CAPÍTULO 2 - REVISÃO DE TÓPICOS DE CÁLCULO - INTEGRAIS

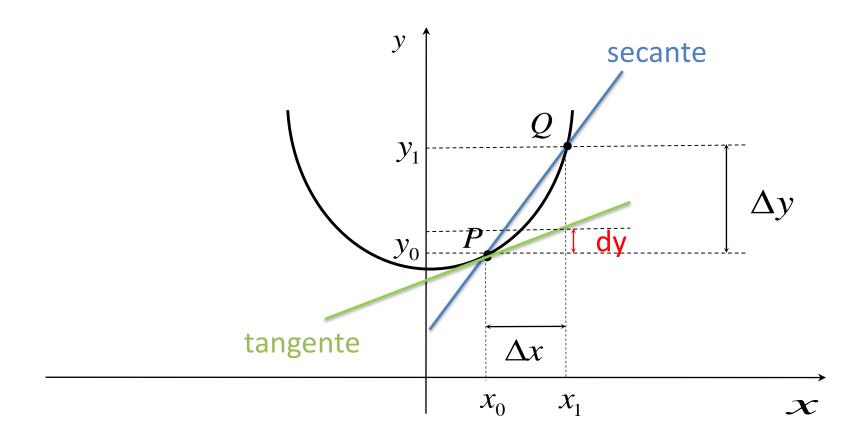
2.1 Integrais indefinidas

 Além de iniciar o estudo intensivo de derivadas, Newton e Leibniz descobriram também que muitos problemas de geometria e física dependem de "antiderivação". Este problema é, às vezes, chamado "inverso das tangentes", ou seja, dada a derivada de uma função, achar a própria função.

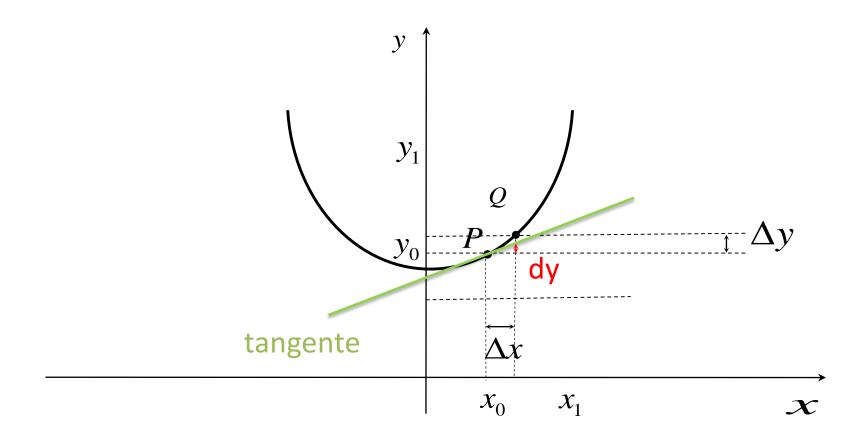
Diferencial

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y1 - y0}{x1 - x0} = \frac{dy}{dx}$$

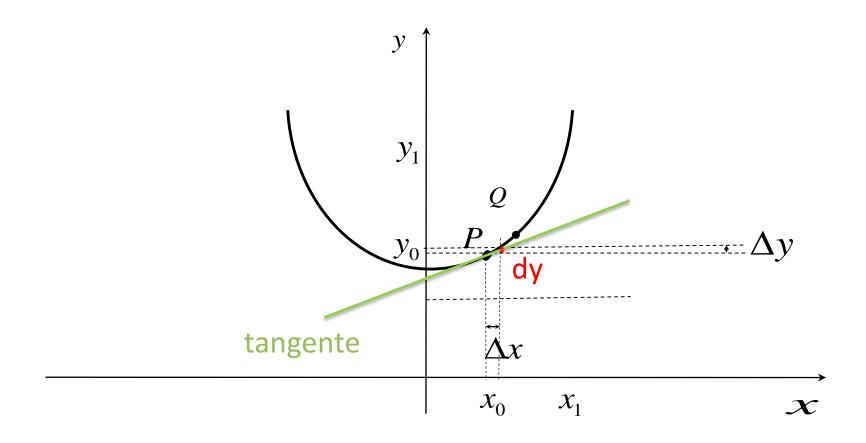
Interpretação geométrica



Interpretação geométrica



Interpretação geométrica



A diferencial da variável independente:

• Se a função f(x) é definida por: y = f(x) = x

• Então a diferencial de x, denotada por dx é dada por:

$$dx = \Delta x$$

• Podendo-se escrever: $dy = f'(x) \cdot dx$

Exemplo:

• Se a função f(x) é definida por: $y = f(x) = x^2$

$$f'(x) = \frac{dy}{dx} = 2x$$

$$dy = f'(x) \cdot dx = 2x dx$$

A diferencial como estimativa de erro

Considera:

```
x → valor correto de entrada
```

Dy \rightarrow erro na variável calculada (erro de saída)

$$Dy = f(x + Dx) - f(x)$$

dy \rightarrow estimativa do erro dy = f'(x). Dx

Exemplo: Dados \rightarrow f(x) = 4x²+1

$$\rightarrow$$
 f(x) = 4x² +1

$$\rightarrow$$
 para x = 2

$$\rightarrow$$
 considerando Dx = 0,1 e Dx = 0,01

→ Calcular Dy e dy

$$Dy = f(x + Dx) - f(x) = 4(x + Dx)^{2} + 1 - (4x^{2} + 1)$$

$$= 4 (x^{2} + 2x Dx + Dx^{2}) + 1 - (4x^{2} + 1) =$$

$$Dy = 4x^{2} + 8x Dx + 4Dx^{2} + 1 - 4x^{2} - 1 = 8x Dx +$$

 $4Dx^2$

x	Dx	Dy	dy	(Dy - dy)
2	0,1	1,64	1,60	0,04
2	0,01	0,1604	0,1600	0,0004

• 2.2 A antidiferenciação ou integração

$$\frac{d(G(x)+C)}{dx} = g(x)=2x$$

Diferenciação

$$y = G(x) + C = x^2$$

$$g(x) dx = 2x dx$$

Função Primitiva ou integral de g(x)

Antidiferenciação ou Integração

g(x) é o integrando

$$\int g(x) = (G(x) + C) = x^2 + C$$

• Determinação da constante de integração

 A constante de integração pode ser determinada quando conhecemos algumas condições iniciais, isto é, quando conhecemos o valor da integral para algum valor da variável.

Solução particular

Exemplo

Achar a função cuja derivada primeira é $3x^2 - 2x + 5$ e que para x = 1, f(x) = 12.

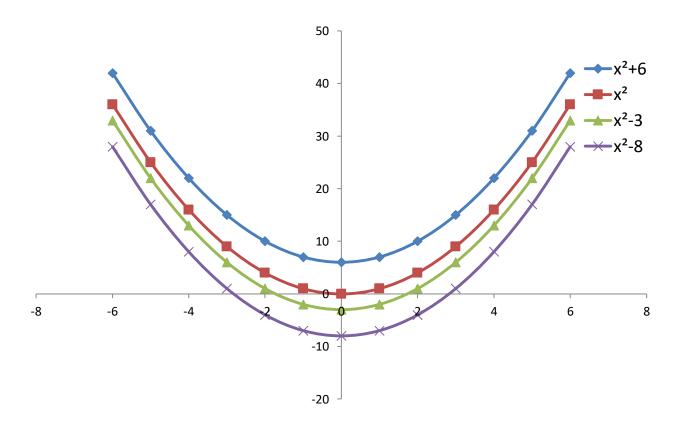
$$f'(x) = 3x^{2} - 2x + 5 \implies dy = (3x^{2} - 2x + 5) dx$$
$$\int dy = \int (3x^{2} - 2x + 5) dx$$
$$y = f(x) = x^{3} - x^{2} + 5x + C$$

Dadas as condições iniciais f(x) = 12 para x = 1; temos

$$12=1-1+5+C$$
, ou $C=7$

Logo, x3 - x2 + 5x + 7 é a solução particular.

- Significado geométrico da constante de integração
- Solução geral família de curvas com o mesmo dy/dx
- Exemplo: $y = x^2 + C \rightarrow dy/dx = 2x$



Significado físico da constante de integração

 A constante de integração reflete as condições iniciais do problema, ou seja, pode ser determinada conhecendo-se o valor da variável dependente para o momento inicial. Ex: movimento uniforme acelerado (movimento de um ponto móvel em linha reta, com aceleração constante).

• Aceleração (a) é constante:
$$\frac{dv}{dt} = a$$
, ou $dv = a dt$.

Integrando,

$$\int dv = \int a \, dt \implies v = at + C \text{ (solução geral)}.$$

Para a solução particular:

• Condição inicial: $v = v_0$ quando t = 0.

$$v_0 = 0 + C$$
, ou $C = v_0$.

• $v = a t + C \rightarrow Logo$, $v = a t + v_0$ (Solução particular).

2.3 Algumas regras de integração

a)
$$\int dx = x + C$$

b)
$$\int a \, dx = ax + C$$

c)
$$\int a f(x) dx = a \int f(x) dx$$

d)
$$\int (u(x) \pm v(x) \pm w(x)) dx = \int u dx \pm \int v dx \pm \int w dx$$

e)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
, $(n \neq -1)$

f)
$$\int \frac{\mathrm{dx}}{x} = \ln |x| + C$$

g)
$$\int e^x dx = e^x + C$$

h)
$$\int \cos x \, dx = sen \, x + C$$

i)
$$\int \operatorname{sen} x \, dx = -\cos x + C$$

$$j) \int \sec^2 x \, du = tg \, x + C$$

k)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = arcsen \frac{x}{a} + C$$

1)
$$\int \frac{du}{\sqrt{a^2 + x^2}} = \frac{1}{a} \arctan \frac{x}{a} + C$$

m)
$$\int \tan x \, du = -\ln(\cos x) + C$$

 Algumas integrais são resolvidas por substituição:

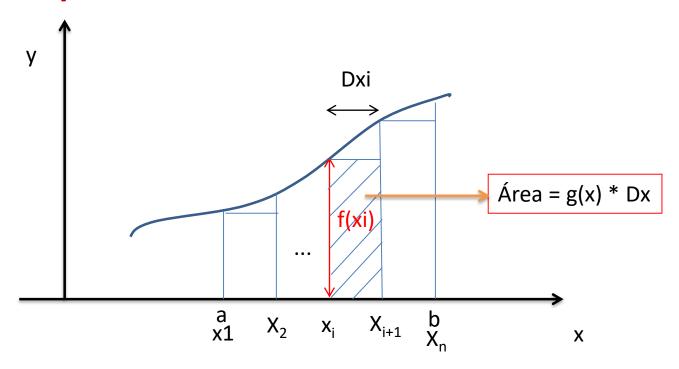
$$\int \frac{x}{x^2 + 1} dx \qquad u = x^2 + 1$$

$$\frac{du}{dx} = 2x \quad \Rightarrow \quad dx = \frac{du}{2x}$$

Substituindo:
$$\int \frac{x}{x^2 + 1} dx = \int \frac{x}{u} \frac{du}{2x} = \int \frac{du}{2u} = \frac{1}{2} \int \frac{du}{u} =$$

$$\frac{1}{2}\ln|u| + C = \frac{1}{2}\ln|x^2 + 1| + C$$

2.4 A Integral definida – A área delimitada sobre uma curva de 2 pontos



Quando n tender ao infinito os erros tendem a sumir e Dx tende a zero

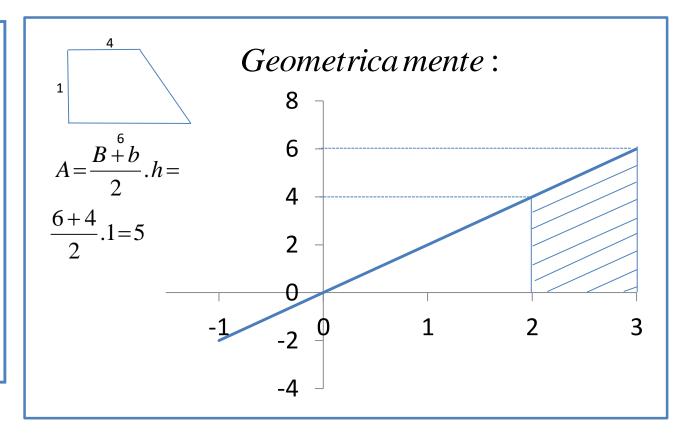
$$A = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(xi) \cdot \Delta xi$$

PeloTeorema Fundamental do Cálculo:

$$\mathbf{A} = \int_{a}^{b} f(x) = [F(x)]_{a}^{b} = F(b) - F(a)$$

Exemplo: Calcular $\int_{2}^{3} f(x) dx$ para f(x) = 2x

Analiticamente: $y = \int_{2}^{3} 2x \, dx =$ $2 \int_{2}^{3} x \, dx =$ $2 \left[\frac{x^{2}}{2} \right]_{2}^{3} = \left[x^{2} \right]_{2}^{3}$ = 9 - 4 = 5



 Exemplo: Achar a área compreendida entre as funções:

•
$$y = x^2 - 4x + 5$$

$$y = x + 1$$