoers buy co-
conut milk, and these customers are uniformly distributed along the beach
between carts 0 and 1. Each beachgoer will purchase one coconut milk
in the course of her day at the beach and, in addition to the price, each
will incur a transport cost of 0.5 times 2, where d is the distance (in miles)
from her beach blanket to the coconut cart. In this system, Cart 0 sells to
all of the beachgoers located between 0 and x, and Cart 1 sells to all of the
beachgoers located between x and 1, where x is the location of the beach-

goer who pays the same total price if she goes to 0 or 1. Location x is then
defined by the expression:

P+ 0.5x2 = p, + 0.5(1 — 02

The two carts will set their prices to maximize their bottom-line profit fig-
ures, B; profits are determined by revenue (the cart’s price times its num-
ber of customers) and cost (the carts each incur a cost of $0.25 per coconut
times the number of coconuts sold).

(a) For each cart, determine the expression for the number of customers
served as a function of py and p,. (Recall that Cart 0 gets the customers
between 0 and x, or just x, while Cart 1 gets the customers between x
and 1, or 1 — x. That is, cart 0 sells to x customers, where x is measured
in thousands, and cart 1 sells to (1 — x) thousand.)
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S8.

s9. Extending the previous problem, suppose C
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(b) Write the profit functions for the two carts, Find the two best-response

rules for each cartas a function of their rival’s price.
(c) Graph the best-response rules, and then calculate (and show on your

graph) the Nash equilibrium price jevel for coconut milk on the beach.

Crude il Is transported across the globe in enormous tanker ships called
Very Large Crude Carriers (VLCCs). By 2001, more than 92% of all new
VILCCs were built in South Korea and Japan. Assume that the price of new
VLCCs (in millions of dollars) is determined by the function P = 180 — Q
+ Gppar (That is, assume that only Japan and Korea pro-
ly.) Assume that the cost of building each
a and Japan. That iS, Cxorea = Clapan = 30,
od in millions of dollars.

ry in terms of Gxorea AN Frapan

where Q = {xorea
duce VLCCs, so they are a duopo
ship is $30 million in both Kore
where the per-ship cost is measur

(a) Write the profit functions for each count
Find each country’s best-response function.

nctions found in part (a), solve for the
of VLCCs produced by each country per
is made in each

and either Gy OF Claparr
(b) Using the best-response fu
Nash equilibrium quantity
year. What is the price of a VLCC? How much profit

country?

(¢) Labor costs in Korean shipyards are actually much lower than in their
Japanese counterparts. Assume now that the cost per ship in Japan is
$40 million and that in Korea it is only $20 million. Given o = 20
ket share of each country (ie, the per-

and Cpan = 40/ what is the marl
centage of ships that each country sells relative to the total number

sold)? What are the profits for each country?
hina decides to enter the VLCC

construction market. The duopoly now becomes & triopoly, so that although
price is still P = 180 — Q, gquantity is now given by Q = Guarea * Dhapn +
Assume that all three countries have a per-ship cost of $30 million:
Criion = Coipan = Conina = 30-

(a) Write the profit functions for each o
and Cxorew Capan OF Cchina:

et

£ the three countries in terms of

e papans and Qectrine Find each country‘s

best-response rule.

(b) Using your answer to part (a),
share captured (see Exercise S8, part (€)),
each country. This will require the solution o
unknowns.

(¢) What happens to the price of a
duopoly situation in Exercise S8, part (b)? Why?

rship to provide consult-

find the quantity produced, the market
and the profits earned by
f three equations in three

VLCC in the new triopoly relative to the

§10. Monica and Nancy have formed a business partne
ing services in the golf industry. They eac

h have to decide how much effort
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to put into the business. Le
. Let m be the amount of i
: effort put i
nessTl;y M(?nlca, and n be the amount of effort put in by NP;mcl;tO e bt
e joint profits of the partnershi i :
i e p are given by 4m + 4n + mn, in tens
, and the two partner: i ’
e ers split these profits
) tot;ji thgy must each separately incur the costs of theirI;wn efff)qltl'al}lly
. meonlca ofhel' effort is m?, while the cost to Nancy of her eff rt,'t 2
gt Aa(siurthed. in te.ns of thousands of dollars). Each partner .
ort decision without knowing what effort decisi e e
e ecision the other player
(a) If Monica and Na
ncy each put in B
i p effort of m = n = 1, then what are
(b) If Monica puts in
effort of m = 1, then what i
. , ati "
(c) What is the Nash equilibrium to this game? " aneys bestesponset

S11. Nash ilibri i

Nast u;?,;l:rlé)fsl;ggi égrszihr ;:}t)l;):salizability can be achieved in games

oy = e curves if the rounds of eliminati

ConSidt;istthze;;r)ioclil;e strategies begin with the smallest possibl[:l:;z:sg

o inglfame between %avier’s Tapas Bar and Yvonne's Bistro.

o 1§ure 5.1: Use .Flgure 5.1 and the best-response rules

i —— le to begin .ratlona]izing the Nash equilibrium in that
e lowest possible prices for the two firms and describe

(at least) two rounds of narrowing the set of ratio b es tow:
g alizable prices ard

S12. A professor presents the fOHOWlIlg game to Elsa and her forty-m 1e class-

mates. E i
betweenazce};(’of tzem 51multa'neously and privately writes down a numbe:
pouneen rofan 100 on a piece of paper, and they all hand in their numf
el thp; essor then computes the mean of these numbers and defin
el CIO;I;Efrtlootf the itu:ents’ numbers. The student who submits tlt::
. wo-thirds of X wi i
el ins $50. If multiple students tie, they
(a) i
Py 3\1}1}?:: that choosing the number 80 is a dominated strategy.
o Cla\l/vou]d the set of best responses be for Elsa if she knew that all of
ot ms;matfes would submit the number 40? That is, what is the ran O
ers for which each number i is N
| e in the range is closer to the win-
¢) What would the set
of best responses be for Eisa i
sa i
" l;fer classmates would submit the number 10? SISk
isl;lf:) a symmetric Nash equilibrium to this game. That is, what
iy est respo.nse to everyone else submitting that samejnu bmi’rnber
ich strategies are rationalizable in this game? e
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UNSOLVED EXERCISES

Diamond Trading Company (DTC), a subsidiary of De
is for the wholesale market. For simplic-

nant supplier of high quality diamond
ity, assume that DTC has a monopoly on wholesale diamonds. The quantity
that DTC chooses 10 scll thus has a direct jrpact on the wholesale price of
diamonds. Let the wholesale price of diamonds (in hundreds of dollars) be
given by the following Inverse demand function: P= 120 — Qure ASSUME

that DTC has a cost of 12 (hundred dollars) per high-quality diamond.

(a) Write DTCs profit function in terms of Qure and solve for DTCS
pml‘u-maxln-nizing quiantity. What will be the wholesale price of dia-

monds at that quantity? What will DTC's profit be?
poly, several diamend mining interests and

Frustrated with DICK mono

Jarge retailers collectively set up @ joint venture called Adamantia to act as

a competitor to DICin the wholesale market for diamonds. The wholesale

price is now given by p=120— Qe ~ Qupa Assume {hat Adamantia hasa

costof 12 (hundred dollars) per high-quality diamond.

(b) Write the hest-response functions for both DTC and Adamantia. What
quantity does each wholesaler supply to the market in equilibrium?
What wholesale price do these qua 1yt What will the profit of

nitities imp
each supplier be in this duopoly situation?

(¢) Describe the differences in the market for wholesale diamonds under
the duopoly of DTC and Adamantia relative (o the monopoly of DTC.
What happens 10 the quantity supplied in the market and the market
price when Adamantia enters? What happens o the collective profitof
DTCand Adamantia?

Beers, is the domi-

yz. There are two (ovie theaters i the town of Harkinsville: Modern Multi-
plex, a first-run theater, and Sticky Shoe, which shows movies that have
been out for a whileata cheaper price. The demand for Modern Multiplex
is given by: Qum = 14 — Pyy + Pss while the demand for Sticky Shoe is:
Qus =8~ 2Ps+ Py Where prices are in dollars and quantities are mea-
undreds of MOViegoers. Modern Multiplex has a per-customer
¢ has a per-customer cost of only $2.
() Fromthe demand equations alone, what indicates whether Moderm Mul-
tiplex and Sticky Shoe offer services {hat are substitutes or complements?
(1) Write the profit function for each theater in terms of Pgs and Pyne
Find each theater’s best _response rule.
(¢) Find the Nash equilibrium price, quantity. and profit for pach theater
(d) What would each theater’s price, quantity, and profit be if the two de-
cided to collude to maximize joint profits in {his market? Why isn't the
ash equilibrium?

sured in h
cost of $4, while Sticky Sho

collusive putcome 2 N
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U3. Fast f
dein ac:lrdw;ior;i S dezadedbeyond the situation in Exercise $3. Yuppietown’s
read and cheese has decreased :
i , and the town's tw
:}tl(?rgs, La Boulangerle and La Fromagerie, have been bought 01?t ?Od
t ir (;(ompany: LEpicerie. It still costs $1 to make a loaf of bread andy$;
o make a pound of cheese, but the iti
: 3 quantities of bread a

(Q arlld Q, respectively, measured in thousands) are e 'Cheese e
e now given by the

Q =8-P —05P, Q=16-05P~ P,

Again, P, is the price in doll
i ars of a loaf of i ice i
ot i of bread, and P, is the price in dol-
(@) f:]utlally, LEpicerie runs La Boulangerie and La Fromagerie as if the
me;r:i rrsl'epa:ljalte‘: firms, with independent managers who each try tz
ize their own profit. What are the Na ilibri
; i sh equilibrium quantiti
prices, and profits for the two divisi f S Do
ision 'Epicerie, gi
e s of L'Epicerie, given the new
b ’Epicerie thi
(b) ”i"he Z\.Nne.rs of LEpicerie think that they can make more total profit b
¢ It:Zr inating the pricing strategies of the two Yuppietown divisions 0);
ir company. What are the joint imizi
-profit-maximizing prices f
and cheese under collusion? Wh i
? at quantities do La Boul i
Fromagerie sell of each et
good, and what i ivisi
e at is the profit that each division
(c) T i i
) bne lii?iralt,?v;ltlly might companies sell some of their goods at prices
ost? That is, explain a rationale of I
oss leaders, usi
swer from part (b) as an illustration. ey

U4. Th -mi

N : C(;C.OIIL.H milk carts from Exercise S7 set up again the next day. Near!

tiOnr:rtt ﬁng is exactly the same as Exercise S7: the carts are in the saréle locay

mam,j ofetﬁurtr)lberhand distribution of beachgoers is identical, and the de

e beachgoers for exactly one coc i is _
B sl eremcs s thatttn onut milk each is unchanged.
at it is a particularly hot d;

beachgoer incurs a hi e ntarct sl i
gher transport cost of 0.6d”. Agai

of the beachgoers located b Eol o

etween 0 and x, and C

Reactly e i A art 1 sells to all of the
etween x and 1, where x is the 1 i

goer who pays the same total price i S o

! . price if she goes to 0

tion x is defined by the expression: e

Ppo+ 0.6x% = p, +0.6(1 — 0%

Acai
(iallr:l. each cart has a cost of $0.25 per coconut sold
or ea i .
Servedch cafrt, determine the expression for the number of customers
as i
o (;1 1120(101’1 ?f po and p,. (Recall that Cart 0 gets the customers
and x, or just x, while Cart 1 gets the customers between x
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and 1 orl —Xx hat is, Cart 0 sells to x custo ers, where xi8 1easured
) Stomers,
’

in thousands, and Cart 1 sells to (1 — x) thousand.) o e Ea
(b) Write out profit functions for the two carts an

best-response rules. ' I,
(¢) Calculate the Nash equilibrium price 18\./61 for coc'on;:rdse ol e

How does this price compare with the price found in Ex
unique Nash equilibrium in pure

: - a
U5. The game llustrated in Figure 5.4 has e o ahat it i ik

strategies. Find that Nash equilibrium,
i e.
unique rationalizable outcome in that gam

i e 0dds” from
U6. What are the rationalizable strategles of the game “Evens or

. . &2
Exercise $11 in Chapter |
i it is possible for
the fishing-boat game of Section 4, we showed k}ow it 1stfate .
r Irti to be a uniquely rationalizable outcome in continuous thg =
gy lwavs the case; the
ilibri - this is not always
i a Nash equilibrium. However, . o ey
l}j als?my rationalizable strategies, and not all of them will necessaniy
e m
rt of a Nash equilibrium. - . (nd the set
. Returning to the political advertising game oflExerc1se tSr:(,: .
of rationalizable strategies for party L. (Due to their symme; ) Ezplain ;,Our
set of rationalizable strategies will be the same for party X.

reasoning.

. B
us Intel and AMD, the prlmary pr()ducers of C()lll])llte] central proc eSS1M

i ther in tl

. PUs), compete with one ano o hips
D tegories). Assume that global demand for mid r.ange. chip.

(among other categ . hat the price (in dol-

depends on the quantity that the two firms make, sO ; L
lars) for mid-range chips is given by P = 210 — Q, whe nte
it easure
and where the quantities are mv :
costs Intel $60 to produce. AMD’s production
ip costs them only $48 t0 produce. . o
t(}a)Cth?iltz :he profit function for each firm in terms of Guer aNG Gamp

a

'S le.
each firm's best-response i -

(b) Find the Nash equilibrium price, quantity, and p.rof-‘xtv\leraS e
(Optional) Suppose Intel acquires AMD, 50 that it no o
divisions with two different production cust.s.'T'he merg i
to maximize total profits from the two divisions. Howh'nk ey
should each division produce? (Hint: You may'need toht i e
about this problem, rather than blindly applying mat t;lmﬁrm?
niques.) What is the market price and the total profit to the g

d in millions. Each mid-range chip
process is more streamlined;

<

(c

i i coun-
U9. Return to the VLCC triopoly game of Exercise S9. In reality, the three

ot have identica i radually
tries do n i ical p].'OduCtiOl’l CcOSts. China has been g
Tl
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entering the VLCC construction market for several years, and its produc-

tion costs started out rather high due to lack of experience.

(a) Solve for the triopoly quantities, market shares, price, and profits for the
case where the per-ship costs are $20 million for Korea, $40 million for
Japan, and $60 million for China (Cxees = 20, sy = 40, and cgyq = 60).

After it gains experience and adds production capacity, China’s per-ship cost

will decrease dramatically. Since labor is even cheaper in China than Korea,

eventually the per-ship cost will be even lower in China than it is in Korea.

(b) Repeat part (a) with the adjustment that China's per-ship cost is $16
million (Cgypeq = 20, Crapay = 40, and cgpyq = 16).

u

oy

0. Return to the story of Monica and Nancy from Exercise S10. After some ad-
ditional professional training, Monica is more productive on the job, so that
the joint profits of their company are now given by 5m + 4n + mn, in tens of
thousands of dollars. Again, m is the amount of effort put into the business by
Monica, nis the amount of effort put in by Nancy, and the costs are m? and r?
to Monica and Nancy respectively (in tens of thousands of dollars).

The terms of their partnership still require that the joint profits be split
equally, despite the fact that Monica is more productive. Assume that their
effort decisions are made simultaneously.

(a) What is Monica’s best response if she expects Nancy to put in an effort
of n=4%2

(b) What is the Nash equilibrium to this game?

(c) Compared to the old Nash equilibrium found in Exercise S10, part (c),
does Monica now put in more, less, or the same amount of effort? What
about Nancy?

(d) What are the final payoffs to Monica and Nancy in the new Nash equi-
librium (after splitting the joint profits and accounting for their costs
of effort)? How do they compare to the payoffs to each of them under
the old Nash equilibrium? In the end, who receives more benefit from
Monica’s additional training?

UL1.A professor presents a new game to Elsa and her forty-nine classmates

(similar to the situation in Exercise $12). As before, each of the students
simultaneously and privately writes down a number between zero and 100
on a piece of paper, and the professor computes the mean of these num-
bers and calls it X. This time the student who submits the number closest

to &) % (X + 9) wins $50. Again, if multiple students tie, they split the prize
equally.

(2) Find a symmetric Nash equilibrium to this game. That is, what number
is a best response to everyone else submitting the same number?

(b) Show that choosing the number 5 is a dominated strategy. (Hint: what
would class average X have to be for the target number to be 52)
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(¢) Show that choosing the number 90 is 8 dominated strategy.
(d) Whatare all of the dominated strategies?
(e) Suppose Elsa believes that none of her classmates will play the domi-
nated strategies found in part (d)- Given these peliefs what strategies
are never a best response for Elsa?
(f) Which strategies do you think are rationalizable in this game? Explain

your reasoning.

ui2. (Optional-—requires calculus) Recall the political campaign advertising
example from section 1.B concerning parties 1. and R In that example,
when L spends $x million on advertising and R spends 5y million, L gets
a share x/(x + ) of the votes and R gets y/lx + ). We also mentioned that
two types of asymmetries can arise between the parties in that model. One
party—say, R—may be able to advertise at 8 Jower cost or R advertising
dollars may be more effective in generating votes than Ls. To allow for both
possibilities, we can write the payoft funcrions of the two parties as

— ¢y where k> 0andc> 0.

V= —x and V“=-;:{—§

LT ox+ ky
These payoff functions show that R has an advantage in the relative effec-

tiveness of its ads when kis high and that R has an advantage in the cost of

its ads when cis Tow.

(a) Use the payoff functions to derive the best-response functions for R
(which chooses ¥) and L (which chooses xh

(b) Use yout calculator or your computer 10 graph these hest-response
functions when k= 1 and ¢ = 1. Compare the graph with the one for
the case in which k=1andc= 038 What is the effect of having an ad-
vantage in the cost of advertising?

(¢) Compare the graph from part (b, when k= 1and ¢= 1 with the one
for the case in which k=2 and ¢ = 1. What is the effect of having an
advantage in the effectiveness of advertising dollars?

(d) Solve the best-response functions that you found in part (a), jointly for
x and y to show that the campaign advertising expenditures in Nash
equilibrium are:

~x and ¥< £

(c+ kF

x= =

fc+ kF

(e) letk=1in the equilibrium spendlng-level equations and show how
the two equilibrium spending {evels vary with changes in ¢ (i.eq inter-
pret the signs of dx/de and dyrde). Then let ¢ = 1 and show how the
two equilibrium spending {evels vary with changes in k (i€ interpret
the signs of dx/dk and dy/dky. Do your answers support the effects that
you observed in parts (1) and (¢) of this exercise?
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|
o Appendix:
Finding a Value to Maximize a Function

:;r:i I\:E ic:z}ﬂf :;; :: 3:22:3 :rl;j.;l il:l(‘.‘ n';u thod for choosing a variable Xto ohtain the
] Lis a function of it, say Y= F 5 icati
\lvri}lrl :l:ls:l%rl::;(f;u cases whf:rc the function is qundratic% :ucl1;l:j}.fgu; a:,gl_;:ft?;“
o ‘.:mpwr ‘:r :‘n;s v::;: derive the fur.mula X = BIHZ2C) that was stated and used il;
i appmu;:h dme\.;t op the general idea using calculus, and then offer-an alterna-
i at does not use calcutus but applies only to the gquadratic functlic n,
. aleulus method tests a value of X for optimality by seeing wl fh
F“ ;’:‘; ;uI:;i \-alue of lh? function for other values on either )side ufﬂx l}ﬂ; :;‘tlags
o inllr;:a.m‘;’u; }}[J:'(}, fhen the {.:ffm:t of increasing or decreasing X should
e of Y. L.aIcull.[s gives us a quick way to perform such & test.
e 1 illustrates the basic idea. It shows the gtaph of a function ¥ =
, where we have used a function of the type that fits our application, even

though the idea is perfectly general. Start at any point P with coordinates (XY

z::l::::gir;::. C?";’fim.ﬂ slightly different value of X, say (X + h). Let kbe the re-
e gmp:?r I:L 91; FiX), so the pnl!‘ll. Qwith coordinates (X + h, ¥+ k) is also
vk th.cn 2 dpi of the chord joining P to Qs the ratio k/ . 1f this ratio
: ncgmiw;} i annd khha:et::; ;::Iilll‘.; s‘;iiggn::s X}i‘[]crcascs. so does Y, If the ratio
. ns; as X increases, ¥ decreases.

e :;;T;:::n?;f:d:r srlnfher nnd.smaller changes hin X, and the {:{::espomL
et p-n? elr uh.mges. kin ¥, the chord PQ will approach the tangent
i sy d;ﬂ v:? u.pe of this lzu)genl is the limiting value of the ratio k/ h.
.. : ;; ;:;h; t_’u:ic'(mn Y= F(X) at the point X. Symbolically, it
ity th;, p:; :»I;[:I;( tells us whether the function is increasing

For the quadratic function in our application, Y=A+ B X— CX?and

Y+k=A+BX+h— C(X+ hy.
Therefore, we can find an expression for k as follows:
k=[A+BX+h - CX+ m? - A+ BX—-CX}

=Bh—- ClX+ h)2~X2]=Bh—C[XZ+2Xh+ n? - X3
= (B— 2CX) h— CH.

N
_, deedvless to sy, we glve only
on't have derivatives. funct

the briefest, quickest reatment, leaving out all issues of functi
jons that are maximized at an extreme point of the imen;:acluc:::es
s will know all we say here; some will know mucti
tory caleulus textbook.

which t
. l’:}&:y are defined, and so on. Some reader
N €IS Wi V] .
1ore. O hio want to find out more should refor to any introdue
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Y tangent chord

Y+ k

X X+h

FIGURE 5A.1 Derivative of a Function Nustrated

Then k/h=(B—2CX) -~ Ch. Tn the limit as fi goes 10 sero, kih=(B— 2CX). This
last expression is {hen the derivative of our function.

Now we use the derivative (0 find a test for optimality. Figure 5.2 illustrates
the idea. The point M yields the highest value of Y= F(X).The function increases
as we approach the point M from the left and decreases after we have passed
to the right of M. Therefore the derivative F(X) should be positive for values of
X smaller than M and negative for values of X larger than M. By continuity, the
derivative precisely at M should be zero. In ordinary language, the graph of the
function should be flat where it peaks.

In our quadratic example, the derivative is: F'(X) = B - 2CX. Our optimality
test implies that the function is optimized when this is zero, or at X = B/IO).
This is exactly the formula given in the chapter.

One additional check needs to be performed. If we turn the whole figure
upside down, Mis the minimum value of the upside-down function, and at this
trough the graph will also be flat. So for a general function LX), setting FI(X)=
0 might yield an X that gives its minimum rather than the maximum. How dowe
distinguish the two possibilities?

At a maximum, the function will be increasing to its left and decreasing 10
its right. Therefore the derivative will be positive for values of X smaller than the
purported maximum, and negative for larger values. In other words, the deriva-
tive, itself regarded asa funiction of X, will be decreasing at this point. A decreasing
function hasa negative derivative. Therefore the derivative of the derivative, whatis
called the second derivative of the orlginal furiction, writien as Fx) or d2Y1AX
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M F'X)=0atM

L

FIGURE 5A.2 Optimum of a Function

h i . .
thllﬁj Ee neg.atlve at a maximum. Similar logic shows that the second derivative
e positive at a minimum; that is what distingui
' H stinguishes the twi
For the derivative F'(X) = B o o
= B — 2CX of our quadratic exampl i
, e, appl
Z?me h, 1k procedl?re to F'(X) as we did to F(X) shows F"'(X) = ri2C ?‘ﬁizlir;gnthe
: hl;/; :: ,(;Eg as C is positive, which we assumed when stating the pr;Jblem in f}i
1. The test F'(X) = 01is called the first-ord iti
e : -order condition for imizati
F(X), and F"'(X) < 0 is the second-order condition mamizon ot
To fix the idea further, let us a i :
; pply it to the specific example of Xavi !
response that we considered in the chapter. We had the exprefsion aersbest

I, = - 8(44 + P) + (16 + 44 + B)P,-2(P)*

This is a quadratic functi

ction of P, (holding the other resta 's pri

‘ u

Our method gives its derivative: rants price Fy fed

dil

dPX =(60+p,) —4p,

x

The first- i
— Settt::ii zond;non for P, to ma).dmize I, is that this derivative should be
e c;ua to zero and solving for P, gives the same equation as de-
satisfion becau: }I‘A (The second-order condition is d?Il,/dP?, < 0, which is
Wehopoye et .e second-order derivative is just —4.)
Wil have OCC:'Siu will rega.rd thf: c.alculus method as simple enough and that you
on to use it again in a few places later, for example, in Chapter 12
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nd it too difficult, here is a noncalculus alter-

on collective action. But if you fi
ge terms to write the

native method that works for quadratic functions. Rearran

function as
y=A+ BX—- CX*

= A+ B*/(4C) — B*/(4C) + BX- CX*?

B B B 3
A B | E 2z x
=AY 4C C[zxcz C ]

2
s Bl E _X]
arEo[Z K.
ession, X appears only in the last term, where a

In the final form of the expr
btracted (remember C> 0). The whole expression

square involving it is being sul
is maximized when this subtracted term is made as small as possible, which

happens when X = B/ (2C). Voila!

This method of “completing the squal
therefore will suffice for most of our uses.
admit it smacks of magic. Calculus is more ge
pays alittle study many times over.

re” works for quadratic functions and
It also avoids calculus, But we must
neral and more methodical. Tt re-

Combining Sequential and
Simultaneous Moves

:ngl?:e:? M;vt(; c::]n:::cien:d gﬂmes.nl‘ purely sequential moves; Chapters 4
ooimanechod Lue:,sf 0 p;.ufly sunulta‘nem:s moves, We developed con-
end ollback cqnbiin ot vodsia e GyETT st At S35
librium for simultaneous moves. In reality, how:\;:ras:lar:a te : ““(.l N?Sh ef“lui‘
contain elements of both types of interaction. Alst; althzj ll-fteglc e —
trees (extensive forms) as the sole method of illu,stratin gsewjelliij ove
f;r;eifaizgusg?;n:v :ables (strategic forrr'ls) as the sole met%lodqof illust::t?zz
pliancors games, We can use either form for any type of game.
ing o gameip:}:t \;ve e)tc’:—:lmme man}lz of thesse possibilities. We begin by show-
by Combian > 0;;1 ine sequential and simultaneous moves can be solved
oy combliiag fe an payf)ff tables and by combining rollback and Nash equi-
e fythe ]n tappro'prla.te ways..Then we consider the effects of changing
R 31 eracltlon in a particular game. Specifically, we look at the ef-
ootk arldgVi Cg e rules of a game Fo convert sequential play into simultane-
This o gives j versa and of ?hangmg the order of moves in sequential play.
e rOllbaskar'l opportumt)./ to compare the equilibria found by using the
o ck, in a se_quentla‘l—move game, with those found by using the
this compatis, rrln concept, in the simultaneous version of the same game. From
s 0,u \t/v::hefttind tﬁ; concep.t .of .Nash equilibria to sequential-play
e theseaN " }e; (r;)l uﬂeilt():l:i :'qumbnum is a special case, usually called

177
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l GAMES WITH BOTH SIMULTANEOUS AND SEQUENTIAL MOVES

As mentioned several times thus far, most real games that you will encounter
will be made up of numerous smaller components. Each of these components
may entail simultaneous play or sequential play, S0 the full game requires you
to be familiar with both. The most obvious examples of strategic interactions
containing both sequential and simultaneous parts are those between two (or
more) players over an extended period of time. You may play a number of differ-
ent simultaneous-play games against your roommate, for example, in the course
of a week; your play, as well as hers, in previous situations is important in de-
termining how each of you decide to act in the next “round.” Also, many sport-
ing events, interactions between competing firms in an industry, and political
telationships are sequentially linked series of simultaneous-move games, Such
d by combining the tools presented in Chapter 3 (trees and
(payoff tables and Nash equilibria).' The only
licated as the number

games are analyze
rollback) and in Chapters 4 and 5
difference is that the actual analysis becomes more cOmMp
of moves and interactions increases.

A. Two-Stage Games and Subgames

Our main illustrative example for such situations includes two would-be telecom
giants, CrossTalk and GlobalDialog, Each can choose whether to invest $10 bil-
lion in the purchase of a fiber-optic network. They make their investment de-
cisions simultaneously. If neither chooses to make the investment, that is the
end of the game. If one invests and the other does not, then the investor has
to make a pricing decision for its telecom services. It can choose either a high
price, which will attract 60 million customers, from each of whom it will make an
operating profit of $400, or a low price, which will attract 80 million customers,
from each of whom it will make an operating profit of $200. If both firms acquire
fiber-optic networks and enter the market, then their pricing choices become 4
second simultaneous-move game. Each can choose either the high or the low
price. If both choose the high price, they will split the total market equally: so
each will get 30 million customers and an operating profit of $400 from each.
If both choose the low price, again they will split the total market equally; so
each will get 40 million customers and an operating profit of $200 from each.
If one chooses the high price and the other the low price, then the low-price

'sumetimes the simultancalis part of the game will have equilibria in mixed strategies, when the
v develop in Chopters 7 and 8 will be required. We mention this possibility in this chapter

tools ¥
to use such methods in exercises for the later chapters-

where relevant and give you an apportunity
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firm will get all the 80 milli
illion custome i i
ullgendiitos 1s at that price, and the high-price firm
The i A
gameheé f1rt1}t1eref1ct10n betheen CrossTalk and GlobalDialog forms a two-stage
(inves.tm e four combinations of the simultaneous-move choices at the ﬁrgst
S e'nt) stage, one ends the game, two lead to a second-stage (pricing) de
. y ;lust one player, and the fourth leads to a simultaneous-move (| r'g i
g ;;: at t de (sjecond stage. We show this game pictorially in Figure 6.1 pricing
egarded as a whole, Figure 6.1 illustr: "
! 3 ates a game tree, b i
I . , but one that i
com S}:! :ax .tk:lan the. trees in Chapter 3. You can think of it as an elralbol'atizr"")tOre
i wit ‘mu]tlple levels. The levels are shown in different parts of the safrele
-~ men51.0nal figure, as if you are looking down at the tree fro heli e
positioned directly above it. e helleopter
The - i
. Ffii;it st:gle Sg{ame is represented by the payoff table in the top-left quad
re 6.1. You can think of it as the first fl ‘
anes € ! rst floor of the tree house. It h
. ffltr)otms. The room in the northwest corner corresponds to the “Don't izs
vest' I }sl -stage moves of both firms. If the firms’ decisions take the game to thi
termi;l leredare no further choices to be made, so we can think of it being like X
: a
al node of a tree in Chapter 3 and show the payoffs in the cell of thg table;

First stage:

investment game Second stage:

GlobalDialog’s pricing decision

GLOBALDIALOG
Don't Invest Mgt 4
: GLOBAL-
CROSS- Don't 0,0 0, DIALOG
TALK
Invest / 0 o ¢
c Se:fonc! stage: Second 3
rossTalk's pricing decision pricing ;taage.
me
i » GLOBALDIALOG
CROSS- ‘
TALSKS High Low
o é CROSS- High 2,2 -10,6
TALK L
ow 6,-10 -2,
FIGURE 6.1 ==

Two-S ini
tage Game Combining Sequential and Simultaneous Moves




180 [CH, 6] COMBINING SEQUENTIAL AND SIMULTANEOUS MOVES

inations of actions for the two
so we cannot yet show the
o the second floor.

both firms get 0. However, all of the other comb:
firms lead to rooms that lead to further choices;
payoffs in those cells. Instead, we show branches leading t
The northeast and southwest rooms show only the payoff to the firm that has not
invested; the branches leading from each of these rooms take us to single-firm
pricing decisions in the second stage. The southeast room leads to a multiroom
e tree house, which represents the second-stage
ms have invested in the first stage. This
orresponding to the four combinations

second-floor structure within th
pricing game that is played if both fir
second-floor structure has four rooms ¢

of the two firms’ pricing moves.
All of the second-floor branches and rooms are like terminal nodes of a

game tree, O we can show the payoffs in each case. Payoffs here consist of each
firm’s operating profits minus the previous investment costs; payoff values are
written in billions of dollars.

Consider the branch leading to the southwest corner of Figure 6.1. The game
arrives in that corner if CrossTalk is the only firm that has invested. Then, if it
chooses the high price, its operating profit is $400 X 60 million = $24 billion;
after subtracting the $10 billion investment cost, its payoff is $14 billion, which
we write as 14. In the same cotner, if CrossTalk chooses the low price, then its
operating profit is $200 80 million = $16 billion, yielding the pavoffl 6 after ac-
stment. In this situation, GlobalDialog's payoffis 0,

counting for its original inve:
as shown in the southwest room of the first floor of our tree. Similar calculations

for the case in which GlobalDialog is the only firm to invest give us the payoffs
shown in the northeast corner of Figure 8.13 again, the payoff of 0 for CrossTalk
is shown in the northeast room of the first-stage game table.

If both firms invest, both play the second-stage pricing game illustrated in
the southeast corner of the figure. When both choose the high price in the sec-
ond stage, each gets operating profit of $400 X 30 million (half of the market), or
$12 billion; after subtracting the $10 billion investment cost, each is left with a
net profit of $2 billion, or a payoff of 2. If both firms choose the low price in the
second stage, each gets operating profit of $200 X 40 million = $8 billion, and,
after subtracting the $10 billion investment cost, each is left with a net loss of $2
billion, or a payoff of —2. Finally, if one firm charges the high price and the other
firm the low price, then the fow-price firm has operating profit of $200 X 80 mil-
Jion = $16 billion, leading to the payoff 6, while the high-price firm gets no op-
erating profit and simply loses its $10 hillion investment, fora payoff of —10.

Aswith any multistage game in Chapter 3, we must solve this game backward,
starting with the second-stage game. I the two single-firm decision problems,
we see at once that the high-price policy yields the higher payoff. We highlight
this by showing that payoff in a larger-size type.

The second-stage pricing game has to be solv
oped in Chapter 4. Tt is immediately evident, however, that this game is a pris-
oners' dilemma. Low is the dominant strategy for each firm; so the outcome is

ed by using methods devel-
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tl;e (r)(f)fomzlr; the .southeast corner of the second-stage game table; each firm gets
; c); . t}.l Agam,h we show these payoffs in a larger type size to highlight the
ey are the payoffs obtained in the second ili
-stage equilibrium.
. eszlllbeicl; Eo‘fl tells us that each first-stage configuration of moves should
uated by looking ahead to the equilibri
. quilibrium of the se
= to cond-stage game (or
Suft:) :t[.)ttlrtnir; secon;i—stage decision) and the resulting payoffs, We cfn fheref(gre
itute the payoffs that we have just calculated i c
- ted into the previously em
partly empty .1ooms on the first floor of our tree house. This substitutiZ ‘pty N
a first floor with known payoffs, shown in Figure 6.2 e
: 2.
same 0;\; :zlvz }?anlgs.e the Lnethods of Chapter 4 to solve this simultaneous-move
; ould immediately recognize the in Fi
game in Figure 6.2 as a chick
game. It has two Nash equilibria, ea i e
, each of which entails one fi hoosi
and the other choosing Don’t. Th i aegprol s
. The firm that invests makes a h
firm prefers the equilibrium i ich it i Ly
in which it is the investor while th,
out. In Chapter 4, we briefly di i o e
: i y discussed the ways in which one of th ili
ria might get selected. We also poi I e
. pointed out the possibility that each i
try to get its preferred outcome, with y vescendoi
b the result that both of them i
lose money. Indeed, this is wh e he
A , at seems to have happened in the real-li
: : . al-life play of
this garr.le. In Chapter 7, we investigate this type of game further, showin, pthyt i
has a third Nash equilibrium, in mixed strategies. . Bt
i ﬁ::lysm o'f Figure 6.2 shows that the first-stage game in our example does
e a unique Nash equilibrium. This i
. problem is not too seri b
we can leave the solution ambi i
: guous to the extent that was done in th
ing paragraph. Matters would be worse if T
. the second-stage game did
a unique equilibrium. Then it would be e i : I
. . ssential to specify th i
: p e precise proces:
y which an outcome gets selected so that we could figure out the seconlfi—st .
payoffs and use them to roll back to the first stage e
T - ici ,
= o};(; ?.econd st'age pricing game shown in the table in the bottom-right quad-
igure 6.1 is one part of the complete two-stage game. However, it is also

GLOBALDIALOG

Don't Invest

Don't 0,0
CROSSTALK Qs
Invest 14,0 -2,-2

FIGURE 6.2 irst- me| -
e t-Stage Invest ituti
b Ft ) t Game (After Substituti g Rolled-Back Payoffs from the

2
As s usual i i & o "
. Cuu:f; ;ef)lllfo;:: ditemma, if the firms could suecessfully collude and charge high
X e higher payofl of L But thi ili
mis tempt, [} tis oufcome §s not an equilibri
pted to cheat to try to geet the mueh highar payoff of 6. quitiorium, because each

pri
fir,
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both firms get 0. However, all of the other combinations of actions for the two
firms lead to rooms that lead to further choices; so we cannot yet show the
payoffs in those cells. Instead, we show branches leading to the second floor.
The northeast and southwest rooms show only the payoff to the firm that has not
invested; the branches leading from ench of these rooms take us to single-firm
pricing decisions in the second stage. The southeast room leads to a multiroom
second-floor structure within the tree house, which represents the second-stage
pricing game that is played if both firms have invested in the first stage. This
second-floor structure has four rooms corresponding to the four combinations
of the two firms’ pricing moves.
All of the second-floor branches and rooms are like terminal nodes of a
game tree, SO we can show the payoffs in each case. Payoffs here consist of each
firm's operating profits minus the previous investment costs; payoff values are
written in billions of dollars.
Consider the branch leading to th
arrives in that corner if CrossTalk is t

e southwest corner of Figure 6,1. The game
he only firm that has invested. Then, if it
chooses the high price, its operating profit is $400 x 60 million = $24 billion;
after subtracting the $10 billion investment cost, its payoif is $14 billion, which
we write as 14. In the same COTREr, if CrossTalk chooses the low price, then its
operating profitis $200 % 80 million = §16 billion, yielding the payoff 6 after ac-
counting for its original investment. [n this situation, GlobalDialog’s payoff is 0,
as shown in the southwest room of the first floor of our tree. Similar calculations
for the case in which GlobalDialog is the only firm to invest give us the payoffs
shown in the northeast corner of Figure 6.1; again, the payoff of 0 for CrossTalk
is shown in the northeast room of the first-stage game table.

If both firms invest, both play the second-stage pricing game illustrated in
the southeast corner of the figure. When both choose the high price in the sec-
perating profit of $400 % 30 million (half of the market), or
$12 billion; after subtracting the $10 billion investment cost, each is left with a
net profit of $2 billion, ora payoff of 2, [f both firms choose the low price in the
secon stage, each gets operating profit of $200 % 40 million = $8 billion, and,
after subtracting the $10 billion investment cost, each is left with a net loss of $2
billion, or a payoff of —2. Finally, if one firm charges the high price and the other
firm the low price, then the low-price firm has operating profit of $200 % B0 mil-
lion = §16 billion, leading to the payoff &, while the high-price firm gets no op-
erating profitand simply loses its $10 billion investment, for a payoff of —10.

As with any multistage game in Chapter 3, we must solve this game backward,
starting with the second-stage game. In the two single-firm decision problems,

ond stage, each gets o

we see at once that the high-price policy yields the higher payoff. We highlight
this by showing that payoff in a larger-size type.
The second-stage pricing game has to be solved by

oped in Chapter 4. It is immediately evident, however, that this game is a pris-
so the outcome i8

using methods devel-

oners' dilemma. Low is the dominant strategy for each firm;
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th i
pae ;(;FTZII; It\he .southeast corner of the second-stage game table; each firm gets
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e payoffs obtained in the second ilibri
. -stage equilibrium.
e ev;)llillzc]; Zow tel.ls us that each first-stage configuration of moves should
. ed by looking ahead to the equilibrium of the second-stage game (or
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. into the previously em
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a first floor with known payoffs, shown in Figure 6.2 e
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, with the result that both of i
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) apter 7, we investigate this type of gam
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has a third Nash equilibrium, in mixed strategies. ’ o showing thatlt
- ha\;:lysm o.f Figure 6.2 shows that the first-stage game in our example does
e a unique Nash equilibrium. This i
. problem is not too seri
we can leave the solution ambi; Ao
. guous to the extent that was done in
the preced-
;nsn;;aragraph. Matters would be worse if the second-stage game did nrcj)t lfzde
7 . . v
. }?]1:; quh:)rlum. Then it would be essential to specify the precise process
n outcome gets selected so that we could fi
ure out t y
payoffs and use them to roll back to the first stage ’ e secondstage
Th - ici ,
= ofe; ﬁecond st.age pricing game shown in the table in the bottom-right quad-
igure 6.1 is one part of the complete two-stage game. However, it is also

GLOBALDIALOG

Don't Invest

Don't 0,0
CROSSTALK Wik
Invest 14,0 -2,-2

FIGURE6.2 Fj me (A Payoff
e |rst-Stage Investment G i i
£ ilibri fr o N ) ame ( fter SUbStItUtlng Rolled-Back ayoTts from the

2 .
As is usual in a

?rices' both could
i

Tis ’ dil i
gefth::?r}s] dilemma, if the ﬁrr-ns could successfully collude and charge high
M is temptod to o gher payoff of 2. But this outcome is not an equilibrium, becau
eat o try to get the much higher payoff of 6. ' e et
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ht, with a fully specified structure of players,

a full-fledged game in its Own Tigl e cal e

strategies, and payoffs. To bring out this dual nature more expli

beame of the full game. . -
. ?\/Iore generally, a subgame is the part of a multimove gamf: ‘Elfnb-igsltnmat
a particular node of the original game. The tree for a s.ubgame 1sinitial] ust e
part of the tree for the full game that takes this node as its root, Y )

i - isi es.
multimove game has as many subgames as it has decision nod

B. Configurations of Multistage Games

in Fi sists of a
In the multilevel game illustrated in Figure 6.1, each stage cb(;nthe ol
simultaneous-move game. However, that may not always fy e

i e

Simultaneous and sequential components may b.e mixed andl rr;a ce Eop=
ay. We give two more examples to clarify this point and to reiniorc
way.

i in the preceding section. . o
lmr(')l“(:::;?sltnexanfple is a slight variation of the CrossTalk-GlobalDialog game.

5 illi
Suppose one of the firms—say, GlobalDialog—has already ma‘dc the Slﬂabll ;?12
'n\ffstment in the fiber-optic network. CrossTalk knows of this investmen
i

i i CrossTalk does not in-
i make its own investment. 1f
B e il ecision to make. If CrossTalk

i i imple pricing d
. then GlobalDialog will have a simp! N _
:r‘:\s/:estsethen the two firms will play the second-stage pricing game already de

scribed. The tree for this multlstage game has conventlonal branches at the ini-
g g

tial node and has a snnultane()us—move subgame starting at one of the nodes to

which these initial branches lead. The complete tree is shown in Flglﬂe 6.3

Second stage:
pricing game

GLOBALDIALOG

High Low
High
CROSS- Y
Invest TALK T
CROSS-
i High 0,14
g Second stage:
S GlobalDialog's

pricing decision s o

Iready Invested

FIGURE 6.3 Two-Stage Game When One Firm Has A
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When the tree has been set up, it is easy to analyze the game. We show the
rollback analysis in Figure 6.3 by using large type for the equilibrium payoffs
that result from the second-stage game or decision and a thicker branch for
CrossTalk's first-stage choice. In words, CrossTalk figures out that, if it invests,
the ensuing prisoners’ dilemma of pricing will leave it with payoff —2, whereas
staying out will get it 0. Thus it prefers the latter. GlobalDialog gets 14 instead of
the —2 that it would have gotten if CrossTalk had invested, but CrossTalk’s con-
cern is to maximize its own payoff and not to ruin GlobalDialog deliberately.

This analysis does raise the possibility, though, that GlobalDialog may try
to get its investment done quickly before CrossTalk makes its decision so as to
ensure its most preferred outcome from the full game. And CrossTalk may try
to beat GlobalDialog to the punch in the same way. In Chapter 10, we study
some methods, called strategic moves, that may enable piéyers to secure such
advantages. S

Our second example comes from football. Before each play, the coach for
the offense chooses the play that his team will run; simultaneously, the coach
for the defense sends his team out with instructions on how they should align
themselves to counter the offense. Thus these moves are simultaneous. Suppose
the offense has just two alternatives, a safe play and a risky play, and the de-
fense may align itself to counter either of them. If the offense has planned to
run the risky play and the quarterback sees the defensive alignment that will
counter it, he can change the play at the line of scrimmage. And the defense,
hearing the change, can respond by changing its own alignment. Thus we have
a simultaneous-move game at the first stage, and one of the combination of
choices of moves at this stage leads to a sequential-move subgame. Figure 6.4
shows the complete tree.

This is a zero-sum game, and we show only the offense’s payoffs, measured
in the number of yards that they expect to gain. The safe play gets 2 yards, even
if the defense is ready for it; if the defense is not ready for it, the safe play does
not do much better, gaining 6 yards. The risky play, if it catches the defense un-
ready to cover it, gains 30 yards. But if the defense is ready for the risky play, the
offense loses 10 yards, We show this payoff of —10 for the offense at the termi-
nal node where the offense does not change the play. If the offense changes the
play (back to safe), the payoffs are 2 if the defense responds and 6 if it does not;
these payoffs are the same as those that arise when the offense plans the safe
play from the start.

We show the chosen branches in the sequential subgame as thick lines in
Figure 6.4. It is easy to see that, if the offense changes its play, the defense will
respond to keep the offense’s gain to 2 rather than 6 and that the offense should
_Change the play to get 2 rather than —10. Rolling back, we should put the resuit-
'ng payoff, 2, in the bottom-right cell of the simultaneous-move game of the first
Stage. Then we see that this game has no Nash equilibrium in pure strategies.
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First stage:
coaches choose alignment
DEFENSE TO COVER
Safe Risky
Safe 2 6
OFFENSE
TOPLAY | pigky 30 ‘
Respand 2
Change
play DEFENSE
OFFENSE Don't 6
Don't -10

FIGURE 6.4 Simultaneous-Move First Stage Followed by Sequential Moves

The reason is the same as that in the tennis game of Chaplter -1 ?uc::a;: fh {:);1;_-
player (defense) wants to match the moves (align to counter the play i
fense is choosing) while the other (offense) wants to unmatch mcwe:i gt
defense in the wrong alignment}. In Chapter 7, we show how to f‘:‘ mi o
mixed-strategy equilibrium of such a game. It tms out that the offens

choose the risky play with probability 1/8, or 12.5%.

2 CHANGING THE ORDER OF MOVES IN A GAME

in preceding chapters were presented as either sequen-
i i re-

tial or simultaneous in nature. We used the appropriate tO(;is of analys(;.s ttil ssed

i i ter, we disc
i ilibria i o f came. In Section 1 of this chapter,

dict equilibria in each type ol g L ; ; o =

games with elements of both sequential and simultaneous play. These geid <

required both sets of tools to find solutions. But what about games that cou

played either sequentially or simultaneously? How would changing the play of
a particular game and thus changing the

appropriate tools of analysis alter the
expected outcomes?

The task of turning a sequential-play
changing only the timing or observability wit )
of moves. Sequential-move games become shm
observe moves made by their rivals before l?"la
case, we would analyze the game by suarchmg’ for
than for a rollback equilibrium. Conversely, a simiult

The games considered

game intoa simultaneous one mqu.irt’.s
h which players make their choices
ultaneous if the players cannot
king their own choices. In that
a Nash equilibrium rather
aneous-move game could
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become sequential if one player were able to observe the other’s move before
choosing her own.

Any changes to the rules of the game can also change its outcomes. Here, we
illustrate a variety of possibilities that arise owing to changes in different types
of games.

A. Changing Simultaneous-Move Games into Sequential-Move Games

I. NO CHANGE iN 0UTCOME  Certain games have the same outcomes in the equilibria
of both simultaneous and sequential versions and regardless of the order of
play in the sequential-play game. This result generally arises only when both
or all players have dominant strategies. We show that it holds for the prisoners’
dilemma,

Consider the prisoners’ dilemma game of Chapter 4, in which a husband
and wife are being questioned regarding their roles in a crime. The simulta-
neous version of that game, reproduced in Figure 6.5a, can be redrawn as ei-
ther of the sequential-play games shown in Figure 6.5b and c. As in Figure 4.4,
the payoff numbers indicate years in jail; so low numbers are better than high
ones. In Figure 6.5b, Husband chooses his strategy before Wife does; so she
knows what he has chosen before making her own choice; in Figure 6.5¢ the
roles are reversed.

The Nash equilibrium of the prisoners’ dilemma game in Figure 6.5a is for
each player to confess (or to defect from cooperating with the other). Using
rollback to solve the sequential versions of the game, illustrated in Figure 6.5b
and c, we see that the second player does best to confess if the first has con-
fessed (10 rather than 25 years in jail) and the second player also does best to
confess if the first has denied (1 year rather than 3 years of jail). Given these
choices by the second player, the first player does best to confess (10 rather
than 25 years in jail). The equilibrium entails 10 years of jail for both players
regardless of which player moves first. Thus, the equilibrium is the same in all
three versions of this game.

Il FIRST-MOVER ADVANTAGE A first-mover advantage may emerge when the rules of
a game are changed from simultaneous to sequential play. At a minimum, if the
simultaneous-move version has multiple equilibria, the sequen _iql:mO\féjvér—
sion enables the first mover to choose his preferred outcome, We illustrate such
a situation with the use of chicken, the game in which two teenagers drive to-
ward each other in their cars, both determined not to swerve. We reproduce the
strategic form of Figure 4.14 in Figure 6.6a and two extensive forms, one for each
possible ordering of play, in Figure 6.6b and c.

Under simultaneous play, the two outcomes in which one player swerves (is
“chicken”) and the others goes straight (is “tough”) are both pure-strategy Nash
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(a) Simultaneous play

WIFE

Confess (Defect) |Deny (Cooperate)

Confess (Defect) 10yr, 10yr 1yr,25yr

HUSBAND ——— |
Deny (Cooperate) 25yr, 3 yr 3yr3yr

HUSBAND, WIFE

(b) Sequential play: Husband moves first

1,25

HUSBAND

25,1

3,3

WIFE, HUSBAND

(c) Sequential moves: Wife moves first

HUSBAND

1,25

WIFE

25,1
HUSBAND
3,3

FIGURE 6.5 Three Versions of the Prisoners’ Dilemma Game
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{a) Simultaneous play

DEAN

Swerve (Chicken) | Straight (Tough)

Swerve (Chicken) 0,0 -1,1
JAMES :
Straight (Tough) 1,-1 -2,-2
{b) Sequential play: James moves first JAMES, DEAN

0,0

JAMES

-2,-2

(c) Sequential play: Dean moves first DEAN, JAMES

0,0

DEAN

JAMES
aighy

FIGU icken in Si
RE6.6  Chicken in Simultaneous- and Sequential-Play Versions
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equilibria. Without specification of some historical, cultural, or other conven-
tion, neither has a claim to be a focal point. Our analysis in Chapter 4 suggested
that coordinated play could help the players in this game, perhaps through an
agreement to alternate between the two equilibria.

When we alter the rules of the game to allow one of the players the oppor-
1, there are no longer two equilibria. Rather, we see that the

tunity to move firs
e action opposite that cho-

second mover's equilibrium strategy is (o choose th
sen by the firsst mover. Rollback then shows that the first mover’s equilibrium

strategy is Straight. We see in Figure 6.6b and ¢ that allowing one person to move
first and to be observed making the move results in a single rollback equilib-
rium in which the first mover gets & payoff of 1, while the second mover gets a
payoff of —1. The actual play of the game hiecomes almost irrelevant under such
rules, which may make the sequential version uninteresting to many observers.
Although teenagers might not want to play such a game with the rule change,
the strategic consequences of the change are significant.

|11, SECOND-MOVER ADVANTAGE In other games, a_second-mover advantage may
emerge when simultaneous play is changed into sequential pkiy. This can be il-
|ustrated using the tennis game of Chapter 4. Recall that, in that game, Evert is
planning the location of her return while Navratilova considers where to cover.
The version considered earlier assumed that both players were skilled at dis-
guising their intended moves until the very last moment so that they moved at
essentially the same time. 1f Evert’s movement as she goes to hit the ball belies
her shot intentions, however, then Navratilova can react and move second in the
game. In the same way, if Navratilova leans toward the side that she intends to
cover before Evert actually hits her return, then Evert is the second mover. Fig-
ure 6.7 shows all three possibilities. The simultaneous-move version is Figure
4.15 reproduced as Figure 6.7a; the two orderings of the sequential-play game
are Figure 6.7b and ¢.

The simultaneous-play version of this game has no equilibrium in pure
strategies. In each ordering of the sequential version, however, there is a unique
rollback equilibrium outcome; the equilibrium differs, depending on who moves
first, If Evert moves first, then Navratilova chooses to cover whichever direction
Evert chooses and Evert opts for a down-the-line shot. Fach player is expected
to win the point half the time in this equilibrium, If the arder is reversed, Evert
chooses to send her shot in the opposite direction from that which Navratilova
covers; so Navratilova should move to cover crosscourt. In this case, Evert is ex-
pected to win the point 80% of the time. The second mover does better by being
able to respond optimally to the opponent’s move.

We return to the simultaneous version of this game in Chapter 7. There
we show that it does have a Nash equilibrium in mixed strategies. In that equi-
librium, Evert succeeds on average 62% of the time. Her success raté in the
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(a) Simultaneous play

NAVRATILOVA
DL cC
DOL 50
EVERT &
cC 90 20
(b) Sequential play: Evert moves first EVERT, NAVRATILOVA

NAVRATILOVA

80, 20

EVERT

90, 10

NAVRATILOVA
Cc
® 20,80

(c) Sequential play: Navratilova moves first NAVRATILOVA, EVERT

50,50

10,90

NAVRATILOVA

80,20

FIGURE 6, i in Si
.7 Tennis Game in Simultaneous- and Sequential-Play Versions
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mixed-strategy equilibrium of the simultaneous game is thus better than the
50% that she gets by moving first but is worse than the 80% that she gets by mov-
ing second, in the two sequential-move versions.

\v. BOTH PLAVERS MAYDOBETTER  Thatagame mayhavea first-mover or a second-mover
advantage, which is suppressed When moves have to be simultaneous but
emerges when an order of moves is imposed, is quite intuitive. Somewhat
more surprising is the possibility that both players may do better under one
set of rules of play than under another. We illustrate this possibility by using
the game of monetary and fiscal policies played by the Federal Reserve and
the Congress, In Chapter 4, we studied this game with simultaneous moves;
we reproduce the payoff 1able (Figure 4.5) as Figure 6.8a and show the two
sequential-move versions as Figure 6.8b and c. For brevity, we write the strate-
gies as Balance and Deficit instead of Budget Balance and Budget Deficit for the
Congress and as High and Low instead of High Interest Rates and Low Interest
Rates for the Fed.

In the simultaneous-move version, the Congress has a dominant strategy
(Deficit), and the Fed, knowing this, chooses High, yielding payoffs of 2 to both
players. Almost the same thing happens in the sequential version where the Fed
moves first. The Fed foresees that, for each choice it might make, the Congress
will respond with Deficit. Then High is the better choice for Fed, yielding 2 in-
stead of 1.

But the sequential-move version where the Congress moves first is different.
Now the Congress foresees that, if it chooses Deficit, the Fed will respond with
High, whereas, if it chooses Balance, the Fed will respond with Low. Of these two
developments, the Congress prefers the latter, where it gets payoff 3 instead of 2.
Therefore the rollback equilibrium with this order of moves is for the Congress
10 choose a balanced budget and the Fed to respond with low interest rates. The
resulting payoffs, 3 for the Congress and 4 for the Fed, are better for both players
than those of the other two versions.

The difference between the two outcomes is even more surprising because
the better outcome obtained in Figure 6.8¢ results from the Congress choosing
Balance, which is its dominated strategy in Figure 6.6a. To resolve the apparent
paraddi.gne must understand more precisely the meaning of dominance. For
Deficit to be a dominant strategy, it must be better than Balance from the Con-
gress's perspective for each given choice of the Fed. This type of comparison be-
tween Deficit and Balance is relevant in the simultaneous-move game because
there the Congress must make a decision without knowing the Fed's choice.
The Congress must think through, or formulate a belief about, the Fed's action,
and choose its best response to that. In our example; this best response is al-
ways Deficit for the Congress. The concept of dominance is also relevant with

sequential moves it the Congress moves second, because then it knows what the
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(a) Simultaneous moves

FEDERAL RESERVE
Low interest rates | High interest rates
Budget balance 3,4 1,3
CONGRESS x =
Budget deficit 4,1 2,2
(b} Sequential moves: Fed moves first FED, CONGRESS
4,3
1,4
FED
3.1

CONGRESS
Degicy

(c) Sequential moves: Congress moves first CONGRESS, FED

CONGRESS

Hign

Fi i
GURE 6.8 Three Versions of the Monetary-Fiscal Policy Game
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Fed has already done and merely picks its best response, which is always Deficit.
However, if the Congress moves first, it cannot take the Fed’s choice as given.
Instead, it must recognize how the Fed's second move will be affected by its own
first move. Here it knows that the Fed will respond to Deficit with High and to
Balance with Low. The Congress is then left to choose between these two alter-
natives; its most preferred outcome of Deficit and Low becomes irrelevant be-
cause it is precluded by the Fed's response.

The idea that dominance may cease o be a relevant concept for the first
0. There we consider the possibility that one

mover reemerges in Chapter 1
he rules of a game to become the

player or the other may deliberately change L
first mover. Players can alter the outcome of the game in their favor in this way.
Suppose that the two players in our current example could choose the order
of moves in the game. In this case, they would agree that the Congress should
move first. Indeed, when budget deficits and inflation threaten, the chairs of the
Federal Reserve in testimony before various congressional committees often
offer such deals; they promise to respond to fiscal discipline by lowering inter-
est rates. But it is often not enough to make a verbal deal with the other player.
The technical requirements of a first move—namely, that it be observable to the
second mover and not reversible thereafter—must be satisfied. In the context
of macroeconomic policies, it is fortunate that the legislative process of fiscal
policy in the United States is both very visible and very slow, whereas monetary
policy can be changed quite quickly in a meeting of the Federal Reserve Board.
Therefore the sequential play where the Congress moves first and the Fed moves

second is quite realistic.

B. Other Changes in the Order of Moves

The preceding section presented various examplesin which the rules of the game
were changed from simultaneous play to sequential play. We saw how and why
such rule changes can change the outcome of a game. The same examples also
serve to show what happens if the rules are changed in the opposite direction,
from sequential to simultaneous mOoves. Thus, if a first- or a second-mover
advantage exists with sequential play, it can be lost under simultaneous play.
And if a specific order benefits both players, then losing the order can hurt
both.

The same examples also show us what happens if the rules are changed
to reverse the order of play while keeping the sequential nature of a game un-
changed. If there is a first-mover or a second-mover advantage, then the player
who shifts from moving first to moving second may benefit or lose accordingly,
with the opposite change for the other player. And if one order is in the common
interests of both, then an externally imposed change of order can benefit or hurt

them both.
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3 CHANGE IN THE METHOD OF ANALYSIS

Game trees are the natural way to display sequential-move games, and payoft
tables the natural representation of simultaneous-move games Ht),wever each
technique can be adapted to the other type of game. Here V\;e show h’()w to
translate the information contained in one illustration to an illustration of the
other type. In the process, we develop some new ideas that will prove useful i

subsequent analysis of games. P e

A. llustrating Simultaneous-Move Games by Using Trees

Consider the game of the passing shot in tennis as originally described in Chap-
.ter 4., where the action is so quick that moves are truly simultaneous, as shovgn
{n Figure 6.7a. But suppose we want to show the game in extensive f’orm—that
is, by using a tree. We show how this can be done in Figure 6.9.

To draw the tree in the figure, we must choose one player—say, Evert—to
make her choice at the initial node of the tree. The branches for her tV:IO choices,
DL 'and CC, then end in two nodes, at each of which Navratilova makes he;
choices. However, because the moves are actually simultaneous, Navratilova
must choose without knowing what Evert has picked. That is, she ,must choose
without knowing whether she is at the node following Evert's’ DL branch or the
one following Evert’s CC branch. Our tree diagram must in some way show thi
lack of information on Navratilova’s part. ' ’

EVERT, NAVRATILOVA

50, 50
NAVRATILOVA
c
80, 20
EVERT |nf0rsmftion
_5e
oL 90, 10
NAVRATILOVA
® 20,80

FIGU| i
RE6.9  Simultaneous-Move Tennis Game Shown in Extensive Form
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We illustrate Navratilova’s strategic uncertainty about the node from which
her decision is being made by drawing an oval to strround the two relevant
nodes, (An alternative is to connect them by a dotted line; & dotted line is used
{0 distinguish it from the solid lines that represent the pranches of the tree.) The
nodes within this oval ot balloon are called an information set for the player
who moves there. Such a set indicates the preseﬁ'ge_;l.i'ﬁiffé?fccl information
for the player; she cannot distinguish between the nodes in the sel, given her
availuble information (because she cannot observe the row player’s move be-
fore making her own). As such, her strategy choice from within a single infor-
mation set must specify the same move at all the nodes contained in it. That
is, Navratilova must choose either DL at both the nodes in this information set
or CC at both of them. She cannot choose DL at one and CC at the other, as
she could in Figure 6.7b, where the game had sequential moves and she moved
second.

Accordingly, we must adapt our definition of strategy. In Chapter 3, we de-
fined a strategy as a Eg_lllpletc plan of action, specifying the move that a player
would make at each node where the rules of the game specified that it was her

. turn to move. We should now more accurately redefine & strategy 4s a complete
~OU plan of action, specifying the move that a player would make at each informa-
tion setat whose nodes the rules of the game specify that itis her furn to move.

The concept of an information set is also relevant when a player faces ex-
ternal uncertainty about some conditions that affect his decision, rather than
about another player’s oves. For example, a farmer planting a crop is uncertain
about the weather during the growing season, although he knows the probabili-
ties of various alternative possibilities from past experience or meteorological
forecasts. We can regatd the weather as a random choice of an outside player,
Nature, who has no payoffs but merely chooses according to known probabili-
ties.3 We can then enclose the various nodes corresponding to Nature’s moves
into an information set for the farmer, constraining the farmer’s choice to be the
same at all of these nodes. Figure 6.10 illustrates this situation.
Using the concept of an information set, we can formalize the concepts of
perfect and imperfect information in a game, which we introduced in Chapter 2
~ (Section 2.D). A game has perfect Information if it has neither strategic nor ex-
, ternal uncertainty, which will happen if it has no information sets enclosing two
+ or more nodes. ‘I'hus a game has perlect information if all of its information sets
\ consist of singleton nodes.

sgome people beliove thal Nature is actually a malevolent player who plays a zero-sum game
A ™ = il ..

with us, so its payoffs are higher when ours are Jower, For example, it is more likely to rain if we have
forgotten to bring an umbrolly, We understand such thinking, but it does not have real statistical
support.
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Farmer's
Information .

ot ~_FARMER

=

NATURE

FARMER

FIGURE6.10 Nature and information Sets

. Although this representation is conceptually simple, it does not provide any
t;lmplet way of solving the game. Therefore we use it only occasionally, where
it conveys some point more simply. Some examples of game illustrations using

information sets can be found later in Chapters 9 and 15.

B. Showing and Analyzing Sequential-Move Games in Strategic Form

Consider now the sequential-move game of monetary and fiscal policy from Fig-
ure 6.8c, in which the Congress has the first move. Suppose we want to show itin
normal or strategic form—that is, by using a payoff table. The rows and the col-
umns of the table are the strategies of the two players. We must therefore begin
by specifying the strategies.

For the Congress, the first mover, listing its strategies is easy. There are just
two moves—Balance and Deficit—and they are also the two strategies. For the
second mover, matters are more complex. Remember that a strategy is a com-
plete plan of action, specifying the moves to be made at each node where itis a
player’s turn to move. Because the Fed gets to move at two nodes (and because
we are _Suppo,,s,i,ng that this game actually has seciuential r}lovés and so the two
nodejs are not confounded into one information set) and can choose either Low
:;Ei,g:l :tt- each node, ther-e are four combinations of its choice patterns. These

jons are (1) Low if Balance, High if Deficit (we write this as “L if B, H if
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FED

LifB,HifD | HifB,LifD | Low always High always

Balance 3,4 1,3 3,4 1,3
CONGRESS L
Deficit 2,2 4,1 41 2,2

FIGURE 6.11 Sequential-Move Game of Monetary and Fiscal Policy in Strategic Form

D" for short); (2) High if Balance, Low if Deficit (“H if B, L if D” for short); (3) Low
always; and (4) High always.

We show the resulting two-by-four payoff matrix in Figure 6.11. The last two
columns are no different from those for the two-by-two payoff matrix for the
game under simultaneous-move rules (Figure 6.8a). This is because, if the Fed
is choosing a strategy in which it makes the same move always, it is just as if the
Fed were moving without taking into account what the Congress had done; it is
as if their moves were simultaneous. But calculation of the payoffs for the first
two columns, where the Fed’s second move does depend on the Congress’s first
move, heeds some care.

To illustrate, consider the cell in the first row and the second column. Here
the Congress is choosing Balance, and the Fed is choosing “H if B, L if D.” Given
Congress’s choice, the Fed’s actual choice under this strategy is High. Then the
payoffs are those for the Balance and High combination—namely, 1 for Con-
gress and 3 for the Fed.

Cell-by-cell inspection quickly shows that the game has two pure-strategy
Nash equilibria, which we show by shading the cells gray. One is in the top-left
cell, where the Congress’s strategy is Balance and the Feds is "L if B, Hif D" and
so the Fed's actual choice is L. This outcome is just the rollback equilibrium of the
sequential-move game. But there is another Nash equilibrium in the bottom-right
cell, where the Congress chooses Deficit and the Fed chooses “High always.” As
always in a Nash equilibrium, neither player has a clear reason to deviate from the
strategies that lead to this outcome. The Congress would do worse by switching

to Balance, and the Fed could do no better by switching to any of its other three
strategies, although it could do justas well with “Lif B, Hif D."

The sequential-move game, when analyzed in its extensive form, produced
just one roliback equilibrium. But when analyzed in its normal or strategic form,
it has two Nash equilibria, What is going on?

The answer lies in the different nature of the logic of Nash and rollback
analyses. Nash equilibrium requires that neither player have a reason to deviate,

given the strategy of the other player. However, rollback does not take the strat-
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egies of later movers as given. Instead, it asks what would be optimal to do if the
opportunity to move actually arises.

. In our example, the Fed's strategy of “High always” does not satisfy the crite-
rion of being optimal if the opportunity to move actually arises. If the Congress
chose Deficit, then High is indeed the Fed's optimal response. However, if the
Congress chose Balance and the Fed had to respond, it would want to choose
Pow, not High. So “High always” does not describe the Fed’s optimal response
in all possible configurations of play and cannot be a rollback equilibrium. But
the logic of Nash equilibrium does not impose such a test, instead regardin.g the
Fed’s “High always” as a strategy that the Congress could legitimately take as
given. If it does so, then Deficit is the Congress's best response. And, conversely,
“High always” is one best response of the Fed to the Congress's Deﬁc’it (althougt;
it is tied with “L if B, H if D"). Thus the pair of strategies “Deficit” and “High al-
ways” are mutual best responses and constitute a Nash equilibrium, although
they do not constitute a rollback equilibrium.

. We can therefore think of rollback as a further test, supplementing the re-
quirements of a Nash equilibrium and helping to select from among multiple
Nash equilibria of the strategic form. In other words, it is a refinement of the
Nash equilibrium concept.

To state this idea somewhat more precisely, recall the concept of a subgame.
At a.ny one node of the full game tree, we can think of the part of the game that
begins there as a subgame. In fact, as successive players make their choices
the play of the game moves along a succession of nodes, and each move car;
be thought of as starting a subgame. The equilibrium derived by using rollback
clorresponds to one particular succession of choices in each subgame and gives
rise to one particular path of play. Certainly, other paths of play are consistent
with the rules of the game. We call these other paths off-equilibrium paths, and
we call any subgames that arise along these paths off-equilibrium subga;11es
for short. '
) With this terminology, we can now say that the equilibrium path of play
is itself determined by the players’ expectations of what would happen if they
chose a different action—if they moved the game to an off-equilibrium path
and started an off-equilibrium subgame. Rollback requires that all players
make their best choices in every subgame of the larger game, whether or not the

subgame lies along the path to the ultimate equilibrium outcome.

S.trategies are complete plans of action. Thus a player’s strategy must
specify what she will do in each eventuality, or each and every node of the
game, whether on or off the equilibrium path, where it is her turn to act.
Z;/l:ena(:e fsuch node arrives, only the p?an of action starting there—namely,
nOdE_iSO th.e full str.ategy tlllat pertains to the subgame starting at that

pertinent. This part is called the continuation of the strategy for
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that subgame. Rollback requires that the equilibrium strategy be such that
its continuation in every subgame is optimal for the player whose turn it is to
act at that node, whether or not the node and the subgame lie on the equilib-
rium path of play.

Return to the monetary policy game with the Congress moving first, and
consider the second Nash equilibrium that arises in its strategic form. Here the
path of play is for the Congress 10 choose Deficit and the Fed 1o choose High.
On the equilibrium path, High is indeed the Fed's best response 10 Deficit. The
Congress's choice of Balance would be the start of an off-equilibrium path. It
leads to a node where a rather trivial subgame starts—namely, & decision by the
Fed. The Fed's purported equilibrium strategy “High always” asks it to choose
High in this subgame. But that is not optimal; this second equilibrium is specify-
ing a nonoptimal choice for an off-equilibrium subgame.

In contrast, the equilibrium path of play for the Nash equilibrium in the
upper-left corner of Figure 6.11 is for the Congress (0 choose Balance and the
Fed to follow with Low. The Fed is responding optimally on the equilibrium
path. The off-equilibrium path would have the Congress choosing Deficit, and
the Fed, given its strategy of “Lif B, HLif ;" would follow with High. It is optimal
for the Fed to respond to Deficit with High, so the strategy remains optimal off
the equilibrium path, too.

The requirement that continuation of a strategy remain optimal under all
circumstances is important because the equilibrium path itself is the result of
players’ thinking strategically about what would happen if they did something
different. A later player may try to achieve an outcome that she would prefer by
threatening the first mover that certain actions would be met with dire responses
or by promising that certain other actions would be met with nice responses.
But the first mover will be skeptical of the credibility of such threats and prom-
ises, The only way to remove that doubt is to check if the stated responses would
actually be optimal if the need arose. If the responses are not optimal, then the
threats or promises are not credible, and the responses would not be observed
along the equilibrium path of play.

The equilibrium found by using rollback is called a sqbvgamq-pe’r'_f‘ectpqui-
Iihfit_l:y!_IS?E)_. It is a set of strategies (complete plans of action), one for each
'p_la);cr. such that, at every node of the game tree, whether or not the node lies
along the equilibrium path of play, the continuation of the same strategy in the
subgame starting at that node is optimal for the player who takes the action
there. More simply, an SPE requires players to use strategies that constitute 2

Nash equilibrium in every subgame of the larger game.

In fact, as a rule, in games with finite trees and perfect information, where
players can observe every previous action taken by all other players so that there
are no multiple nodes enclosed in one information set, rollback finds the unique
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(except for trivial and exceptional cases of ties) subgame-perfect equilibrium of
the game. Consider: if you look at any subgame that begins at the last decision
node tjor the last player who moves, the best choice for that player is the one
that gives her the highest payoff. But that is precisely the action chosen with
th.e lllse of rollback. As players move backward through the game tree, rollback
eliminates all unreasonable strategies, including incredible threats or ’romises
so that the collection of actions ultimately selected is the SPE Therefofe for thn;
purposes of this book, subgame perfectness is just a fancy na.me for roll{)ack At
more advanced levels of game theory, where games include complex informat.'
structures and information sets, subgame perfectness becomes a richer noti01[1On

4 THREE-PLAVER GAMES

We have restricted the discussion so far in this chapter to games with two play-
ers and two moves each. But the same methods also work for some lari (-‘:rp arzld
more general examples. We now illustrate this~by using the street—gardei am

o.f Chapter 3. Specifically, we (1) change the rules of the game from se: gu ne
tial to simultaneous moves and then (2) keep the moves sequential butqsh‘i)v:l

PAYOFFS

EMILY

FIG
URE6.12 The Street-Garden Game with Sequential Moves
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rst we reproduce the tree of that

and analyze the game in its strategic form. Fi
6.12 here and remind you of the

sequential-move game (Figure 3.6) as Figure

rollback equilibrium.
The equilibrium strategy of the first mover (Emily) is simply a move, “Don't

contribute.” The second mover chooses from among four possible strategies
(choice of two responses at each of two nodes) and chooses the strategy “Don't
contribute (D) if Emily has chosen her Contribute, and Contribute (C) if Emily
has chosen her Don't contsibute,” or, more simply, "D il C, CifD,” or even more
simply “DC.” Talia has 16 available strategies (choice of (wo Tesponses at each
of four nodes), and her equilibrium strategy is "D following Emily's C and Ni-
nas C, G following their CD, C following their DC, and D following their DD, or
“DCCD” for short.

Remember, too, the reason for these choices. The first mover has the oppor-
tunity to choose Don't, knowing that the other two will recognize that the nice
garden won't be forthcoming unless they contribute and that they like the nice
garden sufficiently strongly that they will contribute.

Now we change the rules of the game to make it a simultaneous-move game.
(In Chapter 4, we solved a simultaneous-move version with somewhat different
payoffs; here we keep the payoffs the same as in Chapter 3.) The payoff matrix is
in Figure 6.13. Cell-by-cell inspection shows very easily that there are four Nash
equilibria.

In three of the Nash equilibria of the simultaneous-move game, two players
contribute, while the third does not. These equilibria are similar to the rollback
equilibrium of the sequential-move game. [n fact, each one corresponds to the
rollback equilibrium of the sequential game with a particular order of play. Fur-
ther, any given order of play in the sequential-move version of this game leads
to the same simultaneous-move payoff table.

But there is also a fourth Nash equilibrium here, where no one contributes.

Given the specified strategies of the other two—namely, Don’t contribute—any

one player is powerless to bring about the nice garden and therefore chooses

TALIA chooses:

Contribute Don't Contribute
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not to contribute as well. Thus, in the change from sequential to simultaneous
moves, the first-mover advantage has been lost. Multiple equilibria arise, onl
one of which retains the original first mover’s high payoff. o
Next we return to the sequential-move version—Emily first, Nina sec-
ond, and Talia third—but show the game in its normal or strategic %orm In the
sequential-move game, Emily has 2 pure strategies, Nina has 4, and Talia .has 16;
so this means constructing a payoff table that is 2 by 4 by 1(; With the use ;
t.he same conventions as we used for three-player tables in Ch;i ter 4, this ;
ticular game would require a table with 16 “pages” of two-by—fofr a ;)ff t I?lar-
That would look too messy; so we opt instead for a reshufflin olf) tze la e
Let Talia be the row player, Nina be the column player, and Eriily be t}?eag‘;;

EMILY

Contribute Don’t

NINA NINA

TALIA @c D DC DD CC cb DC DD

cccc 3,33 3,33 3,43 3,43 3,3,4 12,2 3,34 1,22

CCCD 3,33 3,33 3,43 3,43 3,34 232! 3,34 2,22

CCbC 3,33 3,33 3,43 3,43 2,1,2 1.2,2 2,1,2 1,22

cocc | 333 | 333 | 221 | 221 ] 334 | 122 | 334 | 1,22

pccc | 433 | 433 | 3,43 | 3,43 | 3,34 | 1,22 | 3,34 | 1,22

CCDD 3,33 3,33 3,4,3 3,4,3 2,1,2 2,2.2 21,2 292

CDDC 3,33 3,33 2,21 2,21 2,1,2 1,2,2 21,2 1,2,2

ooce | 433 | 433 | 221 | 221 | 334 | 1,22 | 334 | 1,22

o | 333|333 221 221|334 | 222|334 222

NINA NINA

A——————
Contribute| Don't

Contribute| Don't

pcoc | 433 | 433 | 3,43 | 343 | 212 | 22| 212 ] 122

occd | 433 | 433 | 3,43 | 343 | 334 | 222 | 334 | 222

CDDD 3,33 3,33 2,21 2,2,1 2,1,2 2,2,2 2,1,2 2,2,2

l Contribute 3,3,3 3,4,3 Contribute 3,34 1,22
EMILY

pcob | 433 | 433 | 343 | 343 | 212 | 222 | 212 | 222

pped | 43,3 | 433 | 221 | 221 | 3,34 | 2,22 | 334 | 222

D
ooc | 433 | 433 | 221 | 221 | 212 | nzz | 212 | 1,22

EMILY
lr Don't 4,3,3 2,21 Don't 2,1,2 2,22

FIGURE 6.13 The Street-Garden Game with Simultaneous Moves

O
DDD 4,3,3 4,3,3 2,2,1 2,2,1 2,1,2 2,22 212 22,2

FIG
URE6.14  Street-Garden Game in Strategic Form
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player. Then wall” that is required t0 {llustrate this game is the 16 by 4 by 2 game
table shown in Figure .14, The order of payofs still corresponds to our earlier
convention in that they are listed row, column, page player; in our example, that
means the payoffs are now listed in the order Talia, Nina, and Emily.

policy game bevween the Fed and the Congress,
libria in the simultaneous street-garden game.

(In Exercise 58, we ask you to find them all) But there is only one

subgame-perfect equilibrium,

corresponding (o the rollback equilibrium found

in Figure 6.13. Although cell-by-cell inspection finds all of the Nash equilibria,
iterated elimination of dominated sirategies can reduce the number of reason-
able equilibria for us here. This process works because elimination identifies

those strategies that include noncredible components (such as "High always”

for the Fed in Section 3.B). A8

it turns out, such elimination can take us all the

way to the unique suhgame-pcrfcci equilibrium.

In Figure 6,14, we start with Taliaand eliminate all of her (weakly) dominated
strategies. This step eliminates all but the strategy listed in the eleventh row of
the table, DCCD, which we have already identified as Talia’s rollback equilibrium
sirategy. Elimination can continue with Nina, for whom we must compare oul-
comes from strategies across both pages of the table. To compare her CC to CD,
for example, we look at the payofis associated with CCin bath pages of the table
and compare these payoffs with the similarly identified payoffs for C1, For Nina,
the elimination process Jeaves only her stategy DC; again, this 18 the roliback

equilibrium strategy found for

her above. Finally, Emily has only to compare the

two remaining cells associated with her choice of Don'tand Contribute; she gets
the highest payoff when she chooses Don't and so makes that choice. As before,
we have identified her rollback equilibrium stralegy.

The unique subgame-per

fect outcome in the game {able in Figure 6.14

thus corresponds 10 the cell associated with the rollback equilibrium strategies
for each player. Note that the process of iterated elimination that leads us to this

subgame-perfect equilibrium i
order of the actual play of the

s carried out by considering the players in reverse
game. This order conforms 1o the order in which

player actions are considered in rollback analysis and therefore allows us o elimi-
nate exactly those strategies, for each player, that are not consistent with rollback.
In so doing, we eliminate all of the Nash equilibria that are not subgmue-perfcct.

Many games include multiple

SUMMARY

components, some of which entail simultaneous

play and others of which entail sequential play. In two-stage (and multistage)

games, a“tree house" can be u

sedl to illustrate the game; this construction allows
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ihe identification of the different stages of play and the ways in which those

stages are linked together. Full-fledged games that arise in later stages of play
are called subgamesof the full game.
Changing the rules of a game (0 alter the timing of moves may or m

Iter th ilibri e
alter the equilibrium outcome of a game. Simultaneous-move games that are

changed to make moves sequential may have the same outcome (if both players
have dominant strategies), may have a first-mover or second-mover advaniage

or may lead to an ouftcome in which both players are better off. The su:qucmiai
v‘ersion of a simultaneous game will generally have a unique rollback equilib-
r{um even if the simultaneous version has no equilibrium or multiple equilib-
ria, Similarly, a sequential-move game that has a unique rollback equilibrium
may have several Nash equilibria when t

: he rules are changed to make the game
a simultaneous-move game.

.Simultaneous—move games can be illustrated in a game tree by collecting
.dec1sion nodes in information sets when players make decisions without know-
ing at which specific node they find themselves. Similarly, sequential-move
games can be illustrated by using & game table; in this case, each players full
set of‘strategies must be carefully identified. Solving a sequemiai-mcw,: éame
from its strategic form may lead to many possible Nash equilibria. The num-
be.r C‘If potential equilibria can be reduced by using the eriteria of credibility to
eliminate some strategies as possible equilibrium strategies. This process leads
to the subgame-perfect equilibrium (SPE) of the sequential-move gﬁmu These
solution processes also work for games with additional players. '

KEY TERMS

continuation (197)
credibility (198)
information set (194)
off-equilibrium path (197)

off-equilibrium subgame (197)
subgame (182)
subgame-perfect equilibrium (SPE) (198)

SOLVED EXERCISES

S1

Consider the simultaneous-move game with two players that has no Nash
equilibrium in pure strategies, illustrated in Figure 4.15. If the game were
transformed into a sequential-move game, would you expect that game
to exhibit a first-mover advantage, a second-mover advantage
Explain your reasoning. '

or neither?
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g2. Consider the gamé represented by the game ln.:u pelow. The first mmrcf'.
Player 1, may move either Up or Down, after which Player 2 may n'.o;;c 1::1-
lhc.r Left or Right. Payoffs for the possible outcomes appear below. ;:u:
press this game in strategic (table) form. Find all of tbc !mr.cAstrat?y] ash
equilibria in the game, If there are multiple equilibria, 1|1d|ca1’e which fun::
is subgame-perfect. For those equilibria that arl.z not subgame-periect,
identify the reason (the source of the lack of credibility)-

2,4

Right

2

se 4 in Chapter 3. Show that
¢ Nash equilibria. Which one
at are not

s3. Consider the Airbus-Boeing game in Exerci!
game in strategic form and locate all of th g
of the equilibria is subgame-perfect? For those EqU}ll.‘)}'la t
suhgan1e~per§cct. jdentify the source of the lack of credibility.

S4. Returnto the two-player game tree in part (a) of Exercise 52 in Chapter 3.
(a) Write the game in strategic form, making Scarecrow the row player and

Tinman the column player.
(b) Find the Nash equilibrium.

$5. Return 1o the two-player game tree in part (b) of Exercise §2 in Chapter 3.

(a) Write thegamein strategic form. (Hint: Refer to your ansu\ter to Exercise
52 of Chapter 3.) Find all of the Nash equilibria. There will be many.

(b) For the equilibria that you found in part (a) that are not subgame-
perfect, identify the credibility problems.

s6. Return to the three-player game {ree in part () of Exercise 5.‘;2 in Chapter 31;
{a) Draw the game table. Make Scarecrow the row player, Tinman lhefc:
umn player and Lion the page player. (Hint: Refer to your au.swer 1o Exer

cise 52 of Chapter 3.) Find all of the Nash cquilibria.’]‘here will be maty.

S7.

$8.
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(b) For the equilibria that you found in part (a) that are not subgame-
perfect, identify the credibility problems.

Consider a simplified baseball game played between a pitcher and a bat-
ter. The pitcher chooses between throwing a fastball or a curve, while the
batter chooses which pitch to anticipate. The batter has an advantage ifhe
correctly anticipates the type of pitch. In this constant-sum game, the bat-
ter’s payoff is the probability that the batter will get a base hit. The pitcher’s
payolf is the probability that the batter fails to get a base hit, which is sim-
ply one minus the payoff of the batter. There are four potential outcomes:

(i) Ifa pitcher throws a fastball, and the batter guesses fasthall, the prob-
ability of a hit is 0.300.

(ii) If the pitcher throws a fastball, and the batter guesses curve, the prob-
ability of a hit is 0.200.

(i) If the pitcher throws a curve, and the batter guesses curve, the prob-
ability of a hit is 0.350.

(iv) If the pitcher throws a curve, and the batter guesses fastball, the prob-
ability of a hit is 0.150.

Suppose that the pitcher is “ipping” his pitches. This means that the
pitcher is holding the ball, positioning his body, or doing something else
in‘a way that reveals to the batter which pitch he is going to throw. For our
purposes, this means that the pitcher-batter game is a sequential game
in which the pitcher announces his pitch choice before the batter has to
choose his strategy.

(a) Draw this situation, using a game tree.

(b) Suppose that the pitcher knows he is tipping his pitches but can't stop
himself from doing so. Thus, the pitcher and batter are playing the
game you just drew. Find the rollback equilibrium of this game.

(¢) Now change the timing of the game, 50 that the batter has to reveal
his action (perhaps by altering his batting stance) before the pitcher
chooses which pitch to throw. Draw the game tre¢ for this situation,
and find the rollback equilibrium.

Now assume that the tips of each player occur so quickly that neither
opponent can react to them, so that the game is in fact simultaneous.

(d) Draw a game tree to represent this simultaneous game, indicating
information sets where approptiate.

(e) Draw the game table for the simultaneous game. Is there a Nash equi-
librium in pure strategies? If so, what is it?

The street-garden game analyzed in Section 4 of this chapter has a
16-by-4-by-2 game table when the sequential-move version of the game is
expressed in strategic form, as in Figure 6.14. There are many Nash equilib-
ria to be found in this table.
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(a) Use best-response analysis to find all of the Nash equilibria in the table

in Figure 6.14. . wtof

(b) Identify the subgame-perfect equilibrium from m?wng‘yuur "
Nash equilibria, Other equilibrium outcomes look identical to the .?u .—
game-perfect one—they entail the same p:t)rlnﬂ‘s. for each of lh.e l 1;ce
players—but they arise-after different C(}l‘l‘lhl}l]E‘lT.lanS of strategies, .x-
plain how this can happett: Describe the credibility problems thar arise
in the nonsubgame-perfect equilibria.

S9. Asitappears in the text, Figure 6.1 represenl; the two-stage game belwce:ll
CrossTalk and GlobalDialog with a combination of tables and frees. insteaB ‘
represent the entire (wo-stage game in a sh?gle. very large game lrec.. L
careful to label which player makes the decision at each node, and remem
ber to draw information sets between nodes where necessary.

510. Recall the mall logation game in Exercise $8 in Chapier 3. That three-player

sequential game has a game tree that is similar to the one for the street-garden

ame, shown in Figure 6. 12. .
fa} Draw the tree for the mall location game. How many strategies does
each store have?
(b) Mustrate the game in strategic form and find all of the pure-strategy
Nash equilibria in the game. o
(c) Use iterated dominance to find the subgame-petfect equilibrium.
(Hint: Reread the last two paragraphs of Section 4.)

$11. The rules of the mall location game, analyzed in Exercise Si0 ahfwu, specify

{hat when all three stores request space in Urban Mall, the wtrn bigger (more

prestigious) stores get the available spaces. "I“heA original \'_EI'SIOI‘I of the g.ame

also specifies that the firms move sequentially in requesting mall fpam.

(a) Suppose that the three firms make their location requests slmullanc-f
ously, Draw the payolf table for this version of tl.m game and find all o
the Nash equilibria. Which one of these equilibria do you think is most

ikely to be played in practice? Explain.

}\‘Il::/vysuppoSe tzm W}Fen all three stores simultaneously request \Irbanl
Mall, the two spaces are allocated by lottery, giving each store an equa
chance of getting into Urban Mall, With such a system, e‘uch would have
a two-thirds probability (or 2 66.67% chance) of getling m‘m Urban Mf‘l"
when all three had requested space there, and a one-third probability
(33.33% chance) of being alone in the Rural Mall. .

(b) Draw the game table for this new version of the mmultaneous-p}a})i
mall location game. Find all of the Nash equilibria of the game. Wth.
one of these equilibria do you thittk is most likely to be played in
practice? Explain.
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(¢) Compare and contrast the equilibria found in past (b) with the equilibria
found in part (a). Do you get the same Nash equilibria? Why or why not?

$12. Return to the game of Monica and Nancy in Exercise S10 of Chapter 5. As-
sume that Monica and Nancy choose their effort levels sequentially instead
of simultaneously. Monica commits to her choice of effort first, and on ob-
serving this decision, Nancy commits to her own effort.

(a) What is the subgame-perfect equilibrium to the game where the joint
profits are 4m + 4n + mn, the effort costs to Monica and Nancy are m?
and n? respectively, and Monica commits to an effort level first?

(b) Compare the payoffs of Monica and Nancy with those found in Exer-
cise S10 of Chapter 5. Does this game have a first-mover or a second-
mover advantage? Explain.

$13. Extending Exercise $12, Monica and Nancy need to decide which Gf either)
of thermn will commit to an effort level first. To do this, each of them simul-
taneously writes on a separate slip of paper whether or not she will commit
first. If they both write “yes” or they both write “no,” they choose effort lev-
els simultaneously, as in Exercise $10 in Chapter 5. If Monica writes “yes”
and Nancy writes “no,” then Monica commits to her move first, as in Exer-
cise S12. If Monica writes “no” and Nancy writes “yes,” then Nancy com-
mits to her move first.

(a) Use the payoffs to Monica and Nancy in Exercise S12 above as well as in
Exercise S10 in Chapter 5 to construct the game table for the first-stage
paper-slip decision game. (Hint: Note the symmetry of the game.)

(b) Find the pure-strategy Nash equilibria of this first-stage game.

UNSOLVED EXERCISES

Ul. Consider a game in which there are two players, A and B. Player A moves
first and chooses either Up or Down. If A chooses Up, the game is over,
and each player gets a payoff of 2. If A moves Down, then B gets a turn and
chooses between Left and Right. If B chooses Left, both players get 0; ifB
chooses Right, A gets 3 and B gets 1.

(2) Draw the tree for this game, and find the subgame-perfect equilibrium.

(b) Show this sequential-play game in strategic form, and find all of the
Nash equilibria. Which is or are subgame-perfect? Which is or are not?
If any are not, explain why.

(c) What method of solution could be used to find the subgame-perfect
equilibrium from the strategic form of the game? (Hint: Refer to the
last two paragraphs of Section 4.)
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U2. Returntothe two-player game tree inp
(a) Write the game in str

art (a) of Exercise U2 in Chapter 3.
ategic form, making Albus the row player and

Minerva the column player. Find all of the Nash equilibria.

(b) For the equilibria you

found in part (a) of this exercise that are not

subgame-perfect, identify the credibility problems.

Return to the two-player gar
(a) Write the game in strategic

ne tree in part (b) of Exercise U2 in Chapter 3.
foym, Find all of the Nash equilibria.

(b) For the equilibria you found in part (a) that are not subgame-perfect,
identify the credibility problems.

Return to the two-player game tree in part
(@) Draw the game table. Make Albus the ©

player, and Severus th
(b) For the equilibria you found in part (a) thal

(c) of Exercise U2 in Chaptet 3.
ow player, Minerva the column
e page player. Find all of the Nash equilibria.

1 are not suhgame-perl’ccl.

identify the credibility problems.

firms. (To

. Conslider the cola industry, in which Coke and Pepsi are the two dominant

keep the analysis simple, just forget about all the others.) The

market size is $8 billion. Fach firm can choose whether to advertise, Ad-

vertising costs $1 bitlion for
the other doesn't, then the former captures the whole market. [fboth firms
advertise, they split the market 50:50 and pay for the advertising. If neither ad-
vertises, they split the market 50:50 but without the expense of advertising.

and

() Write

the total

are deciding simultaneous
location of one of the clusters.

If there is a vendor in a cluster, all 100 children in that cluster will buy
an ice cream. For clusters without a vendor,
ing to walk to a vendor who is one cluster away, only 20 are willing t
to a vendor two clusters away, and no children are willing to walk the dis-
tance of three or more clusters. The ice cream melts quickly, so the walkers

each firm that chooses it. if one firm advertises

the payoff table for this game, and find the equilibrium when the

two firms move simultaneously.

(b) Write the game tree for this game (assume that it is played sequen-
tially), with Coke moving first and Pepsi following.

(¢) Is either equilibrium in parts (a) and (b) better from the joint pesspec-
tive of Coke and Pepsi? How could the two firms do better?

. Along a stretch of a beach are 500 children in five clusters of 100 each.
(Label the clusters A, B, CD, and E in that order.) Two ice-cream vendors

ly where to locate. They must choose the exact

50 of the 100 children are will-
o walk

cannot buy for the nonwalkers.
If the two vendors choose the same cluster, each will geta 50% share of

demand for ice cream. if they choose different clusters, then those

u7.

uUs.
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c}?ildren (locals or walkers) for whom one vendor is closer than the other

w11¥ go to the closer one, and those for whom the two are equidistant will

split 50% each. Bach vendor seeks to maximize her sales

(a) Constrlilct the five-by-five payoff table for the vendor location
game; the entries stated here will give you a st ¥
i y art and a check on your

If both vendors choose to locate at A, each sells 85 units

If the first vendor chooses B and the s
econd chooses C,
150 and the second sells 170. e st

If the first vendor chooses E and the
second chooses B, ]
150 and the second sells 200. e B the st

(b) Eliminate dominated strategies as far as possible

(¢) In the remaining table, locate all pure-strategy Na.1sh equilibria

(d) If the game is altered to one with sequential moves, where .the first
vendor chooses her location first and the second ven(ior follows, wheslt
are the locations and the sales that result from the subgame- 'erfe t
equilibrium? How does the change in the timing of moves hefe helC
players resolve the coordination problem in part (c)? ’

=

Return to the game amon, i i i

e Chgapter " g the three lions in the Roman Colosseum in Ex-

(a) Write out this game in strategic form. Make Lion 1 the row player, Lio
2 the column player, and Lion 3 the page player. e

(b) Find the Nash equilibria for the game. How many did you find?

(c) You should have found Nash equilibria that are not subgamel-perfect
For each of those equilibria, which lion is making a noncredible threat?.
Explain. .

Now asst.lme .that the mall location game (from Exercises S8 in Chapter 3
and SI.O m.thls chapter) is played sequentially but with a different order of
play: Big Giant, then Titan, then Frieda'’s.

(a) Draw the new game tree.

(b) Y\/hat is the subgame-perfect equilibrium of the game? How does
it compare to the subgame-perfect equilibri erci i
e q ium for Exercise 58 in

(Z) I\{ow write the strategic form for this new version of the game

(d) Find all of the Nash equilibria of the game. How many are there? How

his compare wi
S (<] ili
doe! th the number of equ bria from Exercise S10 in
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in Exercise U10 of Chapter 5.

U9. Return to the game of Monica and Nancy
their effort levels sequentially

Assume that Monica and Nancy choose
instead of simultaneously. Monica commits to her choice of effort first. On
observing this decision, Nancy commits io fier own effort.

{a) What is the subgame-perfect equilibrium to the game where the joint
profits are 5m + dn -+ mi, the effort costs to Monica and Nancy are m
and #* respectively, and Monica commits to an effort level first?

(b) Compare the payofls of Monica and Nancy with those found in
Exercise U10 of Chapter 5. Does this game have 2 first-mover ot

second-mover advantage?

(¢) Using the same joint profit functio
perfect equilibrium for the game where Nancy must com

effort level.

n as in part (a), find the subgame-
mit first to an

sion of Exercise U9, Monica and Nancy need to decide which (if
ffort level first. To do this, each of them si-
multaneously writes on a separate slip of paper whether or notshe will com-
mit first, 1f they both write “yes" or they both write "no," they choose effort
levels simultaneously, as in Exercise U10 in Chapter 5. 1f Monica writes “yes”
and Nancy writes "no,” they play the game in part (a) of Exercise U9, above.
1f Monica writes “no’” and Nancy writes “yes," they play the game in part (¢).
(a) Use the payoffs t0 Monica and Nancy in parts (b) and (¢) in Exercise
U9 above as well as those in Exercise U10 in Chapter 5 ta construct the
game table for the first-stage paper-slip decision game,
(b) Find the pure-strategy Nash equilibria of this first-stage game.

Ull.In the faraway town of Saint James two firms, Bilge and Chem, com-
pete in the soft-drink market (Coke and Pepsi aren't in this market
yet). They sell identical products, and since their good is a liquid, they
can easily choose (0 produce fractions of units. Since they are the only
two firms in this market, the price of the good (in dollars), £ is deter-
mined by P = 30 — Qs ~ Qg), where @ is the quantity produced by
Bilge and Qcis the quantity produced by Chem (each measured in liters).
At this time both firms are considering whether to invest in new bottling
equipment that will lower their variable costs.

(i) Iffirm jdecides notto invest, its cost willbe C;= Q? /2, where J stands

for either B (Bilge) or C (Chem).

(i) Tfafirm decides to invest, its €ost will be €, =20+ Qf | 6, where jstands

for either B (Bilge) or C (Chem). “This new cost function reflects the
fixed cost of the new machines (20) as well as the lower variable costs.

The two firms make their investment choices simultaneously, but

the payoffs in this investment game will depend on the subsequent

U10. In an extern
either) of them will commit 10 an

EXERCISES 211

duopoly games thatarise. The i
. : game is thus really a two-st; :deci
invest, and then play a duopoly game. Y cegumedecideto
(a) (S)lflppose both firms decide to invest, Write the profit functions in terms
o 313 and Qc. for the? two firms. Use these to find the Nash equilibrium
e quantity-setting game. What are the equilibrium quantities and
profits for both firms? What is the market price?
(b) Now sT.leose both firms decide not to invest. What are the equilibrium
quantities and profits for both firms? What is the market price?
Now SLL;\)Iflose that Bilge decides to invest, and Chem decidés not to
invest. What are the equilibrium quantities a
: nd profit
What is the market price? .
Xrlte out the two-by-two game table of the investment game between
e two firms. Each firm has two strategies: Investment and No Invest-
ijnt. The payoffs are simply the profits found in parts (a), (b), and (c)
(Hint: Note the symmetry of the game.) ' '
(e} What is the subgame-perf ilibri
i g perfect equilibrium of the overall two-stage

(c

d

U12.Two French aristocrats, Chevalier Chagrin and Marquis de Renard, fight

‘(livl;;l(. :Each gas a };l)istol loaded with one bullet. They start 10 steps ap'artg anz
. oward each other at the same pace, 1 step at a time. A

either may fire hi.s gun. When one shoots, the r}))robability oit:;-(fr?:;‘ Zt;l—-i’;

depends on the distance. After ksteps it is k/5, and so it rises from 0.2 aft
the .ﬁrst step to 1 (certainty) after 5 steps, at which point they are ri. ht o
against one another. If one player fires and misses while the other k?a "
to ﬁr(.e, the walk must continue even though the bulletless one now fs N
certain death; this rule is dictated by the code of the aristocracy. Each ey
a payoff of 21 if he himself is killed and 1 if the other is killed I}; i .
both are killed, each gets 0. fneterer
(Sho”f)ltu; is a iame with five sequential steps and simultaneous moves
e (1; ;1tc)hti: gz(r)rtl)e:lt each step. Find the rollback (subgame-perfect) equi-
o Hint: Begin at step 5, when the duelists are right up against one an-

er. Set up the two-by-two table for the simultaneous-move game at thi
step, and find its Nash equilibrium. Now move back to step 4, wh o
probability of scoring a hit is 4/5, or 0.8, for each. Set up tﬁe ,tvsvr\:)j)re rtwhe
t;:l: foi Othe. simultaneous-move g.ame at this step, correctly specifyi};g iz
e I;:11;i)ss :;nite cell what happens in the future. For example, if one shoots
o ,Scout the othe.r does .not shoot, then the other will wait until
P and re 'a sure hit. If neither shoots, then the game will go to the
ep, for which you have already found the equilibrium. Using all this



ES
212 [CH. 6} COMBINING SEQUENTIAL AND SIMULTANEOUS MOV

the two-by-two table of step 4, and find the
Joward in the same way through the
strategies of the full game.

information, find the payoffs in
Nash equilibrium at this step. Work bac \
rest of the steps to find the Nash equilibrium
- e o
U13. Describe an example of business competition that is similar in structur
the duel in Exercise U12.

i
Simultaneous-Move Games
with Mixed Strategies I:
Two-by-Two Games

N our sTUDY of simultaneous-move games in Chapter 4, we came across a

class of games that the solution methods described there could not solve;

in fact, games in that class have no Nash equilibria in pure strategies. To

predict outcomes for such games, we need an extension of our concepts
of strategies and equilibria. This is to be found in the randomization of moves,
which is the focus of this chapter and the next. -

Consider the tennis-point game from the end of Chapter 4. This game is
zero sum; the interests of the two tennis players are purely in mutual conflict.
Evert wants to hit her passing shot to whichever side—down the line (DL) or
crosscourt (CC)—is not covered by Navratilova, whereas Navratilova wants to
cover the side to which Evert hits her shot. In Chapter 4, we pointed out that in
such a situation, any systematic choice by Evert will be exploited by Navratilova
to her own advantage and therefore to Evert’s disadvantage. Conversely, Evert
can exploit any systematic choice by Navratilova. To avoid being thus exploited,
each player wants to keep the other guessing, which can be done by acting un-
Systematically or randomly.

However, randomness doesn't mean choosing each shot half the time, or al-
ternating between the two. The latter would itself be a systematic action open
to exploitation, and a 60-40 or 75-25 random mix may be better than 50-50 de-
pending on the situation. In this chapter we develop methods for calculating the
best mix and discuss how well this theory helps us understand actual play in
such games.




